

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc102-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

		rte)			Rem	appa	ble l	Perip	herals	5	М		Ŋ						
Device	Pins	Program Flash (Kbyte)	RAM (Kbytes)	Remappable Pins	16-bit Timer ^(1,2)	Input Capture	Output Compare	UART	External Interrupts ⁽³⁾	SPI	Motor Control PWM	PWM Faults	10-Bit, 1.1 Msps ADC	RTCC	I²C™	Comparators	CTMU	I/O Pins	Packages
dsPIC33FJ16GP101	18	16	1	8	3	3	2	1	3	1		—	1 ADC, 4-ch	Y	1	3	Y	13	PDIP, SOIC
	20	16	1	8	3	3	2	1	3	1	_	—	1 ADC, 4-ch	Y	1	3	Y	15	SSOP
dsPIC33FJ16GP102	28	16	1	16	3	3	2	1	3	1	_	_	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1		—	1 ADC, 6-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ16MC101	20	16	1	10	3	3	2	1	3	1	6-ch	1	1 ADC, 4-ch	Y	1	3	Y	15	PDIP, SOIC, SSOP
dsPIC33FJ16MC102	28	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	VTLA

TABLE 1:dsPIC33FJ16(GP/MC)101/102 DEVICE FEATURES

Note 1: Two out of three timers are remappable.

2: One pair can be combined to create one 32-bit timer.

3: Two out of three interrupts are remappable.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	This bit can be read or cleared (not set).

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	egister 0								xxxx
WREG1	0002								Working Re	egister 1								xxxx
WREG2	0004								Working Re	egister 2								xxxx
WREG3	0006								Working Re	egister 3								xxxx
WREG4	0008								Working Re	egister 4								xxxx
WREG5	000A								Working Re	egister 5								xxxx
WREG6	000C								Working Re	egister 6								xxxx
WREG7	000E								Working Re	egister 7								xxxx
WREG8	0010								Working Re	egister 8								xxxx
WREG9	0012								Working Re	egister 9								xxxx
WREG10	0014								Working Re	gister 10								xxxx
WREG11	0016								Working Re	gister 11								xxxx
WREG12	0018								Working Re	gister 12								xxxx
WREG13	001A								Working Re	gister 13								xxxx
WREG14	001C								Working Re	gister 14								xxxx
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020							Sta	ck Pointer L	imit Registe	r							XXXX
ACCAL	0022							Accum	ulator A Lov	v Word Reg	ister							XXXX
ACCAH	0024							Accum	ulator A Hig	h Word Reg	ister							XXXX
ACCAU	0026							Accumu	ulator A Upp	er Word Re	gister							xxxx
ACCBL	0028							Accum	ulator B Lov	v Word Reg	ister							xxxx
ACCBH	002A							Accum	ulator B Hig	h Word Reg	ister							xxxx
ACCBU	002C							Accumu	ulator B Upp	er Word Re	gister							xxxx
PCL	002E							Progran	n Counter Lo	w Word Re	gister							0000
PCH	0030	—	—	—				_	—			Progra	m Counter	High Byte R	egister			0000
TBLPAG	0032	—	—	—				_	—			Table F	age Addre	ss Pointer R	egister			0000
PSVPAG	0034	—	—	—				_	—		Progra	am Memory	Visibility Pa	age Address	s Pointer Re	egister		0000
RCOUNT	0036							Repe	eat Loop Co	unter Regist	er							xxxx
DCOUNT	0038								DCOUNT	<15:0>								xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	_	—	—	—	_	—		-	—	—			DOSTAR	TH<5:0>			00xx
DOENDL	003E							DO	ENDL<15:1	>							0	XXXX
DOENDH	0040		_	—	—	_	—		_	—	_			DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000

. . COLL CODE DECISTED MAD

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJXXGP101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0		_				RP1R<4:0>	•		—					RP0R<4:0>			0000
RPOR2	06C4	_	_	_	_	_	—	_	_	_	_	_			RP4R<4:0>			0000
RPOR3	06C6	_	_	_			RP7R<4:0>	•		_	_	_	_	_	_	_	_	0000
RPOR4	06C8	_	_				RP9R<4:0>	>		—					RP8R<4:0>			0000
RPOR7	06CE	_	_				RP15R<4:0	>		—				F	RP14R<4:0>	>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJXXMC101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	_	_			RP1R<4:0>	•		_	_	_			RP0R<4:0>			0000
RPOR2	06C4	_	_	_	—	_	_	_	_	_	_	_			RP4R<4:0>			0000
RPOR3	06C6	_	_	_			RP7R<4:0>	•		_	_	_	_	_	_	_	_	0000
RPOR4	06C8	_	_	_			RP9R<4:0>	•		_	_	_			RP8R<4:0>			0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_	_	_		F	RP12R<4:0>			0000
RPOR7	06CE		_	-			RP15R<4:0	>		_	_	_		F	RP14R<4:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES

												•····•,						
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	-	—	—			RP1R<4:0>	>		-	—	—			RP0R<4:0>			0000
RPOR1	06C2	_	_	_			RP3R<4:0>	>		_	_	—			RP2R<4:0>			0000
RPOR2	06C4	_	_	_			RP5R<4:0>	>		_	_	—			RP4R<4:0>			0000
RPOR3	06C6	_	_	_			RP7R<4:0>	>		_	_	—			RP6R<4:0>			0000
RPOR4	06C8	_	_	_			RP9R<4:0>	>		_	_	—			RP8R<4:0>			0000
RPOR5	06CA	_	_	_			RP11R<4:0	>		_	_	—		I	RP10R<4:0>			0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_	_	—		I	RP12R<4:0>			0000
RPOR7	06CE	_	—	_			RP15R<4:0	>		_	—	—			RP14R<4:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2014 Microchip Technology Inc.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVM	KEY<7:0>			
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemer	nted bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkn	iown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register bits (write-only)

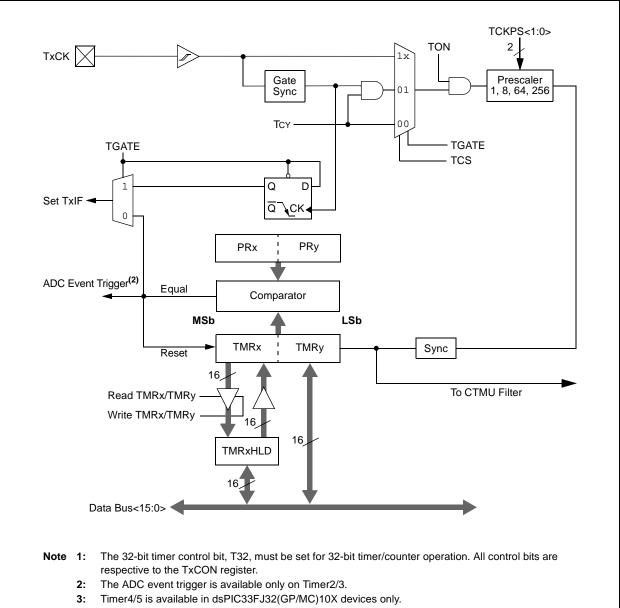
D / M A	D 444 A	D.4.4. 0	DAMA	DALLA	DALLA	DAMA	D 44/ 6				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE				
bit 15							bi				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
SFTACERR		<u> </u>	MATHERR	ADDRERR	STKERR	OSCFAIL					
bit 7	BIVOLINI			ABBRERR	OTTLETT	00017112	bi				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
6:4 <i>7</i>		www.unt.Nie.otie.ev.F	Niachla hit								
bit 15		rrupt Nesting E nesting is disat									
		nesting is cloat									
bit 14	-	cumulator A O		lag bit							
	1 = Trap was	caused by ove	erflow of Accur	nulator A							
	0 = Trap was	not caused by	overflow of Ad	ccumulator A							
bit 13		cumulator B O	-	-							
		caused by ove not caused by									
bit 12	-	-		Dverflow Trap F	lag hit						
			•	flow of Accumu	•						
	•	•	•	overflow of Accu							
bit 11	COVBERR: A	Accumulator B	Catastrophic C	Overflow Trap F	lag bit						
				flow of Accumu							
	-	-	-	overflow of Accu	umulator B						
bit 10		Imulator A Ove		able bit							
	⊥ = Trap over 0 = Trap is di	flow of Accum	ulator A								
bit 9		umulator B Ove	erflow Trap En	able bit							
		flow of Accum									
	0 = Trap is di	sabled									
bit 8	COVTE: Cata	astrophic Overf	low Trap Enab	ole bit							
			erflow of Accur	mulator A or B i	s enabled						
hit 7	0 = Trap is dis	sabled Shift Accumula	tor Error State	ia hit							
bit 7				llid accumulator	chift						
				invalid accumul							
bit 6		ithmetic Error :	-								
		or trap was cau	-	-							
		r trap was not	-	ivide-by-zero							
bit 5	•	ted: Read as '									
bit 4	MATHERR: Arithmetic Error Status bit 1 = Math error trap has occurred										
	1 14-41		una al								

