

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp101-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

© 2011-2014 Microchip Technology Inc.

Pin Diagrams (Continued)

FIGURE 2-1: RECOMMENDED

TANK CAPACITORS 2.2.1

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

2.3 **CPU Logic Filter Capacitor Connection (VCAP)**

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 µF and 10 µF, 16V connected to ground. The type can be ceramic or tantalum. Refer to Section 26.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 23.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

3.3 Special MCU Features

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 CPU CORE BLOCK DIAGRAM

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously, and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value, to saturate.

Six STATUS Register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

- SB: ACCB saturated (bit 31 overflow and saturation)
 - ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)
- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

or

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when OA and OB are set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action; for example, to correct system gain.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXGP101 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	_	—	_	CN12IE	CN11IE	_	_		_	_	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	_	_	_	_	_	CN23IE	CN22IE	CN21IE	_	_	_	_	_	0000
CNPU1	0068	_	_	_	CN12PUE	CN11PUE	_	_	_	_	_	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	CN30PUE	CN29PUE	—	—	_	_	_	CN23PUE	CN22PUE	CN21PUE	_	_			-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXMC101 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	—	CN14IE	CN13IE	CN12IE	CN11IE		_	_	—	—	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	_	_	_	_	_	CN23IE	CN22IE	CN21IE	_	_	_	_	_	0000
CNPU1	0068	_	CN14PUE	CN13PUE	CN12PUE	CN11PUE	_	_	_	_	_	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	—	—	—		_	CN23PUE	CN22PUE	CN21PUE		—	—	_	_	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	-		_	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	_	CN27IE	_	_	CN24IE	CN23IE	CN22IE	CN21IE	_	_	_	_	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	_	_	_	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	_	CN27PUE	_	_	CN24PUE	CN23PUE	CN22PUE	CN21PUE	_	_	_	_	CN16PUE	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-5: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32(GP/MC)104 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN13IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN13PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

					GISTER		
R/SO-0(1)	R/W-0(1)	R/W-0('')	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR					—
bit 15							bit 8
	(1)			(1)	(1)		
U-0	R/W-0(")	U-0	U-0	R/W-0(1)	R/W-0(1)	R/W-0(1)	R/W-0(1)
	ERASE	—	—	NVMOP3(2)	NVMOP2(2)	NVMOP1 ⁽²⁾	NVMOP0(2)
bit 7							bit 0
Legend:		SO - Sotta	ble Only hit				
R – Readable	bit	W = Writab		II – Unimplen	nented hit read	l as '0'	
R = Reauable		4^{\prime} = Witab		0' = 0 in the set	arad	v – Ritic unkr	
-11 = value at r		1 = DIL IS S	el		areu		IOWIT
bit 15	WR: Write Cont 1 = Initiates a F cleared by 0 = Program or	rol bit ⁽¹⁾ Flash memor hardware on rerase opera	y program or ce operation i tion is comple	erase operations complete ete and inactive	on; the operatio	on is self-timed	and the bit is
bit 14	WREN: Write E 1 = Enables Fla 0 = Inhibits Flas	nable bit ⁽¹⁾ ash program/ sh program/e	/erase operati erase operatio	ons			
bit 13	WRERR: Write 1 = An imprope on any set a 0 = The program	Sequence E r program or attempt of the m or erase o	rror Flag bit ⁽¹⁾ erase sequence WR bit) peration comp	ce attempt or ter	mination has oc	ccurred (bit is se	t automatically
bit 12-7	Unimplemente	d: Read as '	0'				
bit 6	ERASE: Erase/	Program Ena	able bit ⁽¹⁾				
	1 = Performs th0 = Performs th	ne erase ope ne program o	ration specifie	ed by NVMOP<	3:0> on the nex P<3:0> on the	kt WR comman next WR comm	d and
bit 5-4	Unimplemente	d: Read as '	0'				
bit 3-0	NVMOP<3:0>:	NVM Operat	ion Selection	bits ^(1,2)			
	If ERASE = 1: 1111 = No oper 1101 = Erase G 1100 = No oper 0011 = No oper 0000 = No oper 0000 = No oper If ERASE = 0: 1111 = No oper 1001 = No oper 1101 = No oper 1011 = No oper 1001 = No oper 1010 = No oper 0011 = Memory 0010 = No oper 0011 = Memory 0010 = No oper 0001 = No oper 0001 = No oper 0001 = No oper 0000 = No oper	ration General Segn ration ration ration ration ration ration ration ration ration ration ration ration	nent operation am operation				
Note 1: The	ese bits can only b	be reset on a	POR.				
2: All REGISTER 5	other combination	ns of NVMOF Y: NONVOL	<pre>2<3:0> are uni ATILE MEN</pre>	implemented. IORY KEY R	EGISTER		

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

| U-0 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| _ | — | _ | _ | _ | _ | _ | |

© 2011-2014 Microchip Technology Inc.

