

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc102t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Data Address Space

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

Microchip dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices implement up to 2 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decoding but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction in progress is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternately, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note:	The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and
	pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using the MOV class of instructions, which support Memory Direct Addressing mode with a 16-bit address field or by using Indirect Addressing mode with a Working register as an Address Pointer.

TABLE 4-12: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	—	—	—	-	_	—	I2C1 Receive Register						0000		
I2C1TRN	0202	_	_	_	_	—	_	– – I2C1 Transmit Register						OOFF				
I2C1BRG	0204	_	_	_	_	—	_	_	Baud Rate Generator Register							0000		
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	—	_	I2C1 Address Register 0							0000			
I2C1MSK	020C			—	_	—	_	I2C1 Address Mask Register 00							0000			

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	—	_				UART1	I Transmit R	egister				xxxx
U1RXREG	0226	_	_	_	_	_	—	_				UART	1 Receive R	egister				0000
U1BRG	0228	Baud Rate Generator Prescaler										0000						

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	—	—	—	—	SPIROV	—	—	—	—	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248	SPI1 Transmit and Receive Buffer Register 0									0000							

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 7-1: dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	1 = 1 = 1
	Interrupt Vector 53	0x00007E	Interrupt vector Table (IVI)
ity	Interrupt Vector 54	0x000080	
Lio	~		
<u>ط</u>	~		
de	~		
ō	Interrupt Vector 116	0x0000FC	
Iral	Interrupt Vector 117	0x0000FE	
latt	Reserved	0x000100	
∠ D	Reserved	0x000102	
sin	Reserved		
ea	Oscillator Fail Trap Vector		
ect	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1	_	
	~	_	
	~	4	
		0x000170	Alternate interrupt vector Table (AIV I)(")
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt vector 54	0x000180	
	~	-	
	~	-	
		-	
	Interrupt Vector 117		
L	Start of Code	0x000200	
V		01000200	

	-3: INTCC											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE					
bit 15							bit 8					
R/W-0	R/W-0	<u>U-0</u>	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit read	d as '0'						
-n = Value at F	POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkn	own					
			•				lowin					
bit 15	NSTDIS: Inte	errupt Nestina [Disable bit									
2.1.10	1 = Interrupt	nesting is disal	bled									
	0 = Interrupt	nesting is enat	oled									
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit								
	1 = Trap was	caused by ove	erflow of Accur	nulator A								
	0 = Irap was	not caused by	overflow of A	ccumulator A								
bit 13	OVBERR: AC	cumulator B C	verflow I rap F	lag bit								
	1 = 1 rap was 0 = Trap was	not caused by ove	overflow of Accur	nulator B								
bit 12	COVAFRR: A	Accumulator A	Catastrophic (Overflow Trap F	lag bit							
51112	1 = Trap was	= Trap was caused by catastrophic overflow of Accumulator A										
	0 = Trap was	not caused by	catastrophic of	overflow of Accu	umulator A							
bit 11	COVBERR: /	Accumulator B	Catastrophic (Overflow Trap F	lag bit							
	1 = Trap was	caused by cat	astrophic over	flow of Accumu	lator B							
	0 = Trap was	not caused by	catastrophic o	overflow of Accu	umulator B							
bit 10	OVATE: Accu	umulator A Ove	erflow Trap Ena	able bit								
	1 = Trap over	rtiow of Accum	ulator A									
hit 9		umulator B Ov	erflow Tran En	ahle hit								
bit 0	1 = Trap over	flow of Accum	ulator B									
	0 = Trap is di	sabled										
bit 8	COVTE: Cata	astrophic Over	low Trap Enat	ole bit								
	1 = Trap on c	atastrophic ov	erflow of Accur	mulator A or B i	s enabled							
	0 = Trap is di	sabled	_									
bit 7	SFTACERR:	Shift Accumula	ator Error Statu	us bit								
	1 = Math erro	or trap was cau or trap was not	sed by an inva caused by an	invalid accumulator	r sniπ lator shift							
bit 6	DIV0ERR: Ar	ithmetic Error	Status bit									
	1 = Math erro	or trap was cau	sed by a divide	e-by-zero								
	0 = Math erro	or trap was not	caused by a d	ivide-by-zero								
bit 5	Unimplemen	ted: Read as '	0'									
bit 4	MATHERR: A	Arithmetic Erro	Status bit									
	1 = Math error	or trap has occu	urred									
	v = wattreffc	n dap nas not	occurred									

INTOONA, INTERDURT CONTROL DECISTER A

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	CF: Clock Fail Detect bit (read/clear by application)
	1 = FSCM has detected a clock failure0 = FSCM has not detected a clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enables secondary oscillator0 = Disables secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit

- 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
- 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to "Oscillator (Part VI)" (DS70644) in the "dsPIC33/PIC24 Family Reference Manual" for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

10.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Section 26.0 "Electrical Characteristics". Table 26-11 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD, with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin, (i.e., ANx), are always analog pins by default after any Reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the ADC1 Port Configuration Low (AD1PCFGL) register in the ADC module, by setting the appropriate bit that corresponds to that I/O port pin, to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

- 4. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD – 0.8), not VDD. This is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -6 mA and VDD = 3.3V

The maximum output current sourced by any 6 mA I/O pin = 15 mA.

