

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp102-e-tl

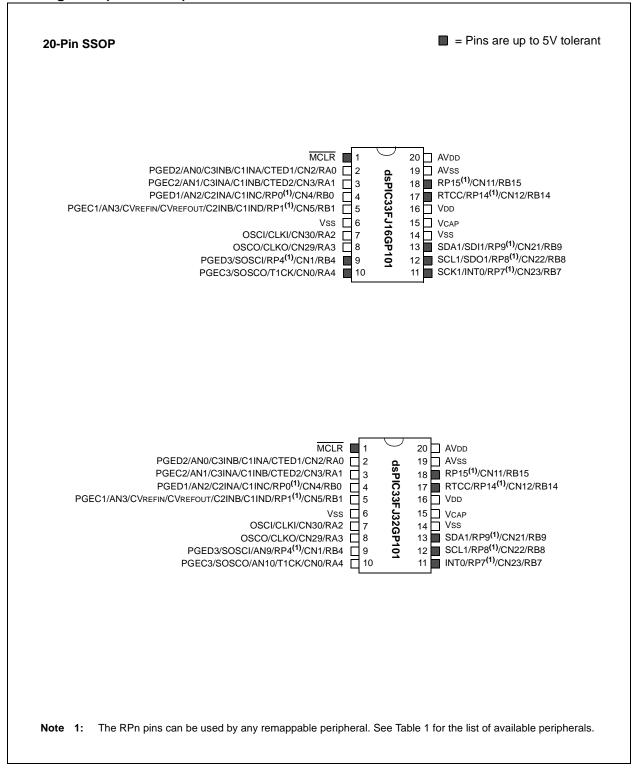
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

		rte)			Rem	appa	ble l	Perip	herals	5	М		Ŋ						
Device	Pins	Program Flash (Kbyte)	RAM (Kbytes)	Remappable Pins	16-bit Timer ^(1,2)	Input Capture	Output Compare	UART	External Interrupts ⁽³⁾	SPI	Motor Control PWM	PWM Faults	10-Bit, 1.1 Msps ADC	RTCC	I²C™	Comparators	CTMU	I/O Pins	Packages
dsPIC33FJ16GP101	18	16	1	8	3	3	2	1	3	1		—	1 ADC, 4-ch	Y	1	3	Y	13	PDIP, SOIC
	20	16	1	8	3	3	2	1	3	1	_	—	1 ADC, 4-ch	Y	1	3	Y	15	SSOP
dsPIC33FJ16GP102	28	16	1	16	3	3	2	1	3	1	_	_	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1		—	1 ADC, 6-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ16MC101	20	16	1	10	3	3	2	1	3	1	6-ch	1	1 ADC, 4-ch	Y	1	3	Y	15	PDIP, SOIC, SSOP
dsPIC33FJ16MC102	28	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	VTLA


TABLE 1:dsPIC33FJ16(GP/MC)101/102 DEVICE FEATURES

Note 1: Two out of three timers are remappable.

2: One pair can be combined to create one 32-bit timer.

3: Two out of three interrupts are remappable.

Pin Diagrams (Continued)

© 2011-2014 Microchip Technology Inc.

TABLE 4-9: INPUT CAPTURE REGISTER MAP

SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0140								Input Cap	ture 1 Regis	ster							xxxx
0142	—	—	ICSIDL	—	—	—	—	—	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
0144								Input Cap	ture 2 Regis	ster							XXXX
0146	—	—	ICSIDL	—	—	—	—	—	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
0148								Input Cap	ture 3 Regis	ster							XXXX
014A		_	ICSIDL	_	_	_	_		ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
	Addr 0140 0142 0144 0146 0148	Addr Bit 15 0140	Addr Bit 15 Bit 14 0140	Addr Bit 15 Bit 14 Bit 13 0140 ICSIDL 0142 ICSIDL 0144 ICSIDL 0146 ICSIDL 0148 ICSIDL	Addr Bit 15 Bit 14 Bit 13 Bit 12 0140 - - ICSIDL - 0142 - - ICSIDL - 0144 - - ICSIDL - 0146 - - ICSIDL - 0148 - - ICSIDL -	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0140

