

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betails	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp101t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

DS70000652F-page 66

TABLE 4-18: CTMU REGISTER MAP

F	ile Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C	FMUCON1	033A	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	_		-	_	-	_	_	0000
C	FMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0			0000
C	FMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	—	—	-		_			-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window based on ALRMPTR<1:0>											xxxx				
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624		RTCC Value Register Window based on RTCPTR<1:0> x:										xxxx					
RCFGCAL	0626	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: PAD CONFIGURATION REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	_				_	_	_	-	_		—			_	RTSECSEL	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

bit 7							bit 0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
OA	OB	SA	SB	OAB	SAB	DA	DC
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—	FLTA1IP2 ⁽¹⁾	FLTA1IP1 ⁽¹⁾	FLTA1IP0 ⁽¹⁾	—	RTCIP2	RTCIP1	RTCIP0					
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
		—	—				—					
bit 7							bit C					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	Unimplemented: Read as '0'											
bit 14-12	FLTA1IP<2:0	>: PWM1 Faul	A Interrupt Pr	iority bits ⁽¹⁾								
	<pre>111 = Interrupt is Priority 7 (highest priority interrupt)</pre>											
	•											
	•											
	001 = Interrup											
	000 = Interrup	ot source is dis	abled									
bit 11	Unimplemen	ted: Read as '	0'									
bit 10-8	RTCIP<2:0>:	RTCC Interrup	ot Priority bits									
	111 = Interrur	ot is Priority 7 (highest priority	/ interrupt)								
		•										
	•											
	•											
	• • 001 = Interrup	ot is Priority 1										
	• • 001 = Interrup		abled									

REGISTER 7-25: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

REGISTER 9-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled 0 = SPI1 module is enabled

bit 2-1 Unimplemented: Read as '0'

- bit 0 AD1MD: ADC1 Module Disable bit⁽²⁾
 - 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled
- **Note 1:** These bits are available in dsPIC33FJ32(GP/MC)10X devices only.
 - 2: PCFGx bits have no effect if the ADC module is disabled by setting this bit. When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.

REGISTER 9-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	IC3MD	IC2MD	IC1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	OC2MD	OC1MD
bit 7			•				bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10	IC3MD: Input Capture 3 Module Disable bit
	1 = Input Capture 3 module is disabled
	0 = Input Capture 3 module is enabled
bit 9	IC2MD: Input Capture 2 Module Disable bit
	1 = Input Capture 2 module is disabled
	0 = Input Capture 2 module is enabled
bit 8	IC1MD: Input Capture 1 Module Disable bit
	 I = Input Capture 1 module is disabled
	0 = Input Capture 1 module is enabled
bit 7-2	Unimplemented: Read as '0'
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled
	0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled
	0 = Output Compare 1 module is enabled

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See "**Pin Diagrams**" for the available pins and their functionality.

10.2 Configuring Analog Port Pins

The AD1PCFGL and TRISx registers control the operation of the Analog-to-Digital port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP. A demonstration is shown in Example 10-1.

10.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Input Change Notification pins should always be disabled when the port pin is configured as a digital output.

	LL 10-1.	
MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	—			—		—	
bit 15	·	•					bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	—	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	
bit 7	·		•				bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value a	at POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$				
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	OCFAR<4:0>	: Assign Outpu	ut Capture A (OCFA) to the 0	Corresponding F	RPn Pin bits		
	11111 = Inpu	t tied to Vss						
	11110 = Res	erved						
	•							

REGISTER 10-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

11010 = Reserved 11001 = Input tied to RP25

00001 = Input tied to RP1 00000 = Input tied to RP0

.

