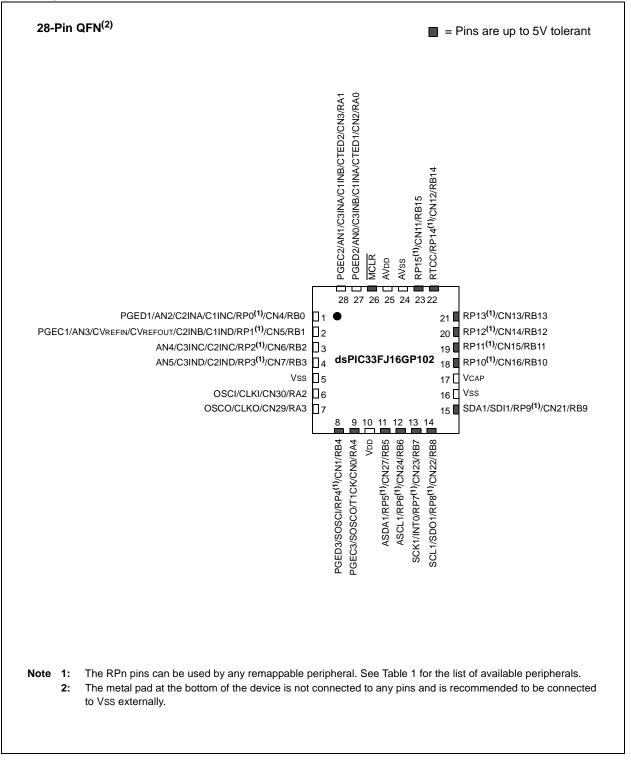


Welcome to E-XFL.COM

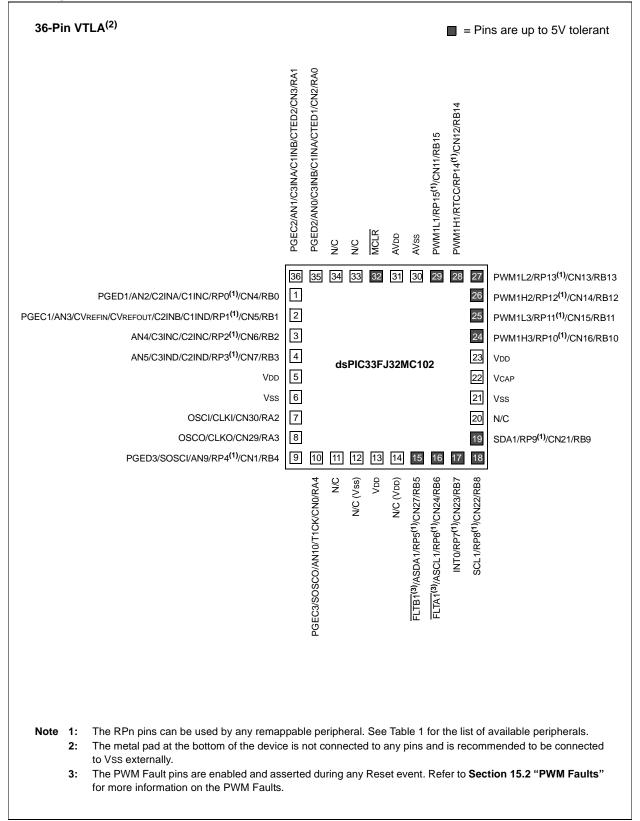
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Decalis	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc102t-i-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

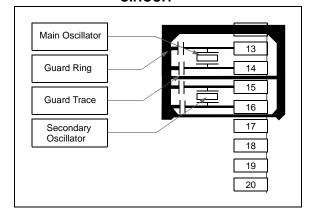
2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the "dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70659) for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- "MPLAB[®] ICD 3 Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS51616)
- *"Using MPLAB[®] REAL ICE™"* (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70204) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ16(GP/MC)101/102 The and dsPIC33FJ32(GP/MC)101/102/104 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can serve as a data, address, or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices are capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory, while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain Working registers to each address space.

bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVM	KEY<7:0>			
bit 7							bit (
Legend:							
R = Readable bit $W = Writable bit$			U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set	s set $0' = Bit$ is cleared $x = Bit$ is			x = Bit is unkn	iown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register bits (write-only)

Vector Number Require 8 9 10 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 20 21 22-23 1 24 25 26 27	terrupt lest (IRQ) umber 0 1 2 3 4 5 6 7 8 9 10 11 12	IVT Address 0x000014 0x000016 0x000018 0x00001A 0x00001C 0x00001E 0x000020 0x000022 0x000024 0x000026 0x000028	AIVT Address	Interrupt Source INT0 – External Interrupt 0 IC1 – Input Capture 1 OC1 – Output Compare 1 T1 – Timer1 Reserved IC2 – Input Capture 2 OC2 – Output Compare 2 T2 – Timer2 T3 – Timer3
9 10 11 12 13 14 15 16 17 18 19 20 21 22-23 24 25 26 27	1 2 3 4 5 6 7 8 9 9 10 11	0x000016 0x000018 0x00001A 0x00001C 0x00001E 0x000020 0x000022 0x000024 0x000026	0x000116 0x000118 0x00011A 0x00011C 0x00011E 0x000120 0x000122 0x000124	IC1 – Input Capture 1 OC1 – Output Compare 1 T1 – Timer1 Reserved IC2 – Input Capture 2 OC2 – Output Compare 2 T2 – Timer2
10 11 12 13 14 15 16 17 18 19 20 21 22-23 24 25 26 27	2 3 4 5 6 7 8 9 10 11	0x000018 0x00001A 0x00001C 0x00001E 0x000020 0x000022 0x000024 0x000026	0x000118 0x00011A 0x00011C 0x00011E 0x000120 0x000122 0x000124	OC1 – Output Compare 1 T1 – Timer1 Reserved IC2 – Input Capture 2 OC2 – Output Compare 2 T2 – Timer2
11 12 13 14 15 16 17 18 19 20 21 22-23 24 25 26 27	3 4 5 6 7 8 9 10 11	0x00001A 0x00001C 0x00001E 0x000020 0x000022 0x000024 0x000026	0x00011A 0x00011C 0x00011E 0x000120 0x000122 0x000124	T1 – Timer1 Reserved IC2 – Input Capture 2 OC2 – Output Compare 2 T2 – Timer2
12 13 14 15 16 17 18 19 20 21 22-23 24 25 26 27	4 5 6 7 8 9 10 11	0x00001C 0x00001E 0x000020 0x000022 0x000024 0x000026	0x00011C 0x00011E 0x000120 0x000122 0x000124	Reserved IC2 – Input Capture 2 OC2 – Output Compare 2 T2 – Timer2
13 14 15 16 17 18 19 20 21 22-23 24 25 26 27	5 6 7 8 9 10 11	0x00001E 0x000020 0x000022 0x000024 0x000026	0x00011E 0x000120 0x000122 0x000124	IC2 – Input Capture 2 OC2 – Output Compare 2 T2 – Timer2
14 15 16 17 18 19 20 21 22-23 24 25 26 27	6 7 8 9 10 11	0x000020 0x000022 0x000024 0x000026	0x000120 0x000122 0x000124	OC2 – Output Compare 2 T2 – Timer2
15 16 17 18 19 20 21 22-23 24 25 26 27	7 8 9 10 11	0x000022 0x000024 0x000026	0x000122 0x000124	T2 – Timer2
16 17 18 19 20 21 22-23 24 25 26 27	8 9 10 11	0x000024 0x000026	0x000124	
17 18 19 20 21 22-23 24 25 26 27	9 10 11	0x000026		T3 – Timer3
18 19 20 21 22-23 24 25 26 27	10 11		0x000106	
19 20 21 22-23 1 24 25 26 27	11	0x000028	0X000120	SPI1E – SPI1 Error
20 21 22-23 1 24 25 26 27			0x000128	SPI1 – SPI1 Transfer Done
21 22-23 24 25 26 27	12	0x00002A	0x00012A	U1RX – UART1 Receiver
22-23 1 24 25 26 27		0x00002C	0x00012C	U1TX – UART1 Transmitter
24 25 26 27	13	0x00002E	0x00012E	ADC1 – ADC1
25 26 27	14-15	0x000030-0x000032	0x000130-0x000132	Reserved
26 27	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
27	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
	18	0x000038	0x000138	CMP – Comparator Interrupt
00	19	0x00003A	0x00013A	Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29-34 2	21-26	0x00003E-0x000038	0x00013E-0x000138	Reserved
35	27	0x00004A	0x00014A	T4 – Timer4 ⁽²⁾
36	28	0x00004C	0x00014C	T5 – Timer5 ⁽²⁾
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38-44 3	30-36	0x000050-0x00005C	0x000150-0x00015C	Reserved
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46-64 3	38-56	0x000060-0x000084	0x000160-0x000184	Reserved
65	57	0x000086	0x000186	PWM1 – PWM1 Period Match ⁽¹⁾
66-69 5	58-61	0x000088-0x00008E	0x000188-0x00018E	Reserved
70	62	0x000090	0x000190	RTCC – Real-Time Clock and Calendar
71	63	0x000092	0x000192	FLTA1 – PWM1 Fault A ⁽¹⁾
72	64	0x000094	0x000194	FLTB1 – PWM1 Fault B ⁽³⁾
73	65	0x000096	0x000196	U1E – UART1 Error
		0x000098-0x0000AC	0x000198-0x0001AC	Reserved
85	66-76	0x0000AE	0x0001AE	CTMU – Charge Time Measurement Unit
86-125 7	66-76 77	0x0000B0-0x0000FE	0x0001B0-0x0001FE	Reserved