LED source current < 15 mA is technically permitted. Refer to the VOH/IOH specifications in **Section 26.0 "Electrical Characteristics"** for additional information.

10.6 I/O Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

```
Note: In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554109
```

10.6.1 KEY RESOURCES

- "I/O Ports" (DS70193) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽³⁾	—	TSIDL ⁽²⁾	—				—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽³⁾	TCKPS1 ⁽³⁾	TCKPS0 ⁽³⁾	—	—	TCS ⁽³⁾	
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	TON: Timer5	On bit ⁽³⁾					
	1 = Starts 16-	bit Timer3					
	0 = Stops 16-	bit Timer3					
bit 14	Unimplemen	ted: Read as ')' ()				
bit 13	TSIDL: Timer	5 Stop in Idle N	/lode bit ⁽²⁾				
	1 = Discontinuous	ues timer opera	ation when dev	vice enters Idl	e mode		
h: 40 7		s timer operatio	n in idle mode	2			
		Ted: Read as					
DIT 6	IGAIE: IIme	ars Gated Time	Accumulation	Enable bitter			
	This bit is ign	<u>⊥.</u> ored.					
	When TCS =	0:					
	1 = Gated tim	ne accumulation	n is enabled				
	0 = Gated tim	ne accumulation	n is disabled	1-			
bit 5-4	TCKPS<1:0>	: Timer5 Input	Clock Prescal	e Select bits ⁽³	5)		
	11 = 1:256 pr	escale value					
	10 = 1:64 pre	scale value					
	00 = 1:1 pres	cale value					
bit 3-2	Unimplemen	ted: Read as '	כ'				
bit 1	TCS: Timer5	Clock Source S	Select bit ⁽³⁾				
	1 = External o	clock from T5Cl	K pin				
	0 = Internal c	lock (Fosc/2)					
bit 0	Unimplemen	ted: Read as '	כ'				
Note 1:	This register is ava	ailable in dsPIC	33FJ32(GP/N	IC)10X device	es only.		
2:	When 32-bit timer	operation is en	abled (T32 = 1	1) in the Time	r4 Control regist	er (T4CON<3>), the TSIDL

REGISTER 12-4: T5CON: TIMER5 CONTROL REGISTER⁽¹⁾

2: When 32-bit timer operation is enabled (132 = 1) in the Timer4 Control register (14CON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: When the 32-bit timer operation is enabled (T32 = 1) in the Timer4 Control register (T4CON<3>), these bits have no effect.

17.3 I²C Control Registers

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0						
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN						
bit 15				I			bit 8						
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC						
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN						
bit 7							bit 0						
Legend:		HC = Hardwar	e Clearable bi	t									
R = Readab	le bit	W = Writable b	bit	U = Unimpler	nented bit, read	as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own						
bit 15	12CEN: I2Cx 1 = Enables t 0 = Disables	Enable bit he I2Cx module the I2Cx modul	e, and configu e; all l ² C™ pir	res the SDAx a	and SCLx pins as ad by port function	s serial port pins	3						
bit 14	Unimplemen	ted: Read as '	כי										
bit 13	I2CSIDL: 12C	x Stop in Idle M	lode bit										
	 1 = Discontinues module operation when device enters an Idle mode 0 = Continues module operation in Idle mode 												
bit 12	SCLREL: SC	Lx Release Co	ntrol bit (when	operating as I	² C slave)								
	1 = Releases 0 = Holds SC	SCLx clock	lock stretch)										
	If STREN = 1 Bit is R/W (i.e beginning of reception. Ha If STREN = 0 Bit is R/S (i.e data byte tran	<u>:</u> e., software can every slave da irdware clears a <u>:</u> ., software can nsmission. Harc	write '0' to init ta byte transn at every slave only write '1' t Iware clears a	iate stretch an nission. Hardw data byte rece o release clocl t end of every	d write '1' to rele are clears at en ption. <). Hardware cle slave address by	ease clock). Hard d of every slave ars at beginning /te reception.	dware clears at e address byte of every slave						
bit 11	IPMIEN: Intel	lligent Periphera	al Managemer	nt Interface (IP	MI) Enable bit								
	1 = IPMI mod 0 = IPMI mod	le is enabled; a le is disabled	ll addresses a	re Acknowledg	jed								
bit 10	A10M: I2Cx 1	10-Bit Slave Ad	dress bit										
	1 = I2CxADD	is a 10-bit slav	e address										
	0 = I2CxADD	is a 7-bit slave	address										
bit 9	DISSLW: Dis	able Slew Rate	Control bit										
	1 = Slew rate 0 = Slew rate	control is disat	oled oled										
bit 8	SMEN: SMB	us Input Levels	bit										
	1 = Enables I 0 = Disables	/O pin threshold SMBus input th	ds compliant v resholds	vith SMBus spe	ecification								
bit 7	GCEN: Gene	ral Call Enable	bit (when ope	rating as I ² C s	lave)								
	1 = Enables reception	interrupt when	a general cal	address is re	ceived in the I20	CxRSR (module	is enabled for						

