

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp101-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

FIGURE 1-1: dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 BLOCK DIAGRAM

Pin Nam	ne Pin Type	Buffer Type	PPS	Description						
AVDD	P	Ρ	No	Positive supply for analog modules. This pin must be con AVDD is connected to VDD in the 18-pin dsPIC33FJXXG dsPIC33FJXXMC101 devices. In all other devices, AVDI VDD.	nnected at all times. P101 and 20-pin D is separated from					
AVss	P	Р	No	Ground reference for analog modules. AVss is connected to Vss in the 18-pin dsPIC33FJXXGP101 and 20-pin dsPIC33FJXXMC101 devices. In all other devices, AVss is separated from Vss.						
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.						
VCAP	Р	—	No	CPU logic filter capacitor connection.						
Vss	Р	—	No	Ground reference for logic and I/O pins.						
Legend:	CMOS = 0	CMOS comp	batible	e input or output Analog = Analog input P = Power						
	ST = Schmitt Trigger input with CMOS levels O = Output I = Input									

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels O = Output PPS = Peripheral Pin Select

Note 1: An external pull-down resistor is required for the FLTA1 pin in dsPIC33FJXXMC101 (20-pin) devices.

2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.

3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.

4: The PWM Fault pins are enabled during any Reset event. Refer to **Section 15.2** "**PWM Faults**" for more information on the PWM Faults.

5: Not all pins are available on all devices. Refer to the specific device in the "**Pin Diagrams**" section for availability.

6: These pins are available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.

IADLE 4-	10.	ADCI	REGISI		FFUR	1551033	PLAV(G	F/IVIC) 102		ES								
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Data	Buffer 0								xxxx
ADC1BUF1	0302								ADC1 Data	Buffer 1								xxxx
ADC1BUF2	0304								ADC1 Data	Buffer 2								xxxx
ADC1BUF3	0306								ADC1 Data	Buffer 3								xxxx
ADC1BUF4	0308								ADC1 Data	Buffer 4								xxxx
ADC1BUF5	030A		ADC1 Data Buffer 5 xxxx															
ADC1BUF6	030C			ADC1 Data Buffer 6 xxxx														
ADC1BUF7	030E		ADC1 Data Buffer 7 xxxx															
ADC1BUF8	0310		ADC1 Data Buffer 8 xxxx															
ADC1BUF9	0312								ADC1 Data	Buffer 9								xxxx
ADC1BUFA	0314							ŀ	ADC1 Data B	Buffer 10								xxxx
ADC1BUFB	0316							1	ADC1 Data I	Buffer 11								xxxx
ADC1BUFC	0318							ŀ	ADC1 Data B	Buffer 12								xxxx
ADC1BUFD	031A							ŀ	ADC1 Data B	Buffer 13								xxxx
ADC1BUFE	031C							ŀ	ADC1 Data B	Buffer 14								xxxx
ADC1BUFF	031E			_					ADC1 Data I	Buffer 15							-	xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	—	—	FORM1	FORM0	SSRC2	SSRC1	SSRC0	—	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	—	_	CSCNA	CHPS1	CHPS0	BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	—	—	—	—	—	CH123NB1	CH123NB0	CH123SB	—	—		—	—	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB	—	-	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	—	_	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	—	—	-	—	—	PCFG<	:10:9> ⁽¹⁾	—	—	—			PC	CFG<5:0>			0000
AD1CSSL	0330									0000								

TABLE 4-16: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)101/102 devices only.

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL and TBLRDH).

Program space access through the data space occurs if the MSb of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 0x8000 and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	Table Reads/Writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

bit 15							bit 8				
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
			NVM	KEY<7:0>							
bit 7							bit 0				
Legend:											
R = Readable I	oit	W = Writable bit		U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register bits (write-only)

6.5 External Reset (EXTR)

The External Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 26.0** "**Electrical Characteristics**" for minimum pulse-width specifications. The External Reset pin (MCLR) bit (EXTR) in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.5.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This External Reset signal can be directly connected to the MCLR pin to reset the device when the rest of the system is reset.

6.5.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the External Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The External Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.6 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain as the source. SYSRST is released at the next instruction cycle and the Reset vector fetch will commence.

The Software RESET (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the Software Reset.

6.7 Watchdog Timer Time-out Reset (WDTO)

Whenever a Watchdog Timer Time-out Reset occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control (RCON<4>) register is set to indicate the Watchdog Timer Reset. Refer to **Section 23.4 "Watchdog Timer (WDT)**" for more information on the Watchdog Timer Reset.

6.8 Trap Conflict Reset

If a lower priority hard trap occurs while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of Priority Level 13 through Level 15, inclusive. The address error (Level 13) and oscillator error (Level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller"** for more information on Trap Conflict Resets.

