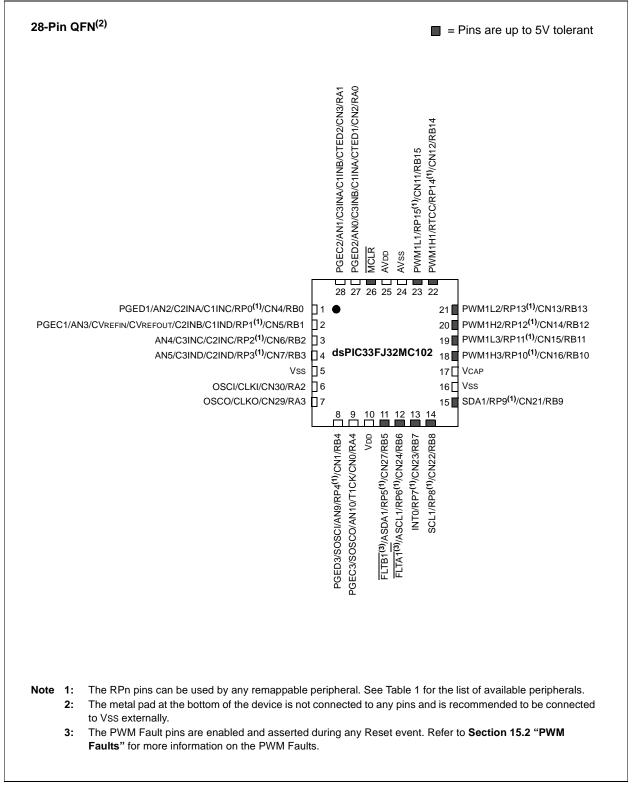


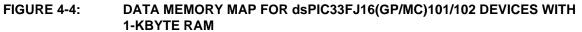
Welcome to E-XFL.COM

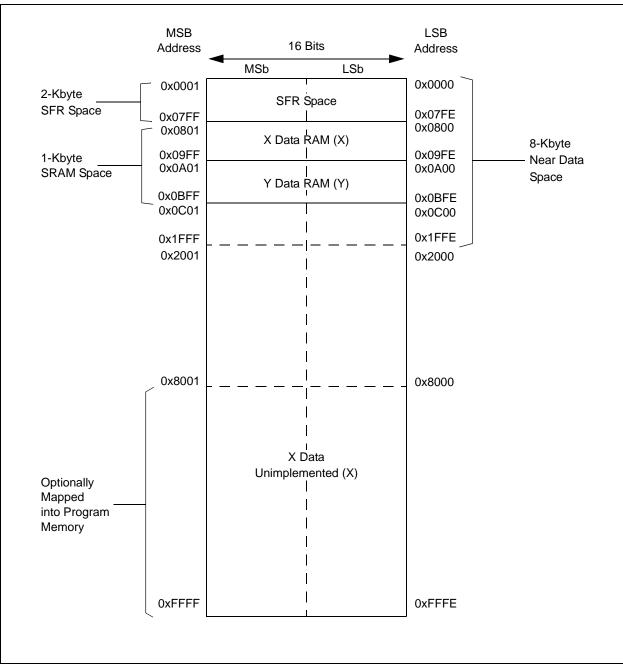
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp102-e-sp


Email: info@E-XFL.COM

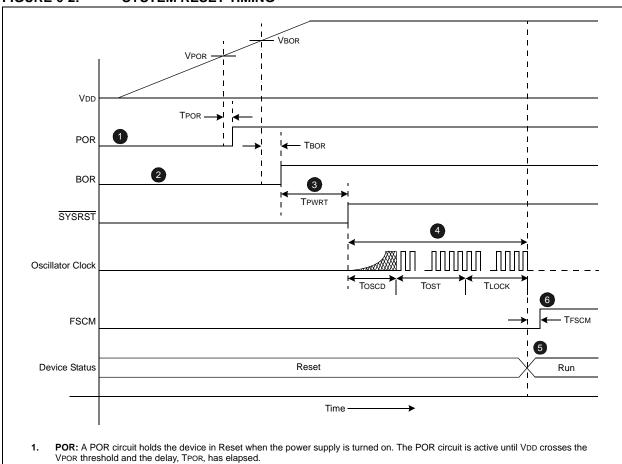
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).


The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, although the implemented memory locations vary by device.

- 2. BOR: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.
- 3. **PWRT Timer:** The Power-up Timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay, TPWRT, ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT, has elapsed, the SYSRST becomes inactive, which in turn, enables the selected oscillator to start generating clock cycles.
- 4. Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 8.0 "Oscillator Configuration" for more information.
- 5. When the oscillator clock is ready, the processor begins execution from location, 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
- 6. The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay, TFSCM, has elapsed.