0 = General call address is disabled

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

R/W-	0-U	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	(4)	—			CSS<12:8> ^{(4,}	6)	
bit 15		÷					bit 8
R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS<7	:0> (4,5)			
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CSS15: ADC	1 Input Scan S	election bit ⁽⁴⁾				
	1 = Selects A	Nx for input sca	an				
	0 = Skips AN	lx for input scan					
bit 14-13	Unimplemer	nted: Read as '	כי	(1.5.0)			
bit 12-0	CSS<12:0>:	ADC1 Input Sc	an Selection b	its ^(4,5,6)			
	1 = Selects A	Nx for input sca	an				
	0 = SKIPS AIN	ix for input scan					
Note 1:	On devices without	ut 14 analog inp	uts, all AD1CS	SSL bits can be	selected by th	e user applicati	on. However,
	inputs selected for	r scan without a	corresponding	g input on the c	device converts	s Vrefl.	
2:	CSSx = ANx, whe	re x = 0 through	n 12 and 15.				
3:	CTMU temperatur	e sensor input o	cannot be sca	nned.			
4:	The CSS<15,12:1 in all other devices	1,8:6> bits are a s.	available in the	dsPIC33FJ32	(GP/MC)104 d	evices only and	are reserved
5:	The CSS<5:4> bit	s are available	on all devices,	excluding the	dsPIC33FJXX	(GP/MC)101 de	vices, where

REGISTER 19-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2,3)

- they are reserved.
 6: The CSS<10:9> bits are available on all devices, excluding the dsPIC33E.116(GP/MC)101/102 devices.
- 6: The CSS<10:9> bits are available on all devices, excluding the dsPIC33FJ16(GP/MC)101/102 devices, where they are reserved.

REGISTER 21-6: RTCVAL (WHEN RTCPTR<1:0> = 01): RTCC WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—			—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 10-8 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.

bit 7-6 Unimplemented: Read as '0'

- bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
- bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

NOTES:

FIGURE 26-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 26-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symb	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SY10	TMCL	MCLR Pulse Width (low)	2		—	μS			
SY11	TPWRT	Power-up Timer Period		64	_	ms			
SY12	TPOR	Power-on Reset Delay	3	10	30	μS			
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	_	1.2	μS			
SY20	Twdt1	Watchdog Timer Time-out Period	_	_	_	ms	See Section 23.4 "Watchdog Timer (WDT)" and LPRC Parameter F21a (Table 26-19).		
SY30	Tost	Oscillator Start-up Time		1024 * Tosc			Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS			

Note 1: These parameters are characterized but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 26-31: ADC CONVERSION TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions		
		Clock	Paramet	ers ⁽²⁾					
AD50	TAD	ADC Clock Period	76		_	ns			
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns			
	Conversion Rates								
AD55	tCONV	Conversion Time		12 Tad	—	_			
AD56	FCNV	Throughput Rate			1.1	Msps			
AD57	TSAMP	Sample Time	2.0 Tad						
		Timin	g Paramo	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 Tad	—	3.0 Tad		Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad	—	3.0 Tad				
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾		0.5 TAD	_				
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾		—	20	μS			

TABLE 26-49: 10-BIT ADC CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb		
VRD311	CVRAA	Absolute Accuracy	—		0.5	LSb		
VRD312	CVRUR	Unit Resistor Value (R)	_	2k	_	Ω		

TABLE 26-53: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

TABLE 26-54: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHAR	$\begin{array}{l} \mbox{Standard Operating Conditions:3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Тур	Max.	c. Units Conditions			
	CTMU Current Source								
CTMUI1	IOUT1	Base Range ⁽¹⁾	320	550	980	na	IRNG<1:0> bits (CTMUICON<9:8>) = 0b01		
CTMUI2	Ιουτ2	10x Range ⁽¹⁾	3.2	5.5	9.8	μA	IRNG<1:0> bits (CTMUICON<9:8>) = 0b10		
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	32	55	98	μA	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11		
				Intern	al Diod	e			
CTMUFV1	VF	Forward Voltage ⁽²⁾		0.77		V	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11 @ +25°C		
CTMUFV2	VFVR	Forward Voltage Rate ⁽²⁾		-1.38		mV/⁰C	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11		

Note 1: Nominal value at center point of current trim range (ITRIM<5:0> bits (CTMUICON<15:10>) = 0b000000).

2: ADC module configured for conversion speed of 500 ksps. Parameters are characterized but not tested in manufacturing.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension Lin	nits	MIN	NOM	MAX		
Number of Pins	N		18			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	Е	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	11.55 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	_	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	А	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	Е	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	Footprint L1			1.25 REF			
Lead Thickness	С	0.09	-	0.25			
Foot Angle	¢	0°	4°	8°			
Lead Width	b	0.22	_	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	E 1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	8.00 BSC		
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

A1

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

A3

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-157C Sheet 1 of 2