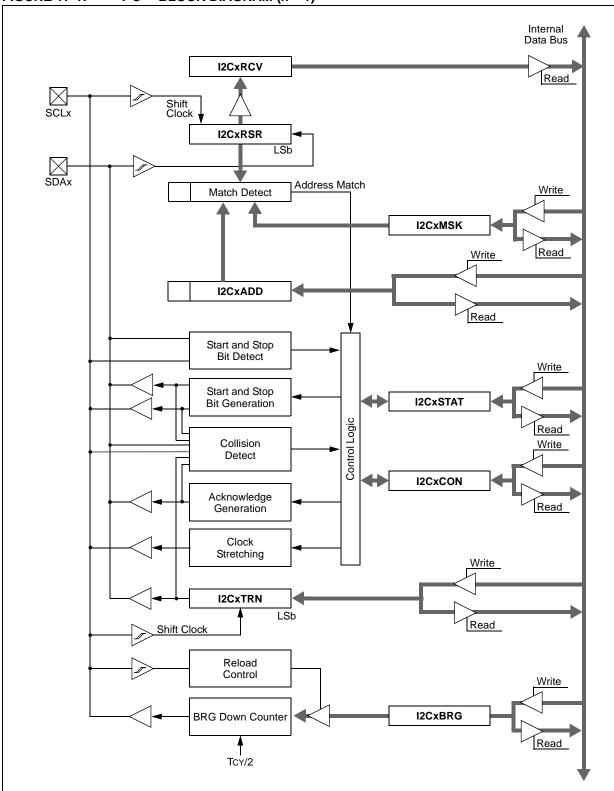
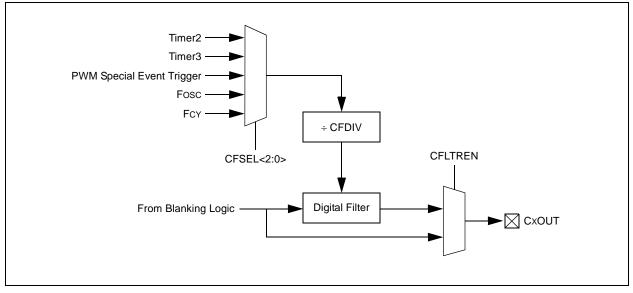


FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (x = 1)


18.3 UART Control Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0			
bit 15							bit 8			
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL			
bit 7							bit			
Legend:		HC = Hardwa	re Clearable b	nit						
R = Readable	hit	W = Writable			mented bit, read	1 as '0'				
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
		1 - Dit 13 300					00011			
bit 15	UARTEN: UA	RTx Enable bi	t(1)							
				e controlled by	UARTx as defi	ned by the UEN	l<1:0> bits			
	0 = UARTx is					JARTx power co				
	minimal									
bit 14	•	ted: Read as '								
bit 13		Tx Stop in Idle								
		nues module op s module oper			Idle mode					
bit 12		Encoder and D								
DIL 12		oder and deco								
		oder and deco								
bit 11	RTSMD: UAF	RTx Mode Sele	ction for UxR1	S Pin bit						
		oin is in Simple: Sin is in Flow Co								
bit 10	-	ted: Read as '								
bit 9-8	UEN<1:0>: UARTx Pin Enable bits									
						controlled by po	ort latches			
		JxRX, UxCTS a				s controlled by p	ort latches			
						/BCLK pins are				
	port latc					, - 				
bit 7	WAKE: Wake	-up on Start bi	t Detect During	g Sleep Mode	Enable bit					
				RX pin; interru	pt is generated	on falling edge,	bit is cleare			
		are on following	g rising edge							
		-up is enabled		1.52						
bit 6		RTx Loopback		Dit						
		Loopback mod k mode is disal								
bit 5	-	p-Baud Enable								
~				he next charac	ter – reauires r	eception of a Sy	nc field (55h			
		her data; clear								
		e measuremen								
Note 1: Ref	er to "UART" (DS70188) in th	ne "dsPIC33/F	PIC24 Family F	Reference Manu	al" for information	on on			
	bling the UART									
	e foaturo ie ava			-						

2: This feature is available for 16x BRG mode (BRGH = 0) only.