TABLE 7-1: INTERRUPT VECTORS

Note 1: This interrupt vector is available in dsPIC33FJ(16/32)MC10X devices only.

2: This interrupt vector is available in dsPIC33FJ32(GP/MC)10X devices only.

3: This interrupt vector is available in dsPIC33FJ(16/32)MC102/104 devices only.

bit 7							bit 0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
OA	OB	SA	SB	OAB	SAB	DA	DC
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	—	IC3IF		—	—		_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			l as '0'				
-n = Value at P	POR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

bit 15-6	Unimplemented: Read as '0'
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit
	 I = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4-0	Unimplemented: Read as '0'

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	U-0
FLTA1IF ⁽¹⁾	RTCIF	—	—	—	_	PWM1IF ⁽¹⁾	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—				—			—
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	FLTA1IF: PWM1 Fault A Interrupt Flag Status bit ⁽¹⁾
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 14	RTCIF: RTCC Interrupt Flag Status bit
	 I = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-10	Unimplemented: Read as '0'
bit 9	PWM1IF: PWM1 Interrupt Flag Status bit ⁽¹⁾
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

Note 1: These bits are available in dsPIC(16/32)MC10X devices only.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_		—	—	—			
oit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	AD1IP2	AD1IP1	AD1IP0		U1TXIP2	U1TXIP1	U1TXIP0			
bit 7							bit			
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
	• • 001 = Interru	pt is Priority 7 (pt is Priority 1 pt source is dis		ty interrupt)						
bit 3	Unimplemen	ted: Read as '	0'							
bit 2-0	U1TXIP<2:0>	U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits								
	111 = Interru • • 001 = Interru	pt is Priority 7 ((highest priorit	ty interrupt)						