6.9 Configuration Mismatch Reset

To maintain the integrity of the Peripheral Pin Select Control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset occurs.

The Configuration Mismatch Flag (CM) bit in the Reset Control (RCON<9>) register is set to indicate the Configuration Mismatch Reset. Refer to **Section 10.0 "I/O Ports"** for more information on the Configuration Mismatch Reset.

Note: The Configuration Mismatch feature and associated Reset flag is not available on all devices.

6.10 Illegal Condition Device Reset

An Illegal Condition Device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag (IOPUWR) bit in the Reset Control (RCON<14>) register is set to indicate the Illegal Condition Device Reset.

6.10.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 0x3F, which is an illegal opcode value.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
—	—	CTMUIE	_	—	—	_	—			
bit 15							bit 8			
r										
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
	—	—	—		_	U1EIE	FLTB1IE ⁽¹⁾			
bit 7							bit 0			
r										
Legend:										
R = Readabl	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15-14	Unimplemen	nted: Read as ')'							
bit 13	CTMUIE: CT	MU Interrupt Er	hable bit							
	1 = Interrupt	request is enab	led							
	0 = Interrupt	request is not e	nabled							
bit 12-2	Unimplemen	ted: Read as '0)'							
bit 1	U1EIE: UAR	T1 Error Interrup	ot Enable bit							
	1 = Interrupt	request is enab	led							
	0 = Interrupt	request is not e	nabled	(4)						
bit 0	FLTB1IE: PV	VM1 Fault B Inte	errupt Enable	bit ⁽¹⁾						
	1 = Interrupt	request has occ	curred							
	0 = Interrupt	request has not	occurred							
Note 1: Th	his bit is available	e in dsPIC(16/3	2)MC102/104	4 devices only.						

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
	IC2IP2	IC2IP1	IC2IP0	—		<u> </u>	<u> </u>				
bit 7							bit 0				
r											
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown				
bit 15	15 Unimplemented: Read as '0'										
bit 14-12	T2IP<2:0>: ⊺	Timer2 Interrupt	Priority bits	• • • •							
	111 = Interru	ipt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interru 000 = Interru	ipt is Priority 1 ipt source is dis	abled								
bit 11	Unimplemer	nted: Read as '	0'								
bit 10-8	OC2IP<2:0>	: Output Compa	are Channel 2	Interrupt Prio	rity bits						
	111 = Interru	ıpt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 7	Unimplemer	nted: Read as '	0'								
bit 6-4	IC2IP<2:0>:	Input Capture C	Channel 2 Inte	rrupt Priority I	oits						
	111 = Interru	ıpt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	ipt source is dis	abled								
bit 3-0	Unimplemer	nted: Read as '	0'								

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

8.2 Oscillator Control Registers

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y					
	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾					
bit 15							bit 8					
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0					
CLKLO	CK IOLOCK	LOCK	—	CF	—	LPOSCEN	OSWEN					
bit 7							bit 0					
- -												
Legend:		C = Clearable	e bit	y = Value set	from Configura	ition bits on PO	R					
R = Read	able bit	W = Writable	bit		mented bit, read	1 as '0'						
-n = Value	e at POR	1' = Bit is set		0' = Bit is cle	eared	x = Bit is unkn	IOWN					
		(ad. Daadaa (01									
Dit 15	5 Unimplemented: Read as '0'											
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only	")							
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n								
	110 = Fast R	C Oscillator (F	ator (LPRC)	le-by-16								
	100 = Second	darv Oscillator	(SOSC)									
	011 = Primar	y Oscillator (M	S, EC) with P	LL								
	010 = Primar	y Oscillator (M	S, HS, EC)									
	001 = Fast R	C Oscillator (F	RC) with Divid	de-by-n and PL	.L (FRCPLL)							
L:1.44	000 = Fast R	C Oscillator (F	RC)									
Dit 11	Unimplemen	ted: Read as	0'	(2)								
bit 10-8	NOSC<2:0>:	New Oscillator	r Selection bit	S(~)								
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n								
	101 = Low-Po	ower RC Oscill	ator (LPRC)	le-by-10								
	100 = Secon	dary Oscillator	(SOSC)									
	011 = Primar	y Oscillator (M	S, EC) with P	LL								
	010 = Primar	y Oscillator (M	S, HS, EC)									
	001 = Fast R 000 = Fast R	C Oscillator (F C Oscillator (F	RC) with Divid	le-by-n and PL	L (FRCPLL)							
bit 7	CLKLOCK: (Clock Lock Ena	ble bit									
2	If Clock Swite	hing is Enable	d and FSCM i	s Disabled (FC	KSM<1:0> (FC	SC<7:6>) = 0b	01):					
	1 = Clock sw	vitching is disat	oled, system c	lock source is	locked		<u></u>					
	0 = Clock sw	vitching is enab	led, system c	lock source ca	n be modified by	y clock switchin	g					
bit 6	IOLOCK: Per	ripheral Pin Se	lect Lock bit									
	1 = Periphered0 = Periphered	al Pin Select is al Pin Select is	locked, a writ not locked, a	te to Periphera write to Periph	l Pin Select regi neral Pin Select	sters is not allo registers is allo	wed wed					
bit 5	LOCK: PLL L	ock Status bit	(read-only)									
	1 = Indicates	that PLL is in	lock or PLL st	art-up timer is	satisfied							
	0 = Indicates	that PLL is ou	t of lock, start	-up timer is in	progress or PLL	. is disabled						
bit 4	Unimplemen	ted: Read as '	0'									
Note 1:	Writes to this regis "dsPIC33/PIC24 F	ster require an Family Reference	unlock sequer ce <i>Manual"</i> for	nce. Refer to " details.	Oscillator (Part	t VI)" (DS70644	1) in the					
2:	Direct clock switch This applies to clo	es between an ck switches in	y primary osci either directio	illator mode wit n. In these inst	h PLL and FRC ances, the appl	PLL mode are r ication must sw	not permitted. itch to FRC					