INTOONA, INTERDURT CONTROL DECISTER A

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

REGISTER	10-5: RPINK		KAL PIN SE	LECT INPUT	REGISTER	1	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7-5 bit 4-0	11111 = Inpu 11110 = Reso 11010 = Reso 11001 = Inpu	erved erved it tied to RP25 it tied to RP1 it tied to RP0 ted: Read as '0),				
Uit 4-V	11111 = Inpu 11110 = Rese 11010 = Rese	erved erved it tied to RP25 it tied to RP1		to the Corresp	onding KPN PI		

REGISTER 10-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7


U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP21R<4:0> ⁽¹)	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP20R<4:0> ⁽¹	1)	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP21R<4:0>	Peripheral Ou	tput Function	is Assigned to	RP21 Output F	Pin bits ⁽¹⁾	
	(see Table 10	-2 for periphera	al function nur	mbers)			
bit 7-5		ted: Read as '		•			
bit 4-0	-			is Assigned to	RP20 Output F	Pin bits ⁽¹⁾	
		-2 for periphera	-	•	20 0 0 0 0 0 0 0 0		
				110010/			

REGISTER 10-21: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

REGISTER 10-22: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_			RP23R<4:0> ⁽¹)	
bit 15	Ŀ						bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP22R<4:0> ⁽¹)	
bit 7	÷						bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP23R<4:0>	: Peripheral Ou	tput Function	is Assigned to	RP23 Output F	Pin bits ⁽¹⁾	
	(see Table 10	-2 for periphera	al function nu	mbers)			
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	RP22R<4:0>	: Peripheral Ou	tput Function	is Assigned to	RP22 Output F	Pin bits ⁽¹⁾	
		-2 for periphera					
Note 1: ⊺	hese bits are ava	ilable in dePIC	33E 132/CD/N	AC)104 devices	only		
	nese bits ale ava		551 552(GF/N		only.		

FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM^(1,3,4)

4: Where 'x' or 'y' is present, x = 2 or 4; y = 3 or 5.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SEVTDIR ⁽¹⁾		SEVTCMP<14:8> ⁽²⁾							
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			SEVTC	MP<7:0> ⁽²⁾					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			

REGISTER 15-4: PxSECMP: PWMx SPECIAL EVENT COMPARE REGISTER

0 = A Special Event Trigger will occur when the PWMx time base is counting up

bit 14-0 SEVTCMP<14:0>: Special Event Compare Value bits⁽²⁾

Note 1: SEVTDIR is compared with PTDIR (PxTMR<15>) to generate the Special Event Trigger.

2: PxSECMP<14:0> is compared with PxTMR<14:0> to generate the Special Event Trigger.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DTBPS1	DTBPS0	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0			
bit 15	•	·		·			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DTAPS1	DTAPS0	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0			
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-14	DTBPS<1:0>: Dead-Time Unit B Prescale Select bits									
		11 = Clock period for Dead-Time Unit B is 8 TCY								
		10 = Clock period for Dead-Time Unit B is 4 Tcy								
	01 = Clock period for Dead-Time Unit B is 2 Tcy 00 = Clock period for Dead-Time Unit B is Tcy									
bit 13-8	DTB<5:0>: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit B bits									
bit 7-6	DTAPS<1:0>: Dead-Time Unit A Prescale Select bits									
	11 = Clock pe	11 = Clock period for Dead-Time Unit A is 8 Tcy								
		10 = Clock period for Dead-Time Unit A is 4 Tcy								
	01 = Clock period for Dead-Time Unit A is 2 TCY									

REGISTER 15-7: PxDTCON1: PWMx DEAD-TIME CONTROL REGISTER 1

- 00 = Clock period for Dead-Time Unit A is TCY
- bit 5-0 DTA<5:0>: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit A bits