Symbol	Parameter	Value
VPOR	POR Threshold	1.8V nominal
TPOR	POR Extension Time	30 μs maximum
VBOR	BOR Threshold	2.5V nominal
TBOR	BOR Extension Time	100 μs maximum
TPWRT	Power-up Time Delay	64 ms nominal
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum

TABLE 6-2:	OSCILLATOR PARAMETER	2S
		ς,

Note:	When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges; otherwise, the device may not function correctly. The user appli- cation must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get all operating parameters
	enough to get all operating parameters within specification.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0										
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF			
pit 15							bi			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF			
bit 7							bi			
Legend:	- h:4		h.:4							
R = Readable -n = Value at		W = Writable '1' = Bit is se		0 = Unimplem	nented bit, read					
-n = value at	POR	I = DILIS SE	l		areu	x = Bit is unkn	own			
bit 15-14	Unimplemen	ted: Read as	'O'							
bit 13	AD1IF: ADC1	Conversion (Complete Interi	rupt Flag Status	s bit					
		request has or								
	-	request has no		.						
bit 12			er Interrupt Flag	g Status bit						
	•	request has or request has no								
bit 11	-	-	nterrupt Flag S	Status bit						
		request has or								
	•	request has no								
bit 10		-	ot Flag Status k	bit						
	•	request has oc request has no								
bit 9	-	-	pt Flag Status	bit						
		request has or								
	-	request has no								
bit 8		Interrupt Flag								
		request has ou request has no								
bit 7	•	Interrupt Flag								
		request has or								
	0 = Interrupt i	request has no	ot occurred							
bit 6	-	-		upt Flag Status	bit					
	•	request has or request has no								
bit 5	-	-		-lag Status bit						
	IC2IF: Input Capture Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred									
		request has no								
bit 4	-	ted: Read as								
bit 3	T1IF: Timer1	Interrupt Flag	Status bit							
		request has or								

-. חוור - - -• •

10.4 Peripheral Pin Select (PPS)

Peripheral Pin Select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

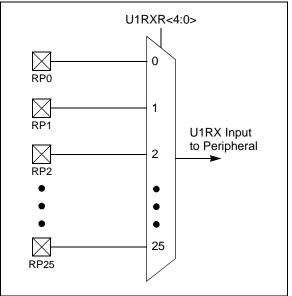
10.4.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 16 pins. The number of available pins depends on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


10.4.2.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-10). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

12.3 Timer2/3 and Timer4/5 Control Registers

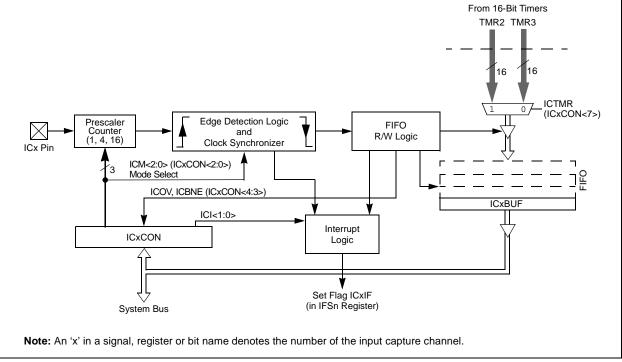
_										
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON		TSIDL	_		—		_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
_	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—			
bit 7							bit C			
Legend:										
R = Readabl	e bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	TON: Timer2	On bit								
	When T32 = 2									
	1 = Starts 32-									
	0 = Stops 32-									
	$\frac{\text{When T32} = 0}{1 = \text{Starts 16}}$									
	0 = Stops 16-									
bit 14	Unimplemen	ted: Read as ')'							
bit 13	TSIDL: Timer	2 Stop in Idle M	lode bit							
		ues module ope			lle mode					
		s module opera		de						
bit 12-7	Unimplemen	ted: Read as '0)'							
bit 6		er2 Gated Time	Accumulation	Enable bit						
	When TCS = 1: This hit is imported									
	This bit is ignored. When TCS = 0:									
	$\frac{\text{when } 1 \text{ CS} = 0}{1 \text{ = Gated time accumulation is enabled}}$									
	0 = Gated time accumulation is disabled									
bit 5-4	TCKPS<1:0>	: Timer2 Input	Clock Prescale	e Select bits						
	11 = 1:256									
	10 = 1:64									
	01 = 1:8 00 = 1:1									
bit 3		imer Mode Sele	ct bit							
Sit 0		nd Timer3 form		timer						
		nd Timer3 act a								
bit 2	Unimplemen	ted: Read as ')'							
bit 1	TCS: Timer2	Clock Source S	elect bit							
		clock from pin,	Γ2CK (on the r	ising edge)						
	0 = Internal cl									
bit 0	Unimplemen	ted: Read as '0) '							

