

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp102-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see). For

the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts, in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between Bit Positions 16 and 31 for right shifts, and between Bit Positions 0 and 16 for left shifts.

	1												1	1				
ADC1BUF0	0300								ADC1 D	Data Buffer	0							xxxx
ADC1BUF1	0302								ADC1 D	Data Buffer	1							xxxx
ADC1BUF2	0304								ADC1 D	Data Buffer	2							xxxx
ADC1BUF3	0306								ADC1 E	Data Buffer	3							xxxx
ADC1BUF4	0308								ADC1 E	Data Buffer	4							xxxx
ADC1BUF5	030A		ADC1 Data Buffer 5															xxxx
ADC1BUF6	030C		ADC1 Data Buffer 6															xxxx
ADC1BUF7	030E		ADC1 Data Buffer 7															xxxx
ADC1BUF8	0310		ADC1 Data Buffer 8															xxxx
ADC1BUF9	0312		ADC1 Data Buffer 9															xxxx
ADC1BUFA	0314		ADC1 Data Buffer 10															xxxx
ADC1BUFB	0316		ADC1 Data Buffer 11															xxxx
ADC1BUFC	0318		ADC1 Data Buffer 12															xxxx
ADC1BUFD	031A		ADC1 Data Buffer 13															xxxx
ADC1BUFE	031C								ADC1 D	ata Buffer	14							xxxx
ADC1BUFF	031E								ADC1 D	ata Buffer	15							xxxx
AD1CON1	0320	ADON		ADSIDL	_	_	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0		SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	_	_	CSCNA	CHPS1	CHPS0	BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	_	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326				—	—	CH123NB1	CH123NB0	CH123SB	—		—	_	_	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB			CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA		_	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C				—	—	PCFG<	10:9>		—		_	_		PCF	G<3:0>		0000
AD1CSSL	0330				_	_	- CSS<10:9> CSS<3:0>									0000		

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)101/102 devices only.

RCON	0740	TRAPR	IOPUWR	_	_	_	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx	
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	—	CF	_	LPOSCEN	OSWEN	0300	
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	_	—	_	—	_	_	_	_	3040	
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN<5:0>							

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

RCON register Reset values are dependent on the type of Reset.

OSCCON register Reset values are dependent on the FOSC Configuration bits and by type of Reset.

NVMCON	0760	WR	WREN	WRERR	—	—	—	—	—	_	ERASE	—	—	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMKEY	0766	_	_	_	_	_	_	_	_	NVMKEY<7:0>								0000

--- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	_	PWM1MD	-	I2C1MD	_	U1MD	_	SPI1MD	_	_	AD1MD	0000
PMD2	0772	_	_	_	-	_	IC3MD	IC2MD	IC1MD	_		-		-	_	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	-	_	CMPMD	RTCCMD	_	_		-		-	_	—	_	0000
PMD4	0776	_	_	_	-	_	—	-	_	_	-	_	-	_	CTMUMD	_	_	0000

--- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

This bit is available in dsPIC33FJXXMC10X devices only.

These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2