mode as a transitional clock source between the two PLL modes.

14.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare" (DS70209) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Output Compare Control register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 14-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

NOTES:

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "UART" (DS70188) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 6 bps at 16x mode at 16 MIPS
- Baud Rates Ranging from 4 Mbps to 24.4 bps at 4x mode at 16 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA® Support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTX SIMPLIFIED BLOCK DIAGRAM

REGISTER	19-5: AD1Ch	150: ADC1 I	NPUT CHAN	NEL U SELE	LI REGISTE	R						
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CH0NB		—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0					
bit 15							bit 8					
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CH0NA		—	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0					
bit 7							bit 0					
Legend:	- hit		L.:.	II Inimum In m	nented bit was							
		vv = vvritable	DIL	0 = 0 minipier	nented bit, rea	uas U						
-n = value at	POR	T = Bit is set		$0^{\circ} = Bit is cle$	ared	X = BIt IS UNKI	nown					
6:4 <i>4</i> 5		an al O Nia matin		ian Camala D h	:.							
DIL 15				or Sample B b	п							
	1 = Channel (0 = Channel () negative inpu	it is AVss									
bit 14-13	Unimplemen	ted: Read as '	0'									
bit 12-8	CH0SB<4:0>	: Channel 0 Po	ositive Input Se	lect for Sample	e B bits							
	11111-1000	0 = Reserved;	do not use									
	01111 = Cha	01111 = Channel 0 positive input is AN15 ⁽²⁾										
	01110 = No c	01110 = No channels connected, all inputs are floating (used for CTMU)										
	01101 = Cha	nnel 0 positive	input is conne	cted to CTMU	temperature se	ensor						
	01100 = Cha	nnel 0 positive	input is AN12	2) 2)								
	01011 = Chai	nnel 0 positive	input is AN119	3)								
	01010 = Char01001 = Char	nnel 0 positive	input is ANQ(3))								
	01000 = Cha	nnel 0 positive	input is AN8 ⁽²⁾)								
	00111 = Cha	00111 = Channel 0 positive input is AN7 ⁽²⁾										
	00110 = Cha	nnel 0 positive	input is AN6(2)									
	00101 = Cha	nnel 0 positive	input is AN5									
	00100 = Char	nnel 0 positive	input is AN4	,								
	00011 = Char00010 - Char	nnel 0 positive	input is AN3									
	000010 = Cha	nnel 0 positive	input is AN1									
	00000 = Cha	nnel 0 positive	input is AN0									
bit 7	CH0NA: Char	nnel 0 Negativ	e Input Select f	or Sample A b	it							
	1 = Channel () negative inpu	ıt is AN1									
	0 = Channel () negative inpu	it is AVss									
bit 6-5	Unimplemen	Unimplemented: Read as '0'										
bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits											
	Refer to bits<	12-8> for the a	vailable setting	js.								
Note 1: Th	nis setting is avai	lable in all dev	ices, excluding	the dsPIC33F	JXX(GP/MC)1	01, where it is r	eserved.					
2: Th	nis setting is avai	lable in the dsl	PIC33FJ32(GP	/MC)104 devic	es only and is	reserved in all	other devices.					
3: Th	nis setting is avai	setting is available in all devices, excluding the dsPIC33FJ16(GP/MC)101/102, where it is reserved.										