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

14.2 Output Compare Control Register

REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit					
R = Readable bit	it W = Writable bit U = Unimplemented bit, read as '0'		d as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit
	 1 = Output Compare x will halt in CPU Idle mode 0 = Output Compare x will continue to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111.)
bit 3	OCTSEL: Output Compare x Timer Selection bit
	 1 = Timer3 is the clock source for Output Compare x 0 = Timer2 is the clock source for Output Compare x
bit 2-0	OCM<2:0>: Output Compare x Mode Select bits
	 111 = PWM mode on OCx, Fault pin is enabled 110 = PWM mode on OCx, Fault pin is disabled 101 = Initializes OCx pin low, generates continuous output pulses on OCx pin 100 = Initializes OCx pin low, generates single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initializes OCx pin high, compare event forces OCx pin low 001 = Initializes OCx pin low, compare event forces OCx pin high 000 = Output Compare x channel is disabled

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of four pins:

- SDIx (serial data input)
- SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select).

In Master mode operation, SCKx is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPIx MODULE BLOCK DIAGRAM

19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices have up to 14 ADC module input channels.

19.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 14 analog input pins
- Four Sample-and-Hold (S&H) circuits for simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes
- 16-word conversion result buffer

Depending on the particular device pinout, the ADC can have up to 14 analog input pins.

Block diagrams of the ADC module are shown in Figure 19-1 through Figure 19-3.

19.2 ADC Initialization

To configure the ADC module:

- 1. Select port pins as analog inputs (AD1PCFGL<15:0>).
- Select the analog conversion clock to match the desired data rate with the processor clock (ADxCON3<7:0>).
- 3. Determine how many Sample-and-Hold channels will be used (ADxCON2<9:8>).
- Select the appropriate sample and conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>).
- 5. Select the way conversion results are presented in the buffer (ADxCON1<9:8>).
- 6. Turn on the ADC module (ADxCON1<15>).
- 7. Configure the ADC interrupt (if required):
 - a) Clear the ADxIF bit.
 - b) Select the ADC interrupt priority.

DC CH	ARACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic		Min	Тур ⁽¹⁾	Max	Units	Conditions
Operati	ng Voltag	e					
DC10	Supply \	/oltage ⁽³⁾					
	Vdd		VBOR	_	3.6	V	Industrial and Extended
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—		V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	1.75	Vss	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.024	—	—	V/ms	0-2.4V in 0.1s

TABLE 26-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

TABLE 26-5: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)

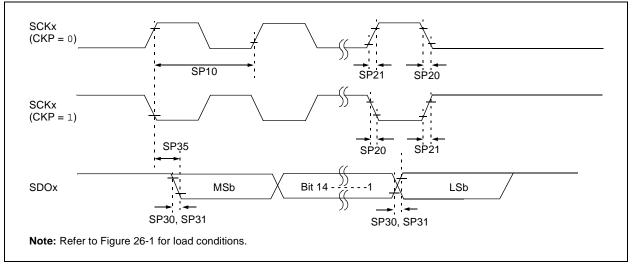
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low		2.40	2.48	2.55	V	See Note 2

