

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp101-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

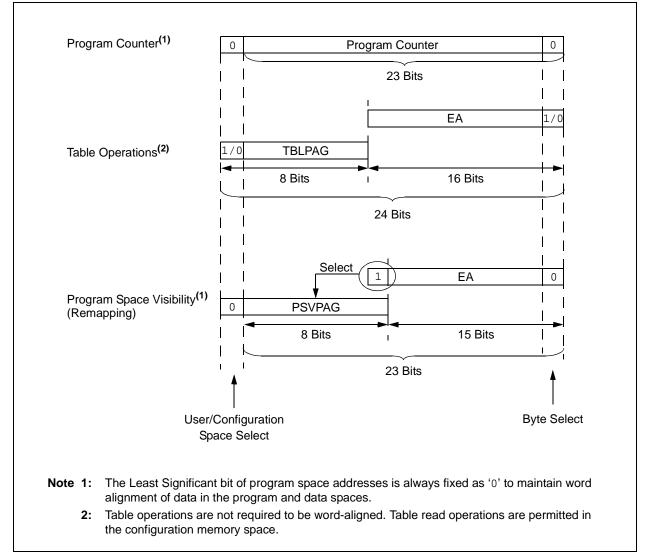
Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the primary reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ16MC102 product page of the Microchip Web site (www.microchip.com). In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "CPU" (DS70204)
- "Data Memory" (DS70202)
- "Program Memory" (DS70203)
- "Flash Programming" (DS70191)
- "Reset" (DS70192)
- "Watchdog Timer and Power-Saving Modes" (DS70196)
- "Timers" (DS70205)
- "Input Capture" (DS70198)
- "Output Compare" (DS70209)
- "Motor Control PWM" (DS70187)
- "Analog-to-Digital Converter (ADC)" (DS70183)
- "UART" (DS70188)
- "Serial Peripheral Interface (SPI)" (DS70206)
- "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- "CodeGuard Security" (DS70199)
- "Programming and Diagnostics" (DS70207)
- "Device Configuration" (DS70194)
- "I/O Ports with Peripheral Pin Select (PPS)" (DS70190)
- "Real-Time Clock and Calendar (RTCC)" (DS70301)
- "Introduction (Part VI)" (DS70655)
- "Oscillator (Part VI)" (DS70644)
- "Interrupts (Part VI)" (DS70633)
- "Comparator with Blanking" (DS70647)
- "Charge Time Measurement Unit (CTMU)" (DS70635)

NOTES:


3.4 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15	·						bit 8
(2))) (2)	(2)					
R/W-0 ⁽³		R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit
Legend:		C = Clearable	bit				
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15		ator A Overflow					
		ator A has overf ator A has not o					
bit 14		ator B Overflow					
DIL 14		ator B has overf					
		ator B has not o					
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	itus bit ⁽¹⁾			
	1 = Accumula	ator A is saturat	ed or has be	en saturated at	some time		
		ator A is not sat		(4)			
bit 12		ator B Saturatio					
		ator B is saturat ator B is not sat		en saturated at	some time		
bit 11	OAB: OA C	B Combined A	ccumulator C	Verflow Status	bit		
		ators A or B hav					
bit 10	SAB: SA S	B Combined Ac	cumulator 'S	ticky' Status bit			
					urated at some	time in the past	
		ccumulator A o			it will clear SA a	and SB	
bit 9	DA: DO LOOP			Cleaning this bi			
	1 = DO loop is						
		not in progres	5				
bit 8	DC: MCU AL	U Half Carry/Bo	prrow bit				
			ow-order bit	(for byte-sized o	data) or 8th low-	order bit (for wo	rd-sized data
		sult occurred	h low-order	hit (for hyte-siz	ed data) or 8th	low-order bit (f	or word-sized
	•	he result occur					
Note 1:	This bit can be rea	nd or cleared (ne	ot set).				
	The IPL<2:0> bits						
	Level. The value in	n parentheses i	ndicates the	IPL if IPL<3> =	1. User interru	ots are disabled	when
	IPL<3> = 1.						

REGISTER 3-1: SR: CPU STATUS REGISTER

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	—	IC3IF		—	—		_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

bit 15-6	Unimplemented: Read as '0'
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit
	 I = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4-0	Unimplemented: Read as '0'

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	U-0
FLTA1IF ⁽¹⁾	RTCIF	—	—	—	_	PWM1IF ⁽¹⁾	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—			—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	FLTA1IF: PWM1 Fault A Interrupt Flag Status bit ⁽¹⁾
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 14	RTCIF: RTCC Interrupt Flag Status bit
	 I = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-10	Unimplemented: Read as '0'
bit 9	PWM1IF: PWM1 Interrupt Flag Status bit ⁽¹⁾
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

Note 1: These bits are available in dsPIC(16/32)MC10X devices only.