FIGURE 20-4: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

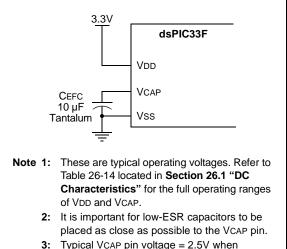
REGISTER	20-2: CMxC	ON: COMPA	RATOR x CO	ONTROL REG	GISTER						
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
CON	COE	CPOL	_	_	_	CEVT	COUT				
bit 15							bit 8				
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
EVPOL1	EVPOL0	0-0	CREF			CCH1	CCH0				
bit 7	LVIOLO		GIVEI			Com	bit C				
Legend:											
R = Readable		W = Writable		-	nented bit, rea						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	iown				
bit 15	CON: Compa	arator x Enable	bit								
	=	tor x is enable									
		tor x is disable									
bit 14	COE: Compa	arator x Output	Enable bit								
		tor output is pr tor output is in	esent on the C ternal only	xOUT pin							
bit 13	CPOL: Comp	parator x Outpu	it Polarity Sele	ct bit							
		tor x output is tor x output is									
bit 12-10	Unimplemen	ted: Read as	0'								
bit 9	CEVT: Comparator x Event bit										
	interrupts	ator x event ac s until the bit is ator x event dic	cleared	POL<1:0> set	ings occurred	; disables future	e triggers and				
bit 8	COUT: Comp	parator x Outpu	ıt bit								
	1 = VIN+ > VI		ted polarity):								
	0 = VIN+ < VI										
		When CPOL = 1 (inverted polarity): 1 = VIN+ < VIN-									
	0 = VIN + > VI										
bit 7-6	EVPOL<1:0>	. Trigger/Ever	t/Interrupt Pola	arity Select bits							
	10 = Trigger/		is generated			ator output (whil tion of the pol					
	If $CPOL = 1$ ((inverted polari		1421.14							
	•	(non-inverted p	•	արտ.							
			comparator ou	ıtput.							
		event/interrupt/ ator output (wh		only on low-	to-high transi	tion of the pol	arity selected				
		(inverted polari ransition of the	t <u>y):</u> comparator οι	itput.							
	-	(non-inverted p	-								
	Low-to-high t	ransition of the	comparator o	-							
	00 = Trigger/	event/interrupt	generation is o	disabled							
		ted: Read as									

CIETED 20 2 CMACONI COMPADATOD A CONTROL DECISTED

	REGI	STER		X WASK GA	ATING CONTI	ROL			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN		
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
-n = Value at P	OR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unki	nown		
bit 15	1 = The mas 0 = The mas	king (blanking)	function will pro function will pro	event any asse	erted ('0') compa erted ('1') compa				
bit 14	-	nted: Read as		L :4					
bit 13	1 = MCI is c	Gate C Input In connected to OF not connected to	R gate	DIT					
bit 12	OCNEN: OR Gate C Input Inverted Enable bit								
		MCI is connec MCI is not con							
bit 11	OBEN: OR	BEN: OR Gate B Input Inverted Enable bit							
		onnected to OF ot connected to							
bit 10		R Gate B Input							
		MBI is connect MBI is not con							
bit 9	OAEN: OR	Gate A Input Er	nable bit						
		onnected to OF ot connected to							
bit 8	OANEN: OF	R Gate A Input	Inverted Enabl	e bit					
		MAI is connect MAI is not con	•						
bit 7	1 = Inverted	ative AND Gate ANDI is conne ANDI is not co	cted to OR gat	te					
bit 6	1 = ANDI is	tive AND Gate connected to C not connected	R gate						
bit 5	ACEN: AND 1 = MCI is c	O Gate A1 C Inp connected to AN	out Inverted En	able bit					
		of connected 1-							
bit 4		ot connected to	-	nabla kit					

DECISTED 20-4. CMVMSKCON- COMPADATOR V MASK GATING CONTROL

23.2 On-Chip Voltage Regulator


All of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-14 located in **Section 26.1** "**DC Characteristics**".

Note:	It is important for low-ESR capacitors to be
	placed as close as possible to the VCAP pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 2.5V when VDD \ge VDDMIN.

23.3 BOR: Brown-out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

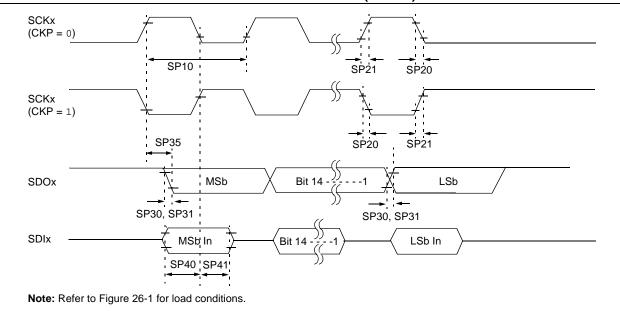
If an Oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

TABLE 26-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CH	ARACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	_		15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_		ns	See Note 4	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-22: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

TABLE 26-40:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

AC CHA		Standard (unless of Operating	otherwise	stated) ture -40	°C ≤ Ta ≤	V to 3.6V +85°C for Industrial +125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCKx Frequency		_	9	MHz	-40°C to +125°C, see Note 3
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

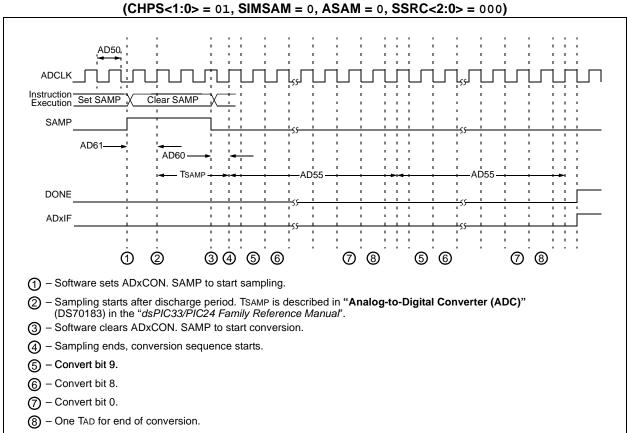
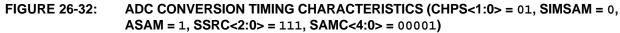
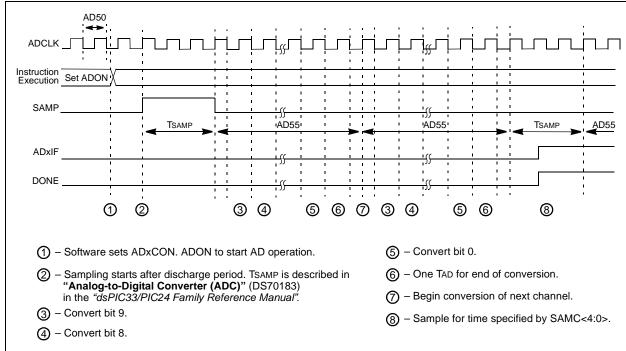
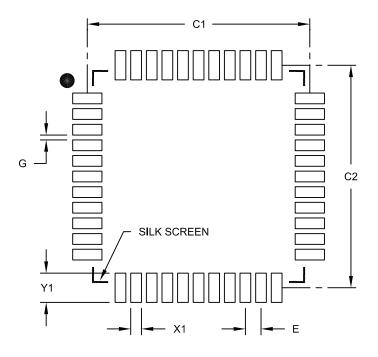

AC CH	ARACTER	RISTICS		Standard Operatin (unless otherwise Operating temperat	stated) ure -40	°C ≤ Ta ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾ Max		Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μS	
			400 kHz mode	Tcy/2 (BRG + 1)		μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μS	
			400 kHz mode	Tcy/2 (BRG + 1)		μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾		100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	—	300	ns	1
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100		ns	-
			1 MHz mode ⁽²⁾	40		ns	1
IM26	THD:DAT	Data Input	100 kHz mode	0		μS	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽²⁾	0.2		μS	-
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period the first
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	clock pulse is generated
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	1
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	-
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	1
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		ns	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽²⁾	_	400	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be
-	_		400 kHz mode	1.3		μS	free before a new
			1 MHz mode ⁽²⁾	0.5	_	μs	transmission can start
IM50	Св	Bus Capacitive L			400	pF	
IM51	TPGD	Pulse Gobbler De		65	390	ns	See Note 3

TABLE 26-45: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest "dsPIC33/PIC24 Family Reference Manual" sections.


2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.


FIGURE 26-31: ADC CONVERSION TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	/ILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

APPENDIX A: REVISION HISTORY

Revision A (January 2011)

This is the initial released version of the document.

Revision B (February 2011)

All major changes are referenced by their respective section in Table A-1.

In addition, minor text and formatting changes were incorporated throughout the document.

TABLE A-1:	MAJOR SECTION UPDATE	S

Section Name	Update Description
High-Performance, Ultra Low Cost 16-bit Digital Signal Controllers	 Pin diagram updates (see "Pin Diagrams"): 20-pin PDIP/SOIC/SSOP (dsPIC33FJ16MC101): Removed the FLTB1 pin from pin 10 28-pin SPDIP/SOIC/SSOP (dsPIC33FJ16MC102): Relocated the FLTB1 pin from pin 12 to pin 14; relocated the FLTA1 pin from pin 16 to pin 15 28-pin QFN (dsPIC33FJ16MC102): Relocated the FLTA1 pin from pin 13 to pin 12; relocated the FLTB1 pin from pin 9 to pin 11 36-pin TLA (dsPIC33FJ16MC102):
	Relocated the FLTA1 pin from pin 17 to pin 16; relocated the FLTB1 pin from pin 10 to pin 15
Section 1.0 "Device Overview"	Added Notes 1, 2, and 3 regarding the FLTA1 and FLTB1 pins to the Pinout I/O Descriptions (see Table 1-1). Added Section "".
Section 4.0 "Memory Organization"	Updated All Resets value for PxFLTACON and PxFLTABCON to the 6-Output PWM1 Register Map (see Table 4-9).
	Added Note 1 to the PMD Register Map (see Table 4-29).
Section 6.0 "Resets"	Removed Reset timing sequence information from Section 6.2 " System Reset ", as this information is provided in Figure 6-2.
Section 15.0 "Motor Control PWM Module"	Added Note 2 and Note 3 regarding the $\overline{FLTA1}$ and $\overline{FLTB1}$ pins to the 6-channel PWM Module Block Diagram (see Figure 15-1).
	Added Section 15.2 "PWM Faults" and Section 15.3 "Write- protected Registers".
	Added Note 2 and Note 3 regarding the FLTA1 and FLTB1 pins to the note boxes located below the PxFLTACON and PxFLTBCON registers (see Register 15-9 and Register 15-10).
Section 17.0 "Inter-Integrated Circuit™ (I ² C™)"	Updated the descriptions for the conditional If STREN = 1 and If STREN = 0 statements for the SCLREL bit in the I2Cx Control Register (see Register 17-1).
Section 23.0 "Special Features"	Added the RTSP Effect column to the dsPIC33F Configuration Bits Description (see Table 23-3).
Section 26.0 "Electrical Characteristics"	Added Parameters 300 and D305 (see Table 26-42 and Table 26-43).

© 2011-2014 Microchip Technology Inc.

SPIx Master Transmit Mode (Half-Duplex)
for dsPIC33FJ16(GP/MC)10X
SPIx Master Transmit Mode (Half-Duplex)
for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
Timer1 External Clock
Timer2/4 External Clock
Timer3/5 External Clock
Timing Specifications
Comparator Module
Comparator Timing
Comparator Voltage Reference
Comparator Voltage Reference Settling Time

U

UART	
Control Registers	213
Helpful Tips	212
Resources	212
Universal Asynchronous Receiver	
Transmitter (UART)	
Using the RCON Status Bits	
v	
Voltage Regulator (On-Chip)	
W	
Watchdog Timer (WDT)	267
Programming Considerations	
WWW Address	387
WWW, On-Line Support	24