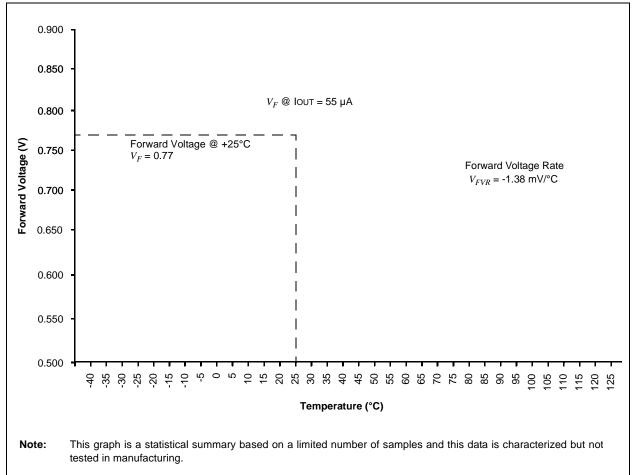
Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Idle Current (II	DLE): Core Of	f, Clock On I	Base Current	⁽²⁾ – dsPIC33FJ32(GP/MC)10X Device	S		
DC40d	0.4	1.0	mA	-40°C				
DC40a	0.4	1.0	mA	+25°C	3.3∨	LPRC		
DC40b	0.4	1.0	mA	+85°C		(32.768 kHz) ⁽³⁾		
DC40c	0.5	1.0	mA	+125°C				
DC41d	0.5	1.1	mA	-40°C				
DC41a	0.5	1.1	mA	+25°C	3.3V	1 MIPS ⁽³⁾		
DC41b	0.5	1.1	mA	+85°C		T IVITE SY 7		
DC41c	0.8	1.1	mA	+125°C				
DC42d	0.9	1.6	mA	-40°C				
DC42a	0.9	1.6	mA	+25°C	- 3.3V	4 MIPS ⁽³⁾		
DC42b	1.0	1.6	mA	+85°C	3.3V	4 10115357		
DC42c	1.2	1.6	mA	+125°C				
DC43a	1.6	2.6	mA	+25°C				
DC43d	1.6	2.6	mA	-40°C	- 3.3V	10 MIPS ⁽³⁾		
DC43b	1.7	2.6	mA	+85°C	3.3V	10 1011-517		
DC43c	2.0	2.6	mA	+125°C				
DC44d	2.4	3.8	mA	-40°C				
DC44a	2.4	3.8	mA	+25°C	3.3V	16 MIPS ⁽³⁾		
DC44b	2.6	3.8	mA	+85°C	3.3V	10 101173		
DC44c	2.9	3.8	mA	+125°C]			

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)


Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.


2: Base Idle current is measured as follows:

- CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- **3:** These parameters are characterized, but not tested in manufacturing.

AC CHARA	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 26-30	—	—	0,1	0,1	0,1	
9 MHz	—	Table 26-31	—	1	0,1	1	
9 MHz	—	Table 26-32	—	0	0,1	1	
15 MHz	_	_	Table 26-33	1	0	0	
11 Mhz	—	—	Table 26-34	1	1	0	
15 MHz	_	_	Table 26-35	0	1	0	
11 MHz		_	Table 26-36	0	0	0	

FIGURE 26-19: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

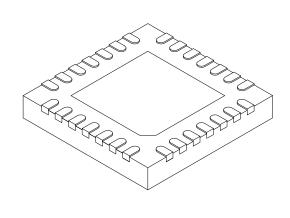


FIGURE 26-33: FORWARD VOLTAGE VERSUS TEMPERATURE

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	Ш	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.50	0.55	0.70
Terminal-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description	
Section 26.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings.	
	Updated TABLE 26-3: Thermal Packaging Characteristics.	
	Updated TABLE 26-6: DC Characteristics: Operating Current (Idd).	
	Updated TABLE 26-7: DC Characteristics: Idle Current (lidle).	
	Updated TABLE 26-8: DC Characteristics: Power-Down Current (Ipd).	
	Updated TABLE 26-9: DC Characteristics: Doze Current (Idoze).	
	Updated TABLE 26-10: DC Characteristics: I/O Pin Input Specifications.	
	Replaced all SPI specifications and figures (see Table 26-29 through Table 26-44 and Figure 26-11 through Figure 26-26).	
Section 28.0 "Packaging	Added the following Package Marking Information and Package Drawings:	
Information"	44-Lead TQFP	
	• 44-Lead QFN	
	 44-Lead VTLA (referred to as TLA in the package drawings) 	

Revision E (September 2012)

This revision includes updates to the values in **Section 26.0** "**Electrical Characteristics**" and updated packaging diagrams in **Section 28.0** "**Packaging Information**". There are minor text edits throughout the document.

Revision F (January 2014)

This revision adds the High-Temperature Electrical Characteristics chapter and updated packaging diagrams in **Section 28.0** "**Packaging Information**". There are minor text edits throughout the document.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13