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10
bit 15							bit 8

R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7	•						bit 0

Legend:	C = Clearable bit	HSC = Hardware Setta	ble/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
HS = Hardware Settable b	it		

bit 15	ACKSTAT: Acknowledge Status bit (when operating as I^2C^{TM} master, applicable to master transmit operation)
	1 = NACK received from slave0 = ACK received from slave
	Hardware sets or clears at end of slave Acknowledge.
bit 14	 TRSTAT: Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware sets at beginning of master transmission. Hardware clears at end of slave Acknowledge.
bit 13-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	 1 = A bus collision has been detected during a master operation 0 = No collision Hardware sets at detection of bus collision.
bit 9	GCSTAT: General Call Status bit
bit o	 1 = General call address was received 0 = General call address was not received Hardware sets when address matches general call address. Hardware clears at Stop detection.
bit 8	ADD10: 10-Bit Address Status bit
	 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware sets at match of 2nd byte of matched 10-bit address. Hardware clears at Stop detection.
bit 7	IWCOL: Write Collision Detect bit
	1 = An attempt to write to the I2CxTRN register failed because the I^2C module is busy 0 = No collision
	Hardware sets at occurrence of a write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: Receive Overflow Flag bit
	1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow
1.1. F	Hardware sets at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5	D_A: Data/Address bit (when operating as I ² C slave)
	 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was a device address
	Hardware clears at device address match. Hardware sets by reception of a slave byte.

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70635) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four edge input trigger sources
- · Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · Precise time measurement resolution of 200 ps
- Accurate current source suitable for capacitive measurement
- On-chip temperature measurement using a built-in diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module, the edge delay generation, sequencing of edges, and controls the current source and the output trigger. CTMUCON2 controls the edge source selection, edge source polarity selection and edge sampling mode. The CTMUICON register controls the selection and trim of the current source.

Figure 22-1 shows the CTMU block diagram.

25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

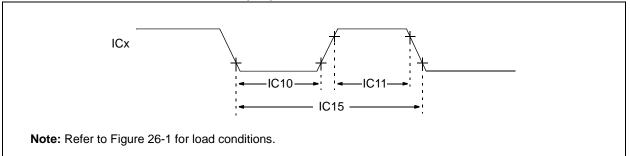
The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.


25.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

FIGURE 26-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

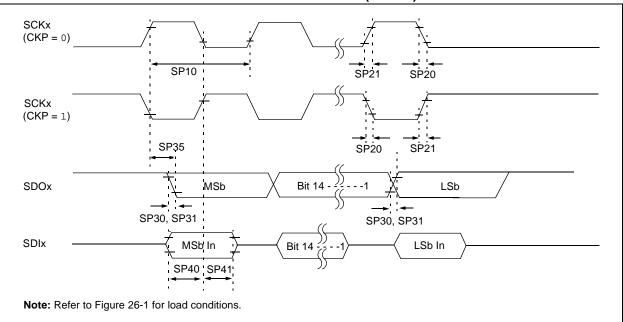


TABLE 26-25: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol Characteristic ⁽¹⁾		istic ⁽¹⁾	Min	Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 TCY + 20	_	ns		
			With Prescaler	10	—	ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 TCY + 20	_	ns		
		With Prescaler		10	_	ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)	

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

FIGURE 26-14: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

TABLE 26-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCKx Frequency		_	10	MHz	-40°C to +125°C, see Note 3
SP20	TscF	SCKx Output Fall Time	_	—	—	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	_	—	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	

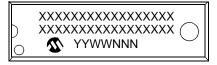
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
		Clock	Paramet	ers ⁽²⁾			·
AD50	Tad	ADC Clock Period	76		_	ns	
AD51	tRC	ADC Internal RC Oscillator Period	_	250	_	ns	
		Conv	ersion R	ates			
AD55	tCONV	Conversion Time	_	12 Tad	—	_	
AD56	FCNV	Throughput Rate	—		1.1	Msps	
AD57	TSAMP	Sample Time	2.0 Tad		—		
		Timir	ig Paramo	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 TAD		3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad	—	3.0 Tad	_	
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 Tad	—	_	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾			20	μS	

TABLE 26-49: 10-BIT ADC CONVERSION TIMING REQUIREMENTS


Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

18-Lead PDIP

18-Lead SOIC

20-Lead PDIP

20-Lead SSOP

20-Lead SOIC

Example

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:		Aicrochip part number cannot be marked on one line, it is carried over to the next imiting the number of available characters for customer-specific information.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13