REGISTER	10-5: RPINK		KAL PIN SE	LECT INPUT	REGISTER	1	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7-5 bit 4-0	11111 = Inpu 11110 = Reso 11010 = Reso 11001 = Inpu	erved erved it tied to RP25 it tied to RP1 it tied to RP0 ted: Read as '0),				
Uit 4-V	11111 = Inpu 11110 = Rese 11010 = Rese	erved erved it tied to RP25 it tied to RP1		to the Corresp	onding KPN PI		

REGISTER 10-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
-	-	_	_	-	_	_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_			IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	IC3R<4:0>: /	Assign Input Ca	pture 3 (IC3)	to the Corresp	onding RPn Pir	bits	
	11111 = I npu						
	11110 = Res	erved					
	•						
	•						
	11010 = Res	erved					
	11001 = Input tied to RP25						
	•						
	00001 = Inpu						
	00000 = Inpu	It tied to RP0					

REGISTER 10-6: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP5R<4:0>	(1)	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP4R<4:0;	>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

REGISTER 10-13: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP4R<4:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not available in dsPIC33FJ(16/32)(GP/MC)101 devices.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP7R<4:0>				
bit 15							bit 8
11.0			DAMO	DAMO	DALO	DAM 0	DAMO
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	RP6R<4:0> ⁽¹⁾				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable b			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				0' = Bit is cleared $x = Bit is unknown$			nown
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkn			nown	

REGISTER 10-14: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not available in dsPIC33FJ(16/32)(GP/MC)101 devices.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP21R<4:0> ⁽¹)			
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP20R<4:0> ⁽¹	1)			
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			iown		
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	RP21R<4:0>	Peripheral Ou	tput Function	is Assigned to	RP21 Output F	Pin bits ⁽¹⁾			
	(see Table 10-2 for peripheral function numbers)								
bit 7-5		ted: Read as '							
bit 4-0	-			is Assigned to	RP20 Output F	Pin bits(1)			
		-2 for periphera	-	•	20 0 0 0 0 0 0 0 0				
				1.0010/					

REGISTER 10-21: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

REGISTER 10-22: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_		—		RP23R<4:0> ⁽¹⁾					
bit 15	Ŀ						bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	—			RP22R<4:0> ⁽¹)			
bit 7	÷						bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit U = Unimplemented bit, read as '0'						
-n = Value at	t POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$					
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	RP23R<4:0>	: Peripheral Ou	tput Function	is Assigned to	RP23 Output F	Pin bits ⁽¹⁾			
	(see Table 10	-2 for periphera	al function nu	mbers)					
bit 7-5	Unimplemen	ted: Read as '	0'						
bit 4-0	RP22R<4:0>	: Peripheral Ou	tput Function	is Assigned to	RP22 Output F	Pin bits ⁽¹⁾			
		-2 for periphera							
Note 1: ⊺	hese bits are ava	ilable in dePIC	33E 132(GP/N	1C)101 devices	only				
			001 002(01/1		oriny.				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DTBPS1	DTBPS0	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0			
bit 15		•		·			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DTAPS1	DTAPS0	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0			
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-14	DTBPS<1:0>: Dead-Time Unit B Prescale Select bits									
	11 = Clock period for Dead-Time Unit B is 8 TCY									
	10 = Clock period for Dead-Time Unit B is 4 Tcy									
		eriod for Dead- eriod for Dead-								
bit 13-8	•				ime Unit B bits					
bit 7-6		: Dead-Time U								
	11 = Clock pe	eriod for Dead-	Time Unit A is	S 8 TCY						
		eriod for Dead-								
	01 = Clock period for Dead-Time Unit A is 2 Tcy									

REGISTER 15-7: PxDTCON1: PWMx DEAD-TIME CONTROL REGISTER 1

- 00 = Clock period for Dead-Time Unit A is TCY
- bit 5-0 DTA<5:0>: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit A bits

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of four pins:

- SDIx (serial data input)
- SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select).

In Master mode operation, SCKx is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPIx MODULE BLOCK DIAGRAM