DECISTED 40 F. ADAOLION, ADOA INDUT OLIANINEL A OEL FOT DEOLOTED

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1 :32,768
	1110 = 1:16,384
	•
	•
	0001 = 1:2
PLLKEN	PLL Lock Enable bit
	1 = Clock switch to PLL will wait until the PLL lock signal is valid
	0 = Clock switch will not wait for the PLL lock signal
ALTI2C	Alternate I ² C [™] Pins bit
	$1 = I^2C$ is mapped to SDA1/SCL1 pins
	0 = I ² C is mapped to ASDA1/ASCL1 pins
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicate on PGEC1 and PGED1
	10 = Communicate on PGEC2 and PGED2
	01 = Communicate on PGEC3 and PGED3
	Meter Centrel DWM Medule Din Mede hit
PVVIVIPIN	Motor Control PWM Module PIN Mode bit
	\perp = PWM module pins controlled by PORT register at device Reset (tri-stated)
	0 = 1 Win module pins controlled by 1 Win module at device reset (conliguied as output pins)
HPOL	Motor Control PWW High Side Polarity bit
	\perp = PWW module high side output pins have active low output polarity
	0 = P vivi module high side output pins have active-low output polanty
LPOL	INIOTOR CONTROL PVVIVI LOW SIDE POIARITY DIT
	1 = PWM module low side output pins have active-high output polarity
	0 = Pvvivi module low side output pins have active-low output polarity

TABLE 23-4: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - Iit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - Iit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG - f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
	-	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C.Z.N

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 26-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CH	ARACTERIS	TICS	Standard Operating Conditions: 2.4V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions			
SP70	TscP	Maximum SCKx Input Frequency	—	_	11	MHz	See Note 3			
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4			
SP73	TscR	SCKx Input Rise Time	—			ns	See Parameter DO31 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time	—		_	ns	See Parameter DO32 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns				
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120			ns				
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4			
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_	_	ns	See Note 4			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

Section Name	Update Description
Section 7.0 "Interrupt Controller"	Updated the Interrupt Vectors (see Table 7-1).
	The following registers were updated or added:
	Register 7-5: IFS0: Interrupt Flag Status Register 0
	Register 7-11: IEC1: Interrupt Enable Control Register 1
	Register 7-21: IPC6: Interrupt Priority Control Register 6
Section 9.0 "Power- Saving Features"	Updated 9.5 PMD Control Registers.
Section 10.0 "I/O Ports"	Updated TABLE 10-1: Selectable Input Sources (Maps Input to Function) ⁽¹⁾ .
	Updated TABLE 10-2: Output Selection for Remappable Pin (RPn)
	The following registers were updated or added:
	Register 10-4: RPINR4: Peripheral Pin Select Input Register 4
	Register 10-6: RPINR8: Peripheral Pin Select Input Register 8
	Register 10-19: RPOR8: Peripheral Pin Select Output Register 8
	Register 10-20: RPOR9: Peripheral Pin Select Output Register 9
	Register 10-21: RPOR10: Peripheral Pin Select Output Register 10
	Register 10-22: RPOR11: Peripheral Pin Select Output Register 11
	Register 10-23: RPOR12: Peripheral Pin Select Output Register 12
Section 12.0 "Timer2/3 and Timer4/5"	The features and operation information was extensively updated in support of Timer4/5 (see Section 12.1 "32-Bit Operation" and Section 12.2 "16-Bit Operation").
	The block diagrams were updated in support of the new timers (see Figure 12-1, Figure 12-2, and Figure 12-3).
	The following registers were added:
	Register 12-3: T4CON: Timer4 Control Register(1)
	Register 12-4: T5CON: Timer5 Control Register(1)
Section 15.0 "Motor Control PWM Module"	Updated TABLE 15-1: Internal Pull-down resistors on PWM Fault pins.
	Note 2 was added to Register 15-5: PWMXCON1: PWMx Control Register 1 ⁽¹⁾ .
Section 19.0 "10-Bit Analog-to-Digital Converter (ADC)"	The number of available input pins and channels were updated from six to 14.
	Updated FIGURE 19-1: ADC1 Block Diagram for dsPIC33FJXX(GP/MC)101 Devices.
	Updated FIGURE 19-2: ADC1 Block Diagram for dsPIC33FJXX(GP/MC)102 Devices.
	Added FIGURE 19-3: ADC1 Block Diagram for dsPIC33FJ32(GP/MC)104 Devices.
	 The following registers were updated: Register 19-4: AD1CHS123: ADC1 Input Channel 1, 2, 3 Select Register Register 19-5: AD1CHS0: ADC1 INPUT Channel 0 select Register Register 19-6: AD1CSSL: ADC1 Input Scan Select Register Low^(1,2,3)
	• Register 19-7: AD1PCFGL: ADC1 Port Configuration Register Low ^(1,2,3)

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)