REGISTER 12-1: T2CON: TIMER2 CONTROL REGISTER

13.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70198) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices support up to three input capture channels. The input capture module captures the 16-bit value of the selected Time Base register when an event occurs on the ICx pin. The events that cause a capture event are listed below in three categories:

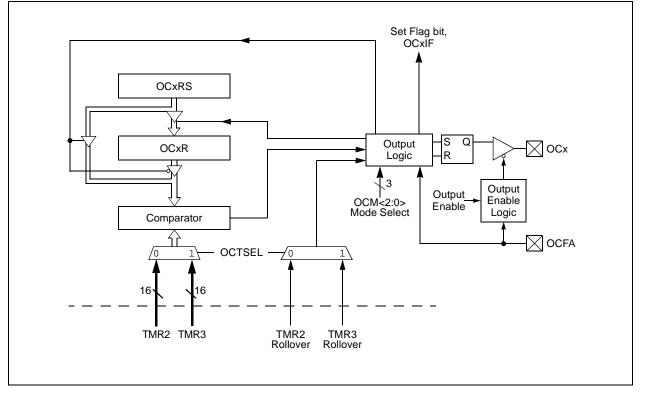

- 1. Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- 2. Capture timer value on every edge (rising and falling).
- 3. Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values:
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

14.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare" (DS70209) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Output Compare Control register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 14-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

EXAMPLE 15-1: ASSEMBLY CODE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT CLEARING SEQUENCE

	lled high externally in order to clear and disable the Fault register requires unlock sequence
<pre>mov #0x4321,w11 mov #0x0000,w0 mov w10, PWM1KEY mov w11, PWM1KEY</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of P1FLTACON register in w0 ; Write first unlock key to PWM1KEY register ; Write second unlock key to PWM1KEY register ; Write desired value to P1FLTACON register</pre>
	lled high externally in order to clear and disable the Fault register requires unlock sequence
<pre>mov #0x4321,w11 mov #0x0000,w0 mov w10, PWM1KEY mov w11, PWM1KEY</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of P1FLTBCON register in w0 ; Write first unlock key to PWM1KEY register ; Write second unlock key to PWM1KEY register ; Write desired value to P1FLTBCON register</pre>
; Enable all PWMs using ; Writing to PWM1CON1 r	g PWM1CON1 register register requires unlock sequence
<pre>mov #0x4321,w11 mov #0x0077,w0 mov w10, PWM1KEY mov w11, PWM1KEY</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of PWM1CON1 register in w0 ; Write first unlock key to PWM1KEY register ; Write second unlock key to PWM1KEY register ; Write desired value to PWM1CON1 register</pre>

EXAMPLE 15-2: C CODE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT CLEARING SEQUENCE

// FLTAl pin must be pulled high externally in order to clear and disable the Fault // Writing to PIFLTACON register requires unlock sequence // Use builtin function to write 0x0000 to PIFLTACON register __builtin_write_PWMSFR(&PIFLTACON, 0x0000, &PWM1KEY); // FLTBl pin must be pulled high externally in order to clear and disable the Fault // Writing to PIFLTBCON register requires unlock sequence // Use builtin function to write 0x0000 to PIFLTBCON register __builtin_write_PWMSFR(&PIFLTBCON, 0x0000, &PWM1KEY); // Enable all PWMs using PWM1CON1 register // Writing to PWM1CON1 register requires unlock sequence // Use builtin function to write 0x0077 to PWM1CON1 register __builtin_write_PWMSFR(&PWM1CON1, 0x0077, &PWM1KEY);