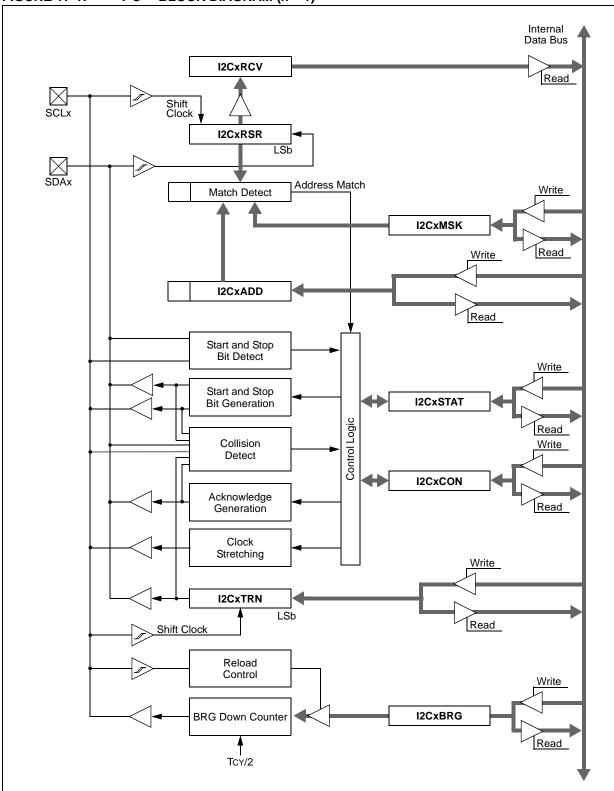


FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (x = 1)

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is available for 16x BRG mode (BRGH = 0) only.

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768
	1110 = 1:16,384
	• 0001 = 1:2
	0001 = 1.2 0000 = 1:1
PLLKEN	PLL Lock Enable bit
	1 = Clock switch to PLL will wait until the PLL lock signal is valid
	0 = Clock switch will not wait for the PLL lock signal
ALTI2C	Alternate I ² C [™] Pins bit
	$1 = I^2C$ is mapped to SDA1/SCL1 pins
	$0 = I^2C$ is mapped to ASDA1/ASCL1 pins
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicate on PGEC1 and PGED1
	10 = Communicate on PGEC2 and PGED2
	01 = Communicate on PGEC3 and PGED3
PWMPIN	00 = Reserved, do not use Motor Control PWM Module Pin Mode bit
PVVIVIPIN	
	 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins)
HPOL	Motor Control PWM High Side Polarity bit
	1 = PWM module high side output pins have active-high output polarity
	0 = PWM module high side output pins have active-low output polarity
LPOL	Motor Control PWM Low Side Polarity bit
	1 = PWM module low side output pins have active-high output polarity
	0 = PWM module low side output pins have active-low output polarity

TABLE 23-4: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

REGISTER 23-1: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R
		DEVID<	23:16> ⁽¹⁾			
						bit 16
R	R	R	R	R	R	R
						bit 8
R	R	R	R	R	R	R
		DEVID	<7:0> ⁽¹⁾			
						bit 0
	R	R R	R R R R R R DEVID<	DEVID<23:16> ⁽¹⁾ R R R R DEVID<15:8> ⁽¹⁾	DEVID<23:16> ⁽¹⁾ R R R R R R DEVID<15:8> ⁽¹⁾ R R R R R R	DEVID<23:16> ⁽¹⁾ R R R R R R R DEVID<15:8> ⁽¹⁾ R R R R R R R

 Legend:
 R = Read-Only bit
 U = Unimplemented bit

bit 23-0 **DEIDV<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70659) for the list of device ID values.

REGISTER 23-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R		
			DEVREV	<23:16> ⁽¹⁾					
bit 23							bit 16		
R	R		R	R	R				
к	ĸ	R			ĸ	R	R		
			DEVREV	<15:8> ⁽¹⁾					
bit 15							bit 8		
R	R	R	R	R	R	R	R		
			DEVRE\	/<7:0> ⁽¹⁾					
bit 7							bit 0		
Logondi	D. Dood only hit				nantad hit				
Legena:	R = Read-only bit		Legend: R = Read-only bit U = Unimplemented bit						

bit 23-0 DEVREV<23:0>: Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70659) for the list of device revision values.

24.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ16(GP/ MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com).

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 24-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

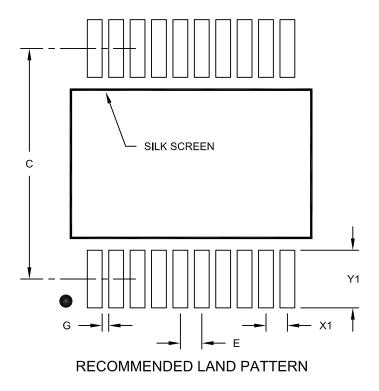
The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

TABLE 26-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CH	ARACTERIS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_	—	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time		_		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—		50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

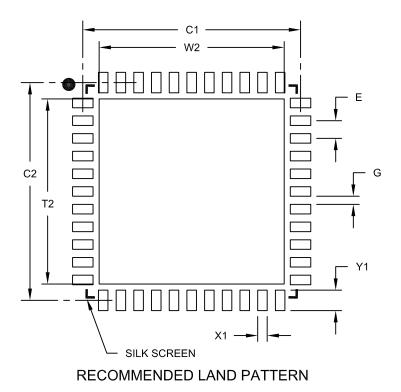
4: Assumes 50 pF load on all SPIx pins.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensior	Dimension Limits			MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X20)	X1			0.45	
Contact Pad Length (X20)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A