



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                        |
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 16 MIPs                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT                        |
| Number of I/O              | 21                                                                              |
| Program Memory Size        | 16KB (16K × 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 1K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 6x10b                                                                       |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                              |
| Mounting Type              | Through Hole                                                                    |
| Package / Case             | 28-DIP (0.300", 7.62mm)                                                         |
| Supplier Device Package    | 28-SPDIP                                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc102-e-sp |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## Pin Diagrams (Continued)



## **Pin Diagrams (Continued)**



# DS70000652F-page 66

## TABLE 4-18: CTMU REGISTER MAP

| F | ile Name       | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    | Bit 7   | Bit 6   | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1 | Bit 0 | All<br>Resets |
|---|----------------|-------------|---------|---------|----------|----------|----------|----------|----------|----------|---------|---------|----------|----------|----------|----------|-------|-------|---------------|
| C | FMUCON1        | 033A        | CTMUEN  | _       | CTMUSIDL | TGEN     | EDGEN    | EDGSEQEN | IDISSEN  | CTTRIG   | _       | _       |          | -        | _        | -        | _     | _     | 0000          |
| C | FMUCON2        | 033C        | EDG1MOD | EDG1POL | EDG1SEL3 | EDG1SEL2 | EDG1SEL1 | EDG1SEL0 | EDG2STAT | EDG1STAT | EDG2MOD | EDG2POL | EDG2SEL3 | EDG2SEL2 | EDG2SEL1 | EDG2SEL0 |       |       | 0000          |
| C | <b>FMUICON</b> | 033E        | ITRIM5  | ITRIM4  | ITRIM3   | ITRIM2   | ITRIM1   | ITRIM0   | IRNG1    | IRNG0    | —       | —       | -        |          | _        |          |       | -     | 0000          |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-19: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

| File Name | SFR<br>Addr | Bit 15 | Bit 14                                             | Bit 13  | Bit 12  | Bit 11  | Bit 10 | Bit 9    | Bit 8    | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-----------|-------------|--------|----------------------------------------------------|---------|---------|---------|--------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| ALRMVAL   | 0620        |        | Alarm Value Register Window based on ALRMPTR<1:0>  |         |         |         |        |          |          |       |       |       | xxxx  |       |       |       |       |               |
| ALCFGRPT  | 0622        | ALRMEN | CHIME                                              | AMASK3  | AMASK2  | AMASK1  | AMASK0 | ALRMPTR1 | ALRMPTR0 | ARPT7 | ARPT6 | ARPT5 | ARPT4 | ARPT3 | ARPT2 | ARPT1 | ARPT0 | 0000          |
| RTCVAL    | 0624        |        | RTCC Value Register Window based on RTCPTR<1:0> xx |         |         |         |        |          |          |       |       | xxxx  |       |       |       |       |       |               |
| RCFGCAL   | 0626        | RTCEN  | —                                                  | RTCWREN | RTCSYNC | HALFSEC | RTCOE  | RTCPTR1  | RTCPTR0  | CAL7  | CAL6  | CAL5  | CAL4  | CAL3  | CAL2  | CAL1  | CAL0  | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-20: PAD CONFIGURATION REGISTER MAP

| File Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1    | Bit 0 | All<br>Resets |
|-----------|-------------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|---------------|
| PADCFG1   | 02FC        | _      |        |        |        | _      | _      | _     | -     | _     |       | —     |       |       | _     | RTSECSEL | _     | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| D / M A       | D 444 A                                                                                                                                      | D.4.4. 0                            | DAMA            | DALLA             | DALLA           | DAMA            | D 44/ 6 |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|-------------------|-----------------|-----------------|---------|--|--|--|--|
| R/W-0         | R/W-0                                                                                                                                        | R/W-0                               | R/W-0           | R/W-0             | R/W-0           | R/W-0           | R/W-0   |  |  |  |  |
| NSTDIS        | OVAERR                                                                                                                                       | OVBERR                              | COVAERR         | COVBERR           | OVATE           | OVBTE           | COVTE   |  |  |  |  |
| bit 15        |                                                                                                                                              |                                     |                 |                   |                 |                 | bi      |  |  |  |  |
| R/W-0         | R/W-0                                                                                                                                        | U-0                                 | R/W-0           | R/W-0             | R/W-0           | R/W-0           | U-0     |  |  |  |  |
| SFTACERR      |                                                                                                                                              | <u> </u>                            | MATHERR         | ADDRERR           | STKERR          | OSCFAIL         |         |  |  |  |  |
| bit 7         | BIVOLINI                                                                                                                                     |                                     |                 | ABBRERR           | OTTLETT         | 00017112        | bi      |  |  |  |  |
|               |                                                                                                                                              |                                     |                 |                   |                 |                 |         |  |  |  |  |
| Legend:       |                                                                                                                                              |                                     |                 |                   |                 |                 |         |  |  |  |  |
| R = Readabl   | e bit                                                                                                                                        | W = Writable                        | bit             | U = Unimplem      | ented bit, read | 1 as '0'        |         |  |  |  |  |
| -n = Value at | POR                                                                                                                                          | '1' = Bit is set                    |                 | '0' = Bit is clea | ared            | x = Bit is unkr | nown    |  |  |  |  |
| 6:4 <i>7</i>  |                                                                                                                                              | www.unt.Nie.otie.e.F                | Niachla hit     |                   |                 |                 |         |  |  |  |  |
| bit 15        |                                                                                                                                              | rrupt Nesting E<br>nesting is disat |                 |                   |                 |                 |         |  |  |  |  |
|               |                                                                                                                                              | nesting is cloat                    |                 |                   |                 |                 |         |  |  |  |  |
| bit 14        | <b>OVAERR:</b> Accumulator A Overflow Trap Flag bit                                                                                          |                                     |                 |                   |                 |                 |         |  |  |  |  |
|               | 1 = Trap was caused by overflow of Accumulator A                                                                                             |                                     |                 |                   |                 |                 |         |  |  |  |  |
|               | 0 = Trap was                                                                                                                                 | not caused by                       | overflow of Ad  | ccumulator A      |                 |                 |         |  |  |  |  |
| bit 13        |                                                                                                                                              | cumulator B O                       | -               | -                 |                 |                 |         |  |  |  |  |
|               |                                                                                                                                              | caused by ove                       |                 |                   |                 |                 |         |  |  |  |  |
| bit 12        | <ul> <li>0 = Trap was not caused by overflow of Accumulator B</li> <li>COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit</li> </ul> |                                     |                 |                   |                 |                 |         |  |  |  |  |
| <i>n</i> 12   |                                                                                                                                              |                                     | •               | flow of Accumu    | •               |                 |         |  |  |  |  |
|               | •                                                                                                                                            | •                                   | •               | overflow of Accu  |                 |                 |         |  |  |  |  |
| bit 11        | COVBERR: A                                                                                                                                   | Accumulator B                       | Catastrophic C  | Overflow Trap F   | lag bit         |                 |         |  |  |  |  |
|               |                                                                                                                                              |                                     |                 | flow of Accumu    |                 |                 |         |  |  |  |  |
|               | -                                                                                                                                            | -                                   | -               | overflow of Accu  | umulator B      |                 |         |  |  |  |  |
| bit 10        |                                                                                                                                              | Imulator A Ove                      |                 | able bit          |                 |                 |         |  |  |  |  |
|               | 1 = Trap overflow of Accumulator A<br>0 = Trap is disabled                                                                                   |                                     |                 |                   |                 |                 |         |  |  |  |  |
| bit 9         |                                                                                                                                              | umulator B Ove                      | erflow Trap En  | able bit          |                 |                 |         |  |  |  |  |
|               |                                                                                                                                              | flow of Accum                       |                 |                   |                 |                 |         |  |  |  |  |
|               | 0 = Trap is di                                                                                                                               | sabled                              |                 |                   |                 |                 |         |  |  |  |  |
| bit 8         | COVTE: Cata                                                                                                                                  | astrophic Overf                     | low Trap Enab   | ole bit           |                 |                 |         |  |  |  |  |
|               |                                                                                                                                              |                                     | erflow of Accur | mulator A or B i  | s enabled       |                 |         |  |  |  |  |
| hit 7         | 0 = Trap is dis                                                                                                                              | sabled<br>Shift Accumula            | tor Error State | ia hit            |                 |                 |         |  |  |  |  |
| bit 7         |                                                                                                                                              |                                     |                 | llid accumulator  | chift           |                 |         |  |  |  |  |
|               |                                                                                                                                              |                                     |                 | invalid accumul   |                 |                 |         |  |  |  |  |
| bit 6         |                                                                                                                                              | ithmetic Error :                    | -               |                   |                 |                 |         |  |  |  |  |
|               |                                                                                                                                              | or trap was cau                     | -               | -                 |                 |                 |         |  |  |  |  |
|               |                                                                                                                                              | r trap was not                      | -               | ivide-by-zero     |                 |                 |         |  |  |  |  |
| bit 5         | •                                                                                                                                            | ted: Read as '                      |                 |                   |                 |                 |         |  |  |  |  |
| bit 4         | MATHERR: A                                                                                                                                   | Arithmetic Error                    | Status bit      |                   |                 |                 |         |  |  |  |  |
|               | 1 14-41                                                                                                                                      | or trap has occu                    | una al          |                   |                 |                 |         |  |  |  |  |

#### INTOONA, INTERDURT CONTROL DECISTER A

| U-0                     | U-0                                              | R/W-0                               | R/W-0               | R/W-0                             | U-0             | U-0             | U-0     |  |
|-------------------------|--------------------------------------------------|-------------------------------------|---------------------|-----------------------------------|-----------------|-----------------|---------|--|
| _                       | —                                                | INT2IE                              | T5IE <sup>(1)</sup> | T4IE <sup>(1)</sup>               | —               | —               | —       |  |
| bit 15                  |                                                  |                                     |                     |                                   |                 |                 | bit 8   |  |
|                         |                                                  |                                     |                     |                                   |                 |                 |         |  |
| U-0                     | U-0                                              | U-0                                 | R/W-0               | R/W-0                             | R/W-0           | R/W-0           | R/W-0   |  |
|                         | —                                                |                                     | INT1IE              | CNIE                              | CMIE            | MI2C1IE         | SI2C1IE |  |
| bit 7                   |                                                  |                                     |                     |                                   |                 |                 | bit (   |  |
|                         |                                                  |                                     |                     |                                   |                 |                 |         |  |
| Legend:<br>R = Readable | h:t                                              |                                     | h:+                 |                                   | monted hit rea  | d oo 'O'        |         |  |
| -n = Value at F         |                                                  | W = Writable<br>'1' = Bit is set    |                     | 0 = 0 minipler<br>0' = Bit is cle | mented bit, rea |                 | 0.11/2  |  |
| -n = value at r         | POR                                              | 1 = Bit is set                      |                     | 0 = Bit is cle                    | ared            | x = Bit is unkn | lown    |  |
| bit 15-14               | Unimplemen                                       | ted: Read as '                      | ז'                  |                                   |                 |                 |         |  |
| bit 13                  | -                                                | nal Interrupt 2                     |                     |                                   |                 |                 |         |  |
|                         |                                                  | request is enab                     |                     |                                   |                 |                 |         |  |
|                         | 0 = Interrupt r                                  | request is not e                    | nabled              |                                   |                 |                 |         |  |
| bit 12                  | T5IE: Timer5 Interrupt Enable bit <sup>(1)</sup> |                                     |                     |                                   |                 |                 |         |  |
|                         |                                                  | request has occ                     |                     |                                   |                 |                 |         |  |
|                         | 0 = Interrupt request has not occurred           |                                     |                     |                                   |                 |                 |         |  |
| bit 11                  |                                                  | Interrupt Enabl                     |                     |                                   |                 |                 |         |  |
|                         | •                                                | request has occ<br>request has not  |                     |                                   |                 |                 |         |  |
| bit 10-5                | -                                                | ted: Read as '                      |                     |                                   |                 |                 |         |  |
| bit 4                   | -                                                | nal Interrupt 1                     |                     |                                   |                 |                 |         |  |
| 511 -                   |                                                  | request is enab                     |                     |                                   |                 |                 |         |  |
|                         |                                                  | request is not e                    |                     |                                   |                 |                 |         |  |
| bit 3                   | CNIE: Input C                                    | hange Notifica                      | tion Interrupt      | Enable bit                        |                 |                 |         |  |
|                         | -                                                | request is enab                     | -                   |                                   |                 |                 |         |  |
|                         | 0 = Interrupt r                                  | request is not e                    | nabled              |                                   |                 |                 |         |  |
| bit 2                   | CMIE: Compa                                      | arator Interrupt                    | Enable bit          |                                   |                 |                 |         |  |
|                         |                                                  | equest is enab                      |                     |                                   |                 |                 |         |  |
| 1.16.4                  | •                                                | request is not e                    |                     |                                   |                 |                 |         |  |
| bit 1                   |                                                  | 1 Master Even                       |                     | able bit                          |                 |                 |         |  |
|                         |                                                  | request is enab<br>request is not e |                     |                                   |                 |                 |         |  |
| bit 0                   | •                                                | 1 Slave Events                      |                     | ble bit                           |                 |                 |         |  |
|                         |                                                  | request is enab                     | -                   |                                   |                 |                 |         |  |
|                         |                                                  | request is not e                    |                     |                                   |                 |                 |         |  |
|                         |                                                  |                                     |                     |                                   |                 |                 |         |  |

## REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

|                  | R/W-1                                                                                  | R/W-0                                                                                                                                   | R/W-0                                              | U-0                | R/W-1            | R/W-0           | R/W-0  |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|------------------|-----------------|--------|--|--|--|--|--|--|
| _                | T2IP2                                                                                  | T2IP1                                                                                                                                   | T2IP0                                              |                    | OC2IP2           | OC2IP1          | OC2IP0 |  |  |  |  |  |  |
| bit 15           |                                                                                        |                                                                                                                                         |                                                    |                    |                  |                 | bit 8  |  |  |  |  |  |  |
|                  |                                                                                        |                                                                                                                                         |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
| U-0              | R/W-1                                                                                  | R/W-0                                                                                                                                   | R/W-0                                              | U-0                | U-0              | U-0             | U-0    |  |  |  |  |  |  |
| _                | IC2IP2                                                                                 | IC2IP1                                                                                                                                  | IC2IP0                                             |                    | —                |                 | —      |  |  |  |  |  |  |
| bit 7            |                                                                                        |                                                                                                                                         |                                                    |                    |                  |                 | bit    |  |  |  |  |  |  |
| Legend:          |                                                                                        |                                                                                                                                         |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
| R = Readab       | le bit                                                                                 | W = Writable                                                                                                                            | bit                                                | U = Unimplen       | nented bit, read | l as '0'        |        |  |  |  |  |  |  |
| -n = Value a     | t POR                                                                                  | '1' = Bit is set                                                                                                                        |                                                    | '0' = Bit is cle   |                  | x = Bit is unkr | nown   |  |  |  |  |  |  |
|                  |                                                                                        |                                                                                                                                         |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
| bit 15           | Unimplemer                                                                             | nted: Read as '                                                                                                                         | 0'                                                 |                    |                  |                 |        |  |  |  |  |  |  |
| bit 14-12        | T2IP<2:0>: 7                                                                           | Fimer2 Interrupt                                                                                                                        | Priority bits                                      |                    |                  |                 |        |  |  |  |  |  |  |
|                  | 111 = Interru                                                                          | pt is Priority 7 (                                                                                                                      | highest priori                                     | ty interrupt)      |                  |                 |        |  |  |  |  |  |  |
|                  | •                                                                                      |                                                                                                                                         |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
|                  | •                                                                                      |                                                                                                                                         |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
|                  |                                                                                        | ipt is Priority 1<br>ipt source is dis                                                                                                  | abled                                              |                    |                  |                 |        |  |  |  |  |  |  |
| bit 11           |                                                                                        | h <b>ted:</b> Read as '                                                                                                                 |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
| bit 10-8         | -                                                                                      |                                                                                                                                         |                                                    | Interrupt Priori   | ty bits          |                 |        |  |  |  |  |  |  |
|                  |                                                                                        | <b>OC2IP&lt;2:0&gt;:</b> Output Compare Channel 2 Interrupt Priority bits<br>111 = Interrupt is Priority 7 (highest priority interrupt) |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
|                  | •                                                                                      |                                                                                                                                         |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
|                  | •                                                                                      |                                                                                                                                         |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
|                  | •                                                                                      |                                                                                                                                         |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
|                  | 001 = Interr                                                                           | int is Priority 1                                                                                                                       |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
|                  |                                                                                        | ipt is Priority 1<br>ipt source is dis                                                                                                  | abled                                              |                    |                  |                 |        |  |  |  |  |  |  |
| bit 7            | 000 = Interru                                                                          | ipt is Priority 1<br>ipt source is dis<br>nted: Read as '                                                                               |                                                    |                    |                  |                 |        |  |  |  |  |  |  |
|                  | 000 = Interru<br>Unimplemer                                                            | ipt source is dis<br>nted: Read as '                                                                                                    | 0'                                                 | errupt Priority bi | its              |                 |        |  |  |  |  |  |  |
|                  | 000 = Interru<br>Unimplemer<br>IC2IP<2:0>:                                             | ipt source is dis<br>nted: Read as '<br>Input Capture (                                                                                 | 0'<br>Channel 2 Inte                               |                    | its              |                 |        |  |  |  |  |  |  |
|                  | 000 = Interru<br>Unimplemer<br>IC2IP<2:0>:                                             | ipt source is dis<br>nted: Read as '                                                                                                    | 0'<br>Channel 2 Inte                               |                    | its              |                 |        |  |  |  |  |  |  |
|                  | 000 = Interru<br>Unimplemer<br>IC2IP<2:0>:                                             | ipt source is dis<br>nted: Read as '<br>Input Capture (                                                                                 | 0'<br>Channel 2 Inte                               |                    | its              |                 |        |  |  |  |  |  |  |
|                  | 000 = Interru<br>Unimplemen<br>IC2IP<2:0>:<br>111 = Interru<br>•<br>•                  | ipt source is dis<br>nted: Read as '<br>Input Capture C<br>ipt is Priority 7 (                                                          | 0'<br>Channel 2 Inte                               |                    | its              |                 |        |  |  |  |  |  |  |
| bit 7<br>bit 6-4 | 000 = Interru<br>Unimplemen<br>IC2IP<2:0>:<br>111 = Interru<br>•<br>•<br>001 = Interru | ipt source is dis<br>nted: Read as '<br>Input Capture (                                                                                 | <sup>0'</sup><br>Channel 2 Inte<br>highest priorit |                    | its              |                 |        |  |  |  |  |  |  |

## REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

| U-0         R-0         R-0         R-0         R-0         R-0           —         VECNUM6         VECNUM5         VECNUM4         VECNUM3         VECNUM2         VECNUM1         VECNUM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                           |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------|-------------------------------------------------|----------------|------------------------------------|---------|-----------------|---------|--|--|--|--|--|--|
| bit 15       t         U-0       R-0       R-0       R-0       R-0       R-0       R-0         —       VECNUM6       VECNUM5       VECNUM4       VECNUM3       VECNUM2       VECNUM1       VECNUM1         bit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U-0               | U-0                                       | U-0                                             | U-0            | R-0                                | R-0     | R-0             | R-0     |  |  |  |  |  |  |
| U-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —                 | —                                         | —                                               | —              | ILR3                               | ILR2    | ILR1            | ILR0    |  |  |  |  |  |  |
| -       VECNUM6       VECNUM5       VECNUM4       VECNUM3       VECNUM2       VECNUM1       VECNUM1         bit 7       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit 15            |                                           |                                                 |                |                                    |         |                 | bit 8   |  |  |  |  |  |  |
| -       VECNUM6       VECNUM5       VECNUM4       VECNUM3       VECNUM2       VECNUM1       VECNUM1         bit 7       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                           |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
| bit 7 to the set of th | U-0               | R-0                                       | R-0                                             | R-0            | R-0                                | R-0     | R-0             | R-0     |  |  |  |  |  |  |
| Legend:<br>R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'<br>-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown<br>bit 15-12 Unimplemented: Read as '0'<br>bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits<br>1111 = CPU Interrupt Priority Level is 15<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                 | VECNUM6                                   | VECNUM5                                         | VECNUM4        | VECNUM3                            | VECNUM2 | VECNUM1         | VECNUM0 |  |  |  |  |  |  |
| R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-12       Unimplemented: Read as '0'       its cleared       x = Bit is unknown         bit 15-12       Unimplemented: Read as '0'       its cleared       x = Bit is unknown         bit 15-12       Unimplemented: Read as '0'       its cleared       x = Bit is unknown         bit 11-8       ILR       ILR       its cleared       x = Bit is unknown         bit 11-8       ILR       ILR       its cleared       x = Bit is unknown         bit 11-8       ILR       ILR       its cleared       x = Bit is unknown         bit 11-8       ILR       ILR       its cleared       x = Bit is unknown         0001 = CPU Interrupt Priority Level is 15       its cleared       its cleared       its cleared         0000 = CPU Interrupt Priority Level is 1       0000 = CPU Interrupt Priority Level is 0       its cleared       its cleared       its cleared         bit 6-0       VECNUM       Vector Number of Pending Interrupt bits       its cleared       its cleared       its cleared         0       0000001 = Interrupt vector pending is Number 9       its cleared       its cleared       its cleared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bit 7             |                                           |                                                 |                |                                    |         |                 | bit 0   |  |  |  |  |  |  |
| R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-12       Unimplemented: Read as '0'       its cleared       x = Bit is unknown         bit 15-12       Unimplemented: Read as '0'       its cleared       x = Bit is unknown         bit 15-12       Unimplemented: Read as '0'       its cleared       x = Bit is unknown         bit 11-8       ILR       ILR       its cleared       x = Bit is unknown         bit 11-8       ILR       ILR       its cleared       x = Bit is unknown         bit 11-8       ILR       ILR       its cleared       x = Bit is unknown         bit 11-8       ILR       ILR       its cleared       x = Bit is unknown         0001 = CPU Interrupt Priority Level is 1       0001 = CPU Interrupt Priority Level is 1       0000 = CPU Interrupt Priority Level is 0         bit 7       Unimplemented: Read as '0'       its cleared       its cleared       its cleared         bit 6-0       VECNUM       Vector Number of Pending Interrupt bits       0111111 = Interrupt vector pending is Number 135       its cleared       its cleared         0       0000001 = Interrupt vector pending is Number 9       its cleared       its cleared <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                           |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
| -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-12       Unimplemented: Read as '0'       ILR<3:0>: New CPU Interrupt Priority Level bits         bit 11-8       ILR<3:0>: New CPU Interrupt Priority Level bits         1111 = CPU Interrupt Priority Level is 15       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •         •       •     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Legend:           |                                           |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
| bit 15-12 Unimplemented: Read as '0'<br>bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits<br>1111 = CPU Interrupt Priority Level is 15<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R = Readable      |                                           |                                                 |                | U = Unimplemented bit, read as '0' |         |                 |         |  |  |  |  |  |  |
| bit 11-8       ILR<3:0>: New CPU Interrupt Priority Level bits         1111 = CPU Interrupt Priority Level is 15         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -n = Value at POR |                                           | '1' = Bit is set                                |                | '0' = Bit is cle                   | ared    | x = Bit is unkr | nown    |  |  |  |  |  |  |
| bit 11-8       ILR<3:0>: New CPU Interrupt Priority Level bits         1111 = CPU Interrupt Priority Level is 15         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                           |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
| <pre>1111 = CPU Interrupt Priority Level is 15</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bit 15-12         | Unimplemen                                | ted: Read as '                                  | 0'             |                                    |         |                 |         |  |  |  |  |  |  |
| <ul> <li>0001 = CPU Interrupt Priority Level is 1</li> <li>0000 = CPU Interrupt Priority Level is 0</li> <li>bit 7</li> <li>bit 6-0</li> <li>VECNUM&lt;6:0&gt;: Vector Number of Pending Interrupt bits</li> <li>0111111 = Interrupt vector pending is Number 135</li> <li>.</li> <li>.&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit 11-8          | ILR<3:0>: Ne                              | ILR<3:0>: New CPU Interrupt Priority Level bits |                |                                    |         |                 |         |  |  |  |  |  |  |
| 0000 = CPU Interrupt Priority Level is 0         bit 7       Unimplemented: Read as '0'         bit 6-0       VECNUM<6:0>: Vector Number of Pending Interrupt bits         0111111 = Interrupt vector pending is Number 135         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1111 = CPU Interrupt Priority Level is 15 |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
| 0000 = CPU Interrupt Priority Level is 0         bit 7       Unimplemented: Read as '0'         bit 6-0       VECNUM<6:0>: Vector Number of Pending Interrupt bits         0111111 = Interrupt vector pending is Number 135         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | •                                         |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
| 0000 = CPU Interrupt Priority Level is 0         bit 7       Unimplemented: Read as '0'         bit 6-0       VECNUM<6:0>: Vector Number of Pending Interrupt bits         0111111 = Interrupt vector pending is Number 135         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | •                                         |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
| bit 7 Unimplemented: Read as '0'<br>bit 6-0 VECNUM<6:0>: Vector Number of Pending Interrupt bits<br>0111111 = Interrupt vector pending is Number 135<br>•<br>•<br>•<br>•<br>0000001 = Interrupt vector pending is Number 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 0001 = CPU                                | Interrupt Priori                                | ty Level is 1  |                                    |         |                 |         |  |  |  |  |  |  |
| <pre>bit 6-0 VECNUM&lt;6:0&gt;: Vector Number of Pending Interrupt bits 0111111 = Interrupt vector pending is Number 135</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 0000 = CPU                                | Interrupt Priori                                | ty Level is 0  |                                    |         |                 |         |  |  |  |  |  |  |
| 0111111 = Interrupt vector pending is Number 135<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit 7             | Unimplemen                                | ted: Read as '                                  | 0'             |                                    |         |                 |         |  |  |  |  |  |  |
| •<br>•<br>0000001 = Interrupt vector pending is Number 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bit 6-0           | VECNUM<6:                                 | 0>: Vector Nun                                  | nber of Pendir | ng Interrupt bits                  | 3       |                 |         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 0111111 = lr                              | terrupt vector                                  | pending is Nu  | mber 135                           |         |                 |         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | •                                         |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | •                                         |                                                 |                |                                    |         |                 |         |  |  |  |  |  |  |
| 0000000 = Interrupt vector pending is Number 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 0000001 = lr                              | terrupt vector                                  | pending is Nu  | mber 9                             |         |                 |         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 0000000 = Ir                              | terrupt vector                                  | pending is Nu  | mber 8                             |         |                 |         |  |  |  |  |  |  |

## REGISTER 7-28: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

# EXAMPLE 15-1: ASSEMBLY CODE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT CLEARING SEQUENCE

|                                                                             | lled high externally in order to clear and disable the Fault<br>register requires unlock sequence                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>mov #0x4321,w11 mov #0x0000,w0 mov w10, PWM1KEY mov w11, PWM1KEY</pre> | <pre>; Load first unlock key to w10 register<br/>; Load second unlock key to w11 register<br/>; Load desired value of P1FLTACON register in w0<br/>; Write first unlock key to PWM1KEY register<br/>; Write second unlock key to PWM1KEY register<br/>; Write desired value to P1FLTACON register</pre> |
|                                                                             | lled high externally in order to clear and disable the Fault<br>register requires unlock sequence                                                                                                                                                                                                       |
| <pre>mov #0x4321,w11 mov #0x0000,w0 mov w10, PWM1KEY mov w11, PWM1KEY</pre> | <pre>; Load first unlock key to w10 register<br/>; Load second unlock key to w11 register<br/>; Load desired value of P1FLTBCON register in w0<br/>; Write first unlock key to PWM1KEY register<br/>; Write second unlock key to PWM1KEY register<br/>; Write desired value to P1FLTBCON register</pre> |
| ; Enable all PWMs using<br>; Writing to PWM1CON1 r                          | g PWM1CON1 register<br>register requires unlock sequence                                                                                                                                                                                                                                                |
| <pre>mov #0x4321,w11 mov #0x0077,w0 mov w10, PWM1KEY mov w11, PWM1KEY</pre> | <pre>; Load first unlock key to w10 register<br/>; Load second unlock key to w11 register<br/>; Load desired value of PWM1CON1 register in w0<br/>; Write first unlock key to PWM1KEY register<br/>; Write second unlock key to PWM1KEY register<br/>; Write desired value to PWM1CON1 register</pre>   |

# EXAMPLE 15-2: C CODE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT CLEARING SEQUENCE

// FLTAl pin must be pulled high externally in order to clear and disable the Fault // Writing to PIFLTACON register requires unlock sequence // Use builtin function to write 0x0000 to PIFLTACON register \_\_builtin\_write\_PWMSFR(&PIFLTACON, 0x0000, &PWM1KEY); // FLTBl pin must be pulled high externally in order to clear and disable the Fault // Writing to PIFLTBCON register requires unlock sequence // Use builtin function to write 0x0000 to PIFLTBCON register \_\_builtin\_write\_PWMSFR(&PIFLTBCON, 0x0000, &PWM1KEY); // Enable all PWMs using PWM1CON1 register // Writing to PWM1CON1 register requires unlock sequence // Use builtin function to write 0x0077 to PWM1CON1 register \_\_builtin\_write\_PWMSFR(&PWM1CON1, 0x0077, &PWM1KEY);

| R/W-0                              | R/W-0                                                                                                                                                                                                                                                            | R/W-0                                                                                                      | U-0                                                                                              | U-0               | U-0                                | U-0               | U-0                |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|------------------------------------|-------------------|--------------------|--|--|--|
| FRMEN                              | SPIFSD                                                                                                                                                                                                                                                           | FRMPOL                                                                                                     |                                                                                                  | —                 |                                    | —                 | _                  |  |  |  |
| bit 15                             |                                                                                                                                                                                                                                                                  |                                                                                                            |                                                                                                  |                   |                                    |                   | bit 8              |  |  |  |
| U-0                                | U-0                                                                                                                                                                                                                                                              | U-0                                                                                                        | U-0                                                                                              | U-0               | U-0                                | R/W-0             | U-0                |  |  |  |
| 0-0                                | 0-0                                                                                                                                                                                                                                                              | 0-0                                                                                                        | 0-0                                                                                              | 0-0               | 0-0                                | FRMDLY            | 0-0                |  |  |  |
| <br>bit 7                          |                                                                                                                                                                                                                                                                  |                                                                                                            |                                                                                                  |                   |                                    | TRIMDET           | bit (              |  |  |  |
|                                    |                                                                                                                                                                                                                                                                  |                                                                                                            |                                                                                                  |                   |                                    |                   |                    |  |  |  |
| Legend:                            |                                                                                                                                                                                                                                                                  |                                                                                                            |                                                                                                  |                   |                                    |                   |                    |  |  |  |
| R = Readable                       | R = Readable bit W = Writable bit                                                                                                                                                                                                                                |                                                                                                            |                                                                                                  |                   | U = Unimplemented bit, read as '0' |                   |                    |  |  |  |
| -n = Value at POR '1' = Bit is set |                                                                                                                                                                                                                                                                  |                                                                                                            |                                                                                                  | '0' = Bit is clea | ared                               | x = Bit is unkno  | x = Bit is unknown |  |  |  |
| bit 15<br>bit 14<br>bit 13         | 1 = Framed S<br>0 = Framed S<br>SPIFSD: Fran<br>1 = Frame Sy<br>0 = Frame Sy<br>FRMPOL: Fra<br>1 = Frame Sy                                                                                                                                                      | Plx support is<br>me Sync Pulse<br>rnc pulse input<br>rnc pulse outpu<br>ame Sync Puls<br>rnc pulse is act | enabled (SSx<br>disabled<br>Direction Cor<br>(slave)<br>t (master)<br>e Polarity bit<br>ive-high |                   | Frame Sync pu                      | ulse input/output | )                  |  |  |  |
| bit 12-2<br>bit 1                  | <ul> <li>0 = Frame Sync pulse is active-low</li> <li>Unimplemented: Read as '0'</li> <li>FRMDLY: Frame Sync Pulse Edge Select bit</li> <li>1 = Frame Sync pulse coincides with first bit clock</li> <li>0 = Frame Sync pulse precedes first bit clock</li> </ul> |                                                                                                            |                                                                                                  |                   |                                    |                   |                    |  |  |  |
| bit 0                              | -                                                                                                                                                                                                                                                                |                                                                                                            |                                                                                                  | to '1' by the us  | er application                     |                   |                    |  |  |  |
|                                    |                                                                                                                                                                                                                                                                  |                                                                                                            |                                                                                                  |                   |                                    |                   |                    |  |  |  |

## REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

| U-0                                | U-0   | U-0          | U-0   | U-0                                | U-0              | R/W-0  | R/W-0 |
|------------------------------------|-------|--------------|-------|------------------------------------|------------------|--------|-------|
| _                                  | _     | _            | —     | —                                  |                  | AMSK   | <9:8> |
| bit 15                             |       |              |       |                                    |                  |        | bit 8 |
|                                    |       |              |       |                                    |                  |        |       |
| R/W-0                              | R/W-0 | R/W-0        | R/W-0 | R/W-0                              | R/W-0            | R/W-0  | R/W-0 |
|                                    |       |              | AMS   | K<7:0>                             |                  |        |       |
| bit 7                              |       |              |       |                                    |                  |        | bit 0 |
|                                    |       |              |       |                                    |                  |        |       |
| Legend:                            |       |              |       |                                    |                  |        |       |
| R = Readable                       | bit   | W = Writable | bit   | U = Unimplei                       | mented bit, read | as '0' |       |
| -n = Value at POR '1' = Bit is set |       |              |       | '0' = Bit is cleared x = Bit is un |                  |        | iown  |
|                                    |       |              |       |                                    |                  |        |       |

## REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enables masking for Bit x of incoming message address; bit match not required in this position

0 = Disables masking for Bit x; bit match required in this position

#### R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 PCFG15<sup>(4,5)</sup> PCFG<12:0>(4,5,7) \_ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PCFG<7:0>(4,5,6) bit 7 bit 0 Leaend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown PCFG15: ADC1 Port Configuration Control bit<sup>(4,5)</sup> bit 15 1 = Port pin is in Digital mode, port read input is enabled, ADC1 input multiplexer is connected to AVss

## REGISTER 19-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW<sup>(1,2,3)</sup>

| bit 14-13 | Unimplemented: Read as '0'                                                                               |
|-----------|----------------------------------------------------------------------------------------------------------|
| bit 12-0  | PCFG<12:0>: ADC1 Port Configuration Control bits <sup>(4,5,6,7)</sup>                                    |
|           | 1 = Port pin is in Digital mode, port read input is enabled, ADC1 input multiplexer is connected to AVss |
|           | 0 = Port pin is in Analog mode, port read input is disabled, ADC1 samples pin voltage                    |

0 = Port pin is in Analog mode, port read input is disabled. ADC1 samples pin voltage

## **Note 1:** On devices without 14 analog inputs, all PCFGx bits are R/W by user. However, PCFGx bits are ignored on ports without a corresponding input on the device.

- **2:** PCFGx = ANx, where x = 0 through 12 and 15.
- **3:** The PCFGx bits have no effect if the ADC module is disabled by setting the AD1MD bit in the PMD1 register. When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.
- **4:** Pins shared with analog functions (i.e., ANx) are analog by default and therefore, must be set by the user to enable any digital function on that pin. Reading any port pin with the analog function enabled will return a '0', regardless of the signal input level.
- **5:** The PCFG<15,12:11,8:6> bits are available in the dsPIC33FJ32(GP/MC)104 devices only and are reserved in all other devices.
- 6: The PCFG<5:4> bits are available on all devices, excluding the dsPIC33FJXX(GP/MC)101 devices, where they are reserved.
- 7: The PCFG<10:9> bits are available on all devices, excluding the dsPIC33FJ16(GP/MC)101/102 devices, where they are reserved.

## 23.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/ MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programming (DS70207) and and Diagnostics" "Device Configuration" (DS70194) in the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>)
- In-Circuit Emulation

## 23.1 Configuration Bits

The Configuration Shadow register bits can be configured (read as '0') or left unprogrammed (read as '1') to select various device configurations. These read-only bits are mapped starting at program memory location, 0xF80000. A detailed explanation of the various bit functions is provided in Table 23-4.

Note that address, 0xF80000, is beyond the user program memory space and belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using Table Reads.

dsPIC33FJ16(GP/MC)101/102 In and dsPIC33FJ32(GP/MC)101/102/104 devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the two words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 23-2. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

| Note: | Configuration data is reloaded on all types |
|-------|---------------------------------------------|
|       | of device Resets.                           |

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

**Note:** Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

| TABLE 24-2:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INSIRU                | UTION SET OVERVIE |                                                            |               |                |                                                                                                                                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|------------------------------------------------------------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Base<br>Instr<br># | Assembly<br>Mnemonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | Assembly Syntax   | Description                                                | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected                                                                                                                        |
| 9                  | BTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BTG                   | f,#bit4           | Bit Toggle f                                               | 1             | 1              | None                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTG                   | Ws,#bit4          | Bit Toggle Ws                                              | 1             | 1              | None                                                                                                                                            |
| 10                 | BTSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BTSC                  | f,#bit4           | Bit Test f, Skip if Clear                                  | 1             | 1<br>(2 or 3)  | None                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTSC                  | Ws,#bit4          | Bit Test Ws, Skip if Clear                                 | 1             | 1<br>(2 or 3)  | None                                                                                                                                            |
| 11                 | 11 BTSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BTSS                  | f,#bit4           | Bit Test f, Skip if Set                                    | 1             | 1<br>(2 or 3)  | None                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTSS                  | Ws,#bit4          | Bit Test Ws, Skip if Set                                   | 1             | 1<br>(2 or 3)  | None                                                                                                                                            |
| 12                 | BTST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BTST                  | f,#bit4           | Bit Test f                                                 | 1             | 1              | Z                                                                                                                                               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTST.C                | Ws,#bit4          | Bit Test Ws to C                                           | 1             | 1              | С                                                                                                                                               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTST.Z                | Ws,#bit4          | Bit Test Ws to Z                                           | 1             | 1              | Z                                                                                                                                               |
|                    | 14 CALL<br>15 CLR<br>16 CLRWDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BTST.C                | Ws,Wb             | Bit Test Ws <wb> to C</wb>                                 | 1             | 1              | С                                                                                                                                               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTST.Z                | Ws,Wb             | Bit Test Ws <wb> to Z</wb>                                 | 1             | 1              | Z                                                                                                                                               |
| 13                 | BTSTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BTSTS                 | f,#bit4           | Bit Test then Set f                                        | 1             | 1              | Z                                                                                                                                               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTSTS.C               | Ws,#bit4          | Bit Test Ws to C, then Set                                 | 1             | 1              | Affected<br>None<br>None<br>None<br>None<br>None<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |
|                    | Mnemonic         B           BTG         B           BTSC         B           BTSS         B           BTSS         B           BTST         B           BTST         B           BTST         B           BTST         B           BTST         B           BTSTS         B           CALL         C           CALL         C           CLRWDT         C           COM         C           COM         C           COM         C           CP         C           CPSEQ         C           CPSSIT         C           CPSNE         C           DAW         D           DAW         D           DAW         D           DAW         D           DAW         D           DEC         D | BTSTS.Z               | Ws,#bit4          | Bit Test Ws to Z, then Set                                 | 1             | 1              | Z                                                                                                                                               |
| 14                 | CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CALL                  | lit23             | Call subroutine                                            | 2             | 2              | None                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CALL                  | Wn                | Call indirect subroutine                                   | 1             | 2              | None                                                                                                                                            |
| 15                 | CLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CLR                   | f                 | f = 0x0000                                                 | 1             | 1              | None                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CLR                   | WREG              | WREG = 0x0000                                              | 1             | 1              | None                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CLR                   | Ws                | Ws = 0x0000                                                | 1             | 1              | None                                                                                                                                            |
|                    | CLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acc,Wx,Wxd,Wy,Wyd,AWB | Clear Accumulator | 1                                                          | 1             | OA.OB.SA.SB    |                                                                                                                                                 |
| 16                 | CLRWDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLRWDT                |                   | Clear Watchdog Timer                                       | 1             | 1              |                                                                                                                                                 |
| 17                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СОМ                   | f                 | $f = \overline{f}$                                         | 1             | 1              |                                                                                                                                                 |
|                    | 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СОМ                   | f,WREG            | WREG = f                                                   | 1             | 1              |                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | СОМ                   | Ws,Wd             | $Wd = \overline{Ws}$                                       | 1             | 1              | ,                                                                                                                                               |
| 18                 | CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CP                    | f                 | Compare f with WREG                                        | 1             | 1              |                                                                                                                                                 |
| 10                 | CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CP                    | Wb,#lit5          | Compare Wb with lit5                                       | 1             | 1              |                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CP                    | Wb,Ws             | Compare Wb with Ws (Wb – Ws)                               | 1             | 1              |                                                                                                                                                 |
| 19                 | CD0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | f                 | Compare f with 0x0000                                      | 1             | 1              |                                                                                                                                                 |
| 19                 | CPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CP0                   |                   |                                                            | 1             | 1              |                                                                                                                                                 |
| 20                 | GDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CP0                   | Ws                | Compare Ws with 0x0000                                     | 1             | 1              |                                                                                                                                                 |
| 20                 | CPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CPB                   | f                 | Compare f with WREG, with Borrow                           | 1             | 1              |                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CPB                   | Wb,#lit5          | Compare Wb with lit5, with Borrow                          | -             |                |                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CPB                   | Wb,Ws             | Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$ | 1             | 1              | C,DC,N,OV,Z                                                                                                                                     |
| 21                 | CPSEQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CPSEQ                 | Wb, Wn            | Compare Wb with Wn, skip if =                              | 1             | 1<br>(2 or 3)  | None                                                                                                                                            |
| 22                 | CPSGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CPSGT                 | Wb, Wn            | Compare Wb with Wn, skip if >                              | 1             | 1<br>(2 or 3)  | None                                                                                                                                            |
| 23                 | CPSLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CPSLT                 | Wb, Wn            | Compare Wb with Wn, skip if <                              | 1             | 1<br>(2 or 3)  | None                                                                                                                                            |
| 24                 | CPSNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CPSNE                 | Wb, Wn            | Compare Wb with Wn, skip if $\neq$                         | 1             | 1<br>(2 or 3)  | None                                                                                                                                            |
| 25                 | DAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DAW                   | Wn                | Wn = decimal adjust Wn                                     | 1             | 1              | С                                                                                                                                               |
| 26                 | DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEC                   | f                 | f = f - 1                                                  | 1             | 1              | C,DC,N,OV,Z                                                                                                                                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEC                   | f,WREG            | WREG = f – 1                                               | 1             | 1              | C,DC,N,OV,Z                                                                                                                                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEC                   | Ws,Wd             | Wd = Ws - 1                                                | 1             | 1              | C,DC,N,OV,Z                                                                                                                                     |
| 27                 | DEC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEC2                  | f                 | f = f - 2                                                  | 1             | 1              | C,DC,N,OV,Z                                                                                                                                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEC2                  | f,WREG            | WREG = $f - 2$                                             | 1             | 1              | C,DC,N,OV,Z                                                                                                                                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEC2                  | Ws,Wd             | Wd = Ws - 2                                                | 1             | 1              | C,DC,N,OV,Z                                                                                                                                     |
| 28                 | DISI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DISI                  | #lit14            | Disable Interrupts for k instruction cycles                | 1             | 1              | None                                                                                                                                            |

## TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

## 25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

## 25.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

## 25.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

## 25.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>).

## 25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.



## FIGURE 26-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

# TABLE 26-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING<br/>REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

| AC CHARACTERISTICS |                       |                                               | (unless o | I Operatin<br>otherwise<br>g temperat | <b>stated)</b><br>ure -40 | °C ≤ Ta ≤ | <b>V to 3.6V</b><br>+85°C for Industrial<br>+125°C for Extended |
|--------------------|-----------------------|-----------------------------------------------|-----------|---------------------------------------|---------------------------|-----------|-----------------------------------------------------------------|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                 | Min       | Тур <sup>(2)</sup>                    | Max                       | Units     | Conditions                                                      |
| SP10               | TscP                  | Maximum SCKx Frequency                        | —         | —                                     | 10                        | MHz       | See Note 3                                                      |
| SP20               | TscF                  | SCKx Output Fall Time                         | —         | —                                     | —                         | ns        | See Parameter DO32 and <b>Note 4</b>                            |
| SP21               | TscR                  | SCKx Output Rise Time                         | —         | —                                     | _                         | ns        | See Parameter DO31 and <b>Note 4</b>                            |
| SP30               | TdoF                  | SDOx Data Output Fall Time                    | —         | —                                     | _                         | ns        | See Parameter DO32 and <b>Note 4</b>                            |
| SP31               | TdoR                  | SDOx Data Output Rise Time                    | —         | —                                     | _                         | ns        | See Parameter DO31 and <b>Note 4</b>                            |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge     | —         | 6                                     | 20                        | ns        |                                                                 |
| SP36               | TdoV2sc,<br>TdoV2scL  | SDOx Data Output Setup to<br>First SCKx Edge  | 30        | —                                     | _                         | ns        |                                                                 |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data<br>Input to SCKx Edge | 30        | —                                     | _                         | ns        |                                                                 |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge     | 30        | —                                     |                           | ns        |                                                                 |

**Note 1:** These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.















## TABLE 26-50: COMPARATOR TIMING SPECIFICATIONS

| AC CHARACTERISTICS |        |                                                       | (unless | otherv | -    | ed)<br>-40°C | ns: 3.0V to 3.6V<br>≤ TA ≤ +85°C for Industrial<br>≤ TA ≤ +125°C for Extended |
|--------------------|--------|-------------------------------------------------------|---------|--------|------|--------------|-------------------------------------------------------------------------------|
| Param<br>No.       | Symbol | Characteristic                                        | Min.    | Тур    | Max. | Units        | Conditions                                                                    |
| 300                | TRESP  | Response Time <sup>(1,2)</sup>                        | _       | 150    | 400  | ns           |                                                                               |
| 301                | TMC20V | Comparator Mode Change to Output Valid <sup>(1)</sup> | —       |        | 10   | μS           |                                                                               |
| 302                | Ton2ov | Comparator Enabled to<br>Output Valid <sup>(1)</sup>  | —       |        | 10   | μs           |                                                                               |

Note 1: Parameters are characterized but not tested.

2: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

## TABLE 26-51: COMPARATOR MODULE SPECIFICATIONS

| DC CHARACTERISTICS |        |                                            | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |      |             |    | 5°C for Industrial |
|--------------------|--------|--------------------------------------------|-------------------------------------------------------|------|-------------|----|--------------------|
| Param<br>No.       | Symbol | Characteristic                             | Min. Typ Max. Units Cond                              |      |             |    | Conditions         |
| D300               | VIOFF  | Input Offset Voltage <sup>(1)</sup>        | -20                                                   | ±10  | 20          | mV |                    |
| D301               | VICM   | Input Common-Mode Voltage <sup>(1)</sup>   | 0                                                     | _    | AVDD – 1.5V | V  |                    |
| D302               | CMRR   | Common-Mode Rejection Ratio <sup>(1)</sup> | -54                                                   | —    | —           | dB |                    |
| D305               | IVREF  | Internal Voltage Reference <sup>(1)</sup>  | 1.116                                                 | 1.24 | 1.364       | V  |                    |

Note 1: Parameters are characterized but not tested.

## TABLE 26-52: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

|              |                       | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |      |     |      |       |            |
|--------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|-------|------------|
| Param<br>No. | Symbol Characteristic |                                                                                                                                                                                                                                                                                         | Min. | Тур | Max. | Units | Conditions |
| VR310        | TSET                  | Settling Time <sup>(1)</sup>                                                                                                                                                                                                                                                            | —    | —   | 10   | μS    |            |

**Note 1:** Settling time measured while CVRR = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

## 20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | Units            |          | MILLIMETERS |      |  |  |
|--------------------------|------------------|----------|-------------|------|--|--|
|                          | Dimension Limits | MIN      | NOM         | MAX  |  |  |
| Number of Pins           | N                |          | 20          |      |  |  |
| Pitch                    | e                |          | 0.65 BSC    |      |  |  |
| Overall Height           | А                | -        | -           | 2.00 |  |  |
| Molded Package Thickness | A2               | 1.65     | 1.75        | 1.85 |  |  |
| Standoff                 | A1               | 0.05     | -           | -    |  |  |
| Overall Width            | E                | 7.40     | 7.80        | 8.20 |  |  |
| Molded Package Width     | E1               | 5.00     | 5.30        | 5.60 |  |  |
| Overall Length           | D                | 6.90     | 7.20        | 7.50 |  |  |
| Foot Length              | L                | 0.55     | 0.75        | 0.95 |  |  |
| Footprint L1             |                  | 1.25 REF |             |      |  |  |
| Lead Thickness           | С                | 0.09     | -           | 0.25 |  |  |
| Foot Angle               | φ                | 0°       | 4°          | 8°   |  |  |
| Lead Width               | b                | 0.22     | -           | 0.38 |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

## 44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | Units            |                  | MILLIMETERS |      |  |  |
|------------------------|------------------|------------------|-------------|------|--|--|
|                        | Dimension Limits | MIN              | NOM         | MAX  |  |  |
| Number of Pins         | N                |                  | 44          |      |  |  |
| Pitch                  | е                |                  | 0.65 BSC    |      |  |  |
| Overall Height         | A                | 0.80             | 0.90        | 1.00 |  |  |
| Standoff               | A1               | 0.00             | 0.02        | 0.05 |  |  |
| Contact Thickness      | A3               | 0.20 REF         |             |      |  |  |
| Overall Width          | E                | 8.00 BSC         |             |      |  |  |
| Exposed Pad Width      | E2               | E2 6.30 6.45 6.4 |             | 6.80 |  |  |
| Overall Length         | D                | 8.00 BSC         |             |      |  |  |
| Exposed Pad Length     | D2               | 6.30             | 6.45        | 6.80 |  |  |
| Contact Width          | b                | 0.25             | 0.30        | 0.38 |  |  |
| Contact Length         | L                | 0.30             | 0.40        | 0.50 |  |  |
| Contact-to-Exposed Pad | K                | 0.20             | _           | -    |  |  |

A1

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

A3

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B