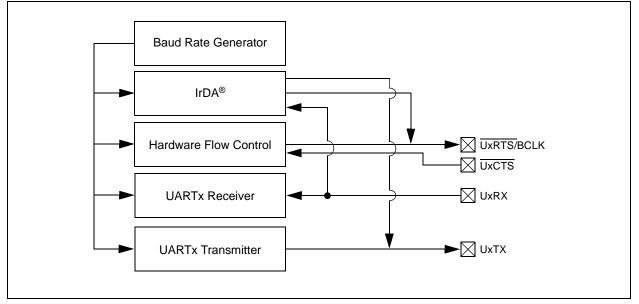
REGISTER	16-2: SPIXC	ON1: SPIx C	ONTROL RE	EGISTER 1			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7		1		1			bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	DISSCK: Disa	able SCKx pin	bit (SPI Maste	r modes only)			
		PI clock is disa	•	tions as I/O			
		PI clock is ena					
bit 11		able SDOx pin					
		is not used by is controlled b		oin functions as	s I/O		
pit 10	-	ord/Byte Comm	-	ect bit			
	1 = Communi	cation is word-	wide (16 bits)				
	0 = Communi	cation is byte-	wide (8 bits)				
bit 9	SMP: SPIx D	ata Input Samp	ole Phase bit				
		<u>:</u> a sampled at er a sampled at m					
	Slave mode:	-		n Slave mode.			
bit 8	CKE: Clock E	dge Select bit	(1)				
						lle clock state (ve clock state (
bit 7	SSEN: SPIX S	Slave Select E	nable bit (Slav	e mode) ⁽²⁾			
		s used for Slav s not used by th		is controlled b	by port function		
oit 6	CKP: Clock F	Polarity Select I	oit				
				ve state is a lov e state is a high			
bit 5	MSTEN: Mas	ter Mode Enab	ole bit				
	1 = Master m 0 = Slave mo						
	he CKE bit is not FRMEN = 1).	used in the Fra	amed SPI moo	des. Program ti	his bit to '0' for	the Framed SP	'l modes
	his bit must be cl						
3: D	o not set both pri	mary and seco	ondary prescal	ers to a value o	of 1:1.		

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "UART" (DS70188) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 6 bps at 16x mode at 16 MIPS
- Baud Rates Ranging from 4 Mbps to 24.4 bps at 4x mode at 16 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA® Support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTX SIMPLIFIED BLOCK DIAGRAM

REGISTER	19-4: ADICI	15123: ADC1		ANNEL $1, 2,$	SELECT RE	GIJIER						
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
_	—	—	—	—	CH123NB1	CH123NB0	CH123SB					
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
-	_	_	_	_	CH123NA1	CH123NA0	CH123SA					
bit 7					0111201011	0111201010	bit (
Legend: R = Readab	la hit	W = Writable b	4	LI – Unimplo	mented bit, read	d oo 'O'						
			L	-								
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15-11	Unimplement	ted: Read as '0'										
	-				er Comple D hit	_						
bit 10-9		0>: Channel 1, 2	-	-	or Sample B bit	S						
		dsPIC33FJ16(GP/MC)101/102 Devices Only:										
	11 = Reserve	11 = Reserved										
		u I2, CH3 negative	a inpute are /									
		2(GP/MC)101/10	-									
		ative input is AN				utive input is not	t connected					
	10 = Reserve		is, criz nega		anto, ens nega	live input is not	Connecteu					
			e inputs are A	AVss								
		CH1, CH2, CH3 negative inputs are AVss C33FJ32(GP/MC)104 Devices Only:										
		= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11										
	10 = CH1 negative input is ANS, CH2 negative input is AN7, CH3 negative input is AN8 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8											
	0x = CH1, CH2, CH3 negative inputs are AVss											
bit 8	CH123SB: Ch	nannel 1, 2, 3 Po	sitive Input S	Select for Sam	ple B bit							
	dsPIC33FJXX(GP/MC)101 Devices Only:											
	1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected											
	0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2											
	All Other Devices:											
	1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5											
	0 = CH1 posit	ive input is AN0	, CH2 positiv	e input is AN1	, CH3 positive i	nput is AN2						
bit 7-3	Unimplemen	ted: Read as '0'										
bit 2-1	CH123NA<1:	0>: Channel 1, 2	2, 3 Negative	Input Select f	or Sample A bit	S						
		10-9> for the ava	-	-								
bit 0		nannel 1, 2, 3 Po		-	nle A hit							
UIL U			•									
	Relief to bit 8	for the available	seuings.									