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: OUTPUT COMPARE REGISTER MAP

SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0180							Out	put Compar	e 1 Second	ary Register	r						xxxx
0182		Output Compare 1 Register										XXXX					
0184	—	—	OCSIDL	—	—	—	—	—	—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
0186							Out	put Compar	e 2 Second	ary Register	r						XXXX
0188								Output Co	ompare 2 Re	egister							XXXX
018A	—	—	OCSIDL	—	—	_	—	_	—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
	Addr 0180 0182 0184 0186 0188	Addr Bit 15 0180 - 0182 - 0184 - 0186 - 0188 -	Addr Bit 15 Bit 14 0180	Addr Bit 15 Bit 14 Bit 13 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 0180 0182 - - 0CSIDL - 0186 - - OCSIDL - - 0188 - - - - - -	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0180 0182 0184 - 0186 0188 0188 -	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0180 0182 0utput Compare 1 Second: 0utput Compare 1 Second: 0utput Compare 1 Second: 0utput Compare 2 Second: 0ut	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 8 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0180 Output Compare 1 Secondary Register 0182 Output Compare 1 Secondary Register 0184 - - O - - OCFLT 0186 Output Compare 2 Secondary Register 0188 Output Compare 2 Register	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0180 Output Compare 1 Secondary Register 0182 Output Compare 1 Secondary Register 0184 - - - - - - OCFLT OCTSEL 0186 Output Compare 2 Secondary Register 0186 Output Compare 2 Secondary Register 0188 Output Compare 2 Register	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 9 Bit 9 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0180	AddrBit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 00180

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: 6-OUTPUT PWM1 REGISTER MAP FOR dsPIC33FJXXMC10X DEVICES

SFR Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
P1TCON	01C0	PTEN	—	PTSIDL	—	—	—	-	—	PTOPS3	PTOPS2	PTOPS1	PTOPS0	PTCKPS1	PTCKPS0	PTMOD1	PTMOD0	0000 0000 0000 0000
P1TMR	01C2	PTDIR						P	WM1 Timer	Count Valu	le Register							0000 0000 0000 0000
P1TPER	01C4	—						F	WM1 Time I	Base Peric	d Register							0111 1111 1111 1111
P1SECMP	01C6	SEVTDIR						PW	M1 Special E	event Com	pare Regis	ter						0000 0000 0000 0000
PWM1CON1	01C8	_	-	—	_	_	PMOD3	PMOD2	PMOD1	_	PEN3H	PEN2H	PEN1H	—	PEN3L	PEN2L	PEN1L	0000 0000 0000 0000
PWM1CON2	01CA			_	_	SEVOPS3	SEVOPS2	SEVOPS1	SEVOPS0			—		—	IUE	OSYNC	UDIS	0000 0000 0000 0000
P1DTCON1	01CC	DTBPS1	DTBPS0	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0	DTAPS1	DTAPS0	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0	0000 0000 0000 0000
P1DTCON2	01CE			_	_	_	_		—			DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I	0000 0000 0000 0000
P1FLTACON	01D0	—		FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM		—	_	—	FAEN3	FAEN2	FAEN1	0000 0000 0000 011
P1FLTBCON	01D2	_	_	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L	FLTBM		—	_	—	FBEN3	FBEN2	FBEN1	0000 0000 0000 011
P10VDCON	01D4	—		POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	—		POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	0011 1111 0000 000
P1DC1	01D6							PWI	M1 Duty Cyc	le 1 Regist	er							0000 0000 0000 0000
P1DC2	01D8			PWM1 Duty Cycle 2 Register							0000 0000 0000 0000							
P1DC3	01DA							PWI	M1 Duty Cyc	le 3 Regist	er							0000 0000 0000 0000
PWM1KEY	01DE								PWMKEY-	<15:0>								0000 0000 0000 0000
			1 (•

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2 ⁽¹⁾	T5IP1 ⁽¹⁾	T5IP0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	INT2IP<2:0>:	External Inter	rupt 2 Priority	bits			
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru						
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	T5IP<2:0>: ⊺	ïmer5 Interrupt	Priority bits ⁽¹)			
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
	h h :						

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
	—	—	_	—	CMPMD	RTCCMD	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-11	Unimplemen	ted: Read as '0	,				

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 10	CMPMD: Comparator Module Disable bit
	1 = Comparator module is disabled
	0 = Comparator module is enabled
bit 9	RTCCMD: RTCC Module Disable bit
	1 = RTCC module is disabled
	0 = RTCC module is enabled
bit 8-0	Unimplemented: Read as '0'

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	—	—	—	—	CTMUMD	—	—
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-3 Unimplemented: Read as '0'

bit 2 CTMUMD: CTMU Module Disable bit

1 = CTMU module is disabled

0 = CTMU module is enabled

bit 1-0 Unimplemented: Read as '0'

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP21R<4:0> ⁽¹)	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP20R<4:0> ⁽¹	1)	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP21R<4:0>	Peripheral Ou	tput Function	is Assigned to	RP21 Output F	Pin bits ⁽¹⁾	
	(see Table 10	-2 for periphera	al function nur	mbers)			
bit 7-5		ted: Read as '		•			
bit 4-0	-			is Assigned to	RP20 Output F	Pin bits ⁽¹⁾	
		-2 for periphera	-	•	20 0 0 0 0 0 0 0 0		
				110010/			

REGISTER 10-21: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

REGISTER 10-22: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_			RP23R<4:0> ⁽¹)	
bit 15	Ŀ						bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP22R<4:0> ⁽¹)	
bit 7	÷						bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP23R<4:0>	: Peripheral Ou	tput Function	is Assigned to	RP23 Output F	Pin bits ⁽¹⁾	
	(see Table 10	-2 for periphera	al function nu	mbers)			
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	RP22R<4:0>	: Peripheral Ou	tput Function	is Assigned to	RP22 Output F	Pin bits ⁽¹⁾	
		-2 for periphera					
Note 1: ⊺	hese bits are ava	ilable in dePIC	33E 132/CD/N	AC)104 devices	only		
	nese bits ale ava		551 552(GF/N		only.		

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_			RP25R<4:0> ⁽¹)	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP24R<4:0> ⁽¹)	
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP25R<4:0>	Peripheral Ou	utput Function	is Assigned to	RP25 Output F	Pin bits ⁽¹⁾	
	(see Table 10	-2 for peripher	al function nu	mbers)			
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	RP24R<4:0>	Peripheral Ou	utput Function	is Assigned to	RP24 Output F	Pin bits ⁽¹⁾	
	(see Table 10	-2 for peripher	al function nu	mbore)	-		

REGISTER 10-23: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of four pins:

- SDIx (serial data input)
- SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select).

In Master mode operation, SCKx is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPIx MODULE BLOCK DIAGRAM

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	—	—	_	BCL	GCSTAT	ADD10
bit 15							bit 8

R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0

Legend:	C = Clearable bit	HSC = Hardware Setta	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
HS = Hardware Settable b	bit						

bit 15	ACKSTAT: Acknowledge Status bit (when operating as I ² C™ master, applicable to master transmit operation)
	 1 = NACK received from slave 0 = ACK received from slave Hardware sets or clears at end of slave Acknowledge.
bit 14	 TRSTAT: Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware sets at beginning of master transmission. Hardware clears at end of slave Acknowledge.
bit 13-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	 1 = A bus collision has been detected during a master operation 0 = No collision Hardware sets at detection of bus collision.
bit 9	GCSTAT: General Call Status bit
	 1 = General call address was received 0 = General call address was not received Hardware sets when address matches general call address. Hardware clears at Stop detection.
bit 8	ADD10: 10-Bit Address Status bit
	 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware sets at match of 2nd byte of matched 10-bit address. Hardware clears at Stop detection.
bit 7	IWCOL: Write Collision Detect bit
	 1 = An attempt to write to the I2CxTRN register failed because the I²