6.3 POR

A POR circuit ensures the device is reset from poweron. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. The delay, TPOR, ensures that the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to **Section 26.0 "Electrical Characteristics"** for details.

The Power-on Reset (POR) status bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.4 BOR and PWRT

The on-chip regulator has a BOR circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.

The Brown-out Reset (BOR) status bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The Power-up Timer (PWRT) provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

Refer to **Section 23.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The Reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point.

FIGURE 6-3: BROWN-OUT RESET SITUATIONS

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	T3CKR<4:0>	: Assign Timer	3 External Clo	ck (T3CK) to t	he Correspondi	ng RPn Pin bits	;
	11111 = I npu	it tied to Vss					
	11110 = Res	erved					
	•						
	-						
	11010 = Res	erved					
	11001 = Inpu	it tied to RP25					
	•						
	00001 = Inpu	It tied to RP1					
	00000 = Inpu	it tied to RP0					
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	T2CKR<4:0>	: Assign Timer	2 External Clo	ck (T2CK) to t	he Correspondi	ng RPn Pin bits	5
	11111 = I npu	it tied to Vss					
	11110 = Res	erved					
	•						
	11010 = Res	erved					
	11001 = Inpu	it tied to RP25					
	•						
	•						
	00001 = Inpu	It tied to RP1					
	00000 = Inpu	It tied to RP0					

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

	12-3. 14001	1. IIIILI(4 C					
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—	—		_	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TON: Timer4 <u>When T32 = 1</u> 1 = Starts 32- 0 = Stops 32- <u>When T32 = 0</u> 1 = Starts 16- 0 = Stops 16-	On bit <u>1:</u> bit Timer4/5 bit Timer4/5 <u>0:</u> bit Timer4 bit Timer4					
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	TSIDL: Timer	4 Stop in Idle N	/lode bit				
	1 = Discontinues	ues module op s module opera	eration when o tion in Idle mo	device enters I ode	dle mode		
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	TGATE: Time <u>When TCS =</u> This bit is igno <u>When TCS =</u> 1 = Gated tim 0 = Gated tim	er4 Gated Time <u>1:</u> ored. <u>0:</u> ue accumulation ue accumulation	Accumulation	Enable bit			
bit 5-4	TCKPS<1:0>	: Timer4 Input	Clock Prescal	e Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	T32: 32-Bit Ti 1 = Timer4 ar 0 = Timer4 ar	mer Mode Selend Timer5 form Timer5 act a	ect bit a single 32-bi s two 16-bit tir	t timer mers			
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	TCS: Timer4	Clock Source S	Select bit				
	1 = External c 0 = Internal cl	clock from pin, lock (FcY)	T4CK (on the	rising edge)			
bit 0	Unimplemen	ted: Read as '	0'				
Note 1: ⊤	his register is ava	ailable in dsPIC	33FJ32(GP/M	IC)10X device	s only.		

REGISTER 12-3: T4CON: TIMER4 CONTROL REGISTER⁽¹⁾

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTDIR				PTMR<14:8>	>		
bit 15	·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTM	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
<u>.</u>							

REGISTER 15-2: PxTMR: PWMx TIMER COUNT VALUE REGISTER

bit 15	PTDIR: PWMx Time Base Count Direction Status bit (read-only)
	1 = PWMx time base is counting down
	0 = PWMx time base is counting up
bit 14-0	PTMR <14:0>: PWMx Time Base Register Count Value bits

REGISTER 15-3: PxTPER: PWMx TIME BASE PERIOD REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				PTPER<14:8	>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTPER<7:0>									
bit 7							bit 0		

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-0 **PTPER<14:0>:** PWMx Time Base Period Value bits

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
		_	_		PMOD3	PMOD2	PMOD1	
bit 15	t 15							
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
—	PEN3H ⁽²	^{:)} PEN2H ⁽²⁾	PEN1H ⁽²⁾	—	PEN3L ⁽²⁾	PEN2L ⁽²⁾	PEN1L ⁽²⁾	
bit 7							bit 0	
Legend:								
R = Read	lable bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15-11	Unimplem	ented: Read as '	0'					
bit 10-8	PMOD<3:1	I>: PWMx I/O Pai	ir Mode bits					
	1 = PWMx	I/O pin pair is in t	he Independe	ent PWM Outp	ut mode			
	0 = PWMx	I/O pin pair is in t	he Compleme	entary Output r	mode			
bit 7	Unimplem	ented: Read as '	0'	2)				
bit 6-4	PEN3H:PE	EN1H: PWMxH I/(D Enable bits ⁽	2)				
	1 = PWMx	H pin is enabled f	or PWMx outp	out Doc o gonoral i				
hit 2		ontod: Pood os '		lies a general j				
			∪ Frakla kita(2))				
DIT 2-0		Init: PVVIVIXL I/O		,				
	$\perp = PWWx$	L pin is enabled in L pin is disabled	I/O nin becom	out Des a general r	ourpose I/O			
	0 - 1 1111			iee a general p				
Note 1:	The PWMxCON	11 register is a wri	ite-protected r	egister. Refer	to Section 15.3	"Write-Protec	ted	
э.	The Poset statu			sequence.		auration hit (ED	(OP < 7)	
Ζ:		1 (dofault) the D	WM pipe are	setting of the	- VVIVIE IN CONIN	yuralion bit (FP	OR(1>)	
		\pm (default), the P	www.pins.are.c	John oned by th	ILE PORT TEGISTE	er al Resel, me	annig triey	

REGISTER 15-5: PWMxCON1: PWMx CONTROL REGISTER 1⁽¹⁾

are initially programmed as inputs (i.e., tri-stated).
If PWMPIN = 0, the PWM pins are controlled by the PWM module at Reset and are therefore, initially programmed as output pins.

REGISTER 21-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS

W-x R/W-x R/W-x AY2 WDAY1 WDAY0 bit 8				
AY2 WDAY1 WDAY0 bit 8				
bit 8				
/V-A I\/VV-A I\/VV-A				
DNE2 HRONE1 HRONE0				
bit 0				
U = Unimplemented bit, read as '0'				
x = Bit is unknown				
) 				

DIT 15-11	Unimplemented: Read as 0
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2011-2014 Microchip Technology Inc.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
Operati	Operating Voltage									
DC10	Supply \	/oltage ⁽³⁾								
	Vdd	—	Vbor		3.6	V	Industrial and Extended			
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8		—	V				
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	—	1.75	Vss	V				
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.024	—	_	V/ms	0-2.4V in 0.1s			

TABLE 26-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

TABLE 26-5: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low		2.40	2.48	2.55	V	See Note 2

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

DC CH	ARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O Pins	Vss	—	0.2 Vdd	V		
DI15		MCLR	Vss	_	0.2 Vdd	V		
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled	
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.8	V	SMBus enabled	
	Viн	Input High Voltage						
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V		
DI28		SDAx, SCLx	0.7 Vdd	—	5.5	V	SMBus disabled	
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled	
	ICNPU	CNx Pull-up Current						
DI30			50	250	450	μΑ	VDD = 3.3V, VPIN = VSS	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	—	—	±2	μΑ	$Vss \le VPIN \le VDD$, Pin at high-impedance	
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circ C \leq TA \leq +85^\circ C \end{array}$	
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±2	μA	Shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$	
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±3.5	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +125°C	
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±8	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	—	_	±2	μA	$VSS \leq VPIN \leq VDD$	
DI56		OSC1	—	—	±2	μΑ	VSS \leq VPIN \leq VDD, XT and HS modes	

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.

6: Non-5V tolerant pins, VIH source > (VDD + 0.3), 5V tolerant pins, VIH source > 5.5V. Characterized but not tested.

- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions
DI60a	licl	Input Low Injection Current	0	₋₅ (5,8)	_	mA	All pins except <u>VDD</u> , VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO and RB14
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO, RB14 and digital 5V tolerant designated pins
DI60c	∑ lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.

6: Non-5V tolerant pins, VIH source > (VDD + 0.3), 5V tolerant pins, VIH source > 5.5V. Characterized but not tested.

- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins – All Pins excluding OSCO	_	_	0.4	V	Io∟ ≤ 6 mA, VDD = 3.3V, See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins – OSCO	_	_	0.4	V	Io∟ ≤ 10 mA, VDD = 3.3V, See Note 1	
DO20 Vон	Output High Voltage I/O Pins: 4x Source Driver Pins – All Pins excluding OSCO	2.4	_	_	V	IOL ≥ -6 mA, VDD = 3.3V, See Note 1		
		Output High Voltage I/O Pins: 8x Source Driver Pins – OSCO	2.4	_	_	V	Io∟ ≥ -10 mA, VDD = 3.3V, See Note 1	
		Output High Voltage I/O Pins:	1.5	_			IOH \geq -12 mA, VDD = 3.3V, See Note 1	
		4x Source Driver Pins – All Pins excluding OSCO	2.0	—	_	V	IOH \ge -11 mA, VDD = 3.3V, See Note 1	
DO204			3.0	_			$IOH \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{ V},$ See Note 1	
DOZUA	VOHT	Output High Voltage I/O Pins:	1.5	_			$IOH \ge -16 \text{ mA}, \text{ VDD} = 3.3 \text{V},$ See Note 1	
		8x Source Driver Pins – OSCO	2.0	—	_	V	$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V},$ See Note 1	
			3.0	—	_		$IOH \ge -4 \text{ mA}, \text{ VDD} = 3.3 \text{ V},$ See Note 1	

TABLE 26-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A