REGISTER 19-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

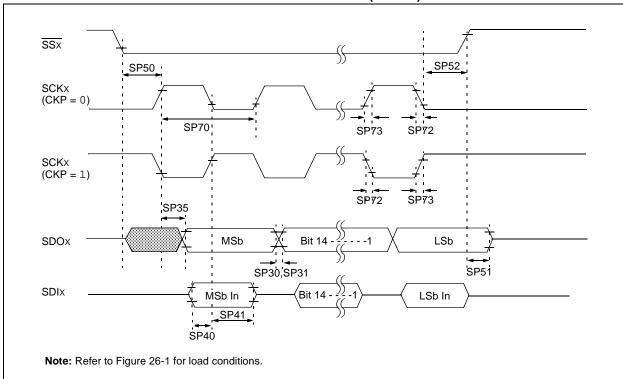
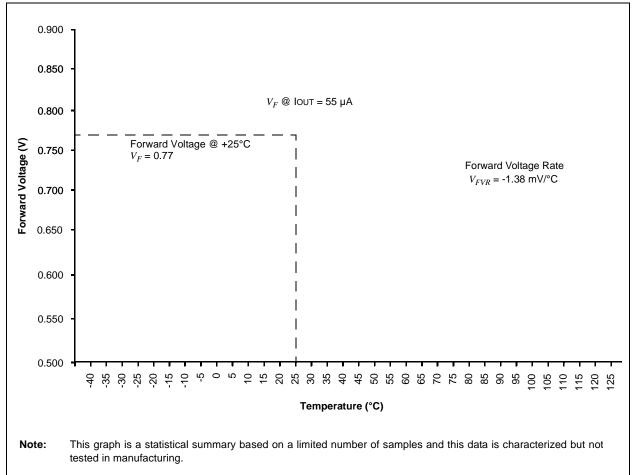

DC CHARAC	TERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Parameter No.	Typical ⁽¹⁾	Мах	Units			Conditions					
Power-Down Current (IPD) ⁽²⁾ – dsPIC33FJ16(GP/MC)10X Devices											
DC60d	27	250	μA	-40°C							
DC60a	32	250	μA	+25°C	2.21/	Base Power-Down Current ^(3,4)					
DC60b	43	250	μA	+85°C	- 3.3V	Base Power-Down Current					
DC60c	150	500	μA	+125°C							
DC61d	420	600	μA	-40°C							
DC61a	420	600	μA	+25°C	3.3∨	Watchdog Timer Current: ∆IwDT ^(3,5)					
DC61b	530	750	μA	+85°C	3.3V						
DC61c	620	900	μA	+125°C							
Power-Down	Current (IPD)	⁽²⁾ – dsPIC3	3FJ32(GP/M	C)10X Devic	es						
DC60d	27	250	μA	-40°C							
DC60a	32	250	μA	+25°C	3.3V	Base Power-Down Current ^(3,4)					
DC60b	43	250	μA	+85°C	3.3V	Base Power-Down Current					
DC60c	150	500	μA	+125°C							
DC61d	420	600	μA	-40°C							
DC61a	420	600	μA	+25°C	3.3∨	Watchdog Timer Current: ∆IwDT ^(3,5)					
DC61b	530	750	μA	+85°C	3.3V						
DC61c	620	900	μA	+125°C							

TABLE 26-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)


Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as digital I/O inputs)
- · All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- VREGS bit (RCON<8>) = 1 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- On applicable devices, RTCC is disabled, plus the VREGS bit (RCON<8>) = 1
- **3:** The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- 5: These parameters are characterized, but not tested in manufacturing.

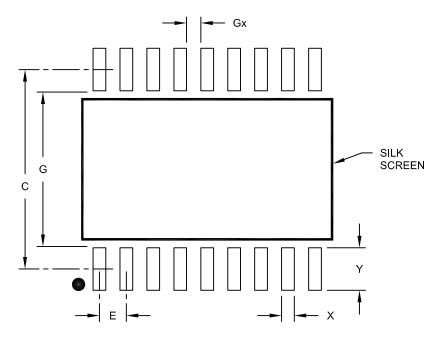

FIGURE 26-17: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

FIGURE 26-33: FORWARD VOLTAGE VERSUS TEMPERATURE

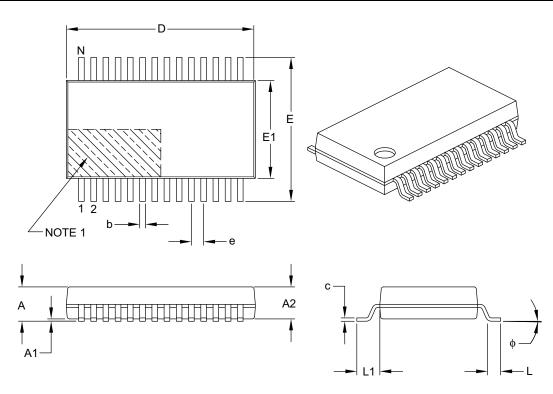
18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width	Х			0.60	
Contact Pad Length	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

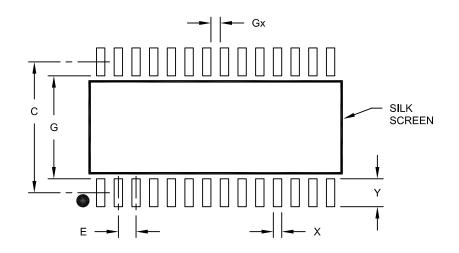
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensi	on Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	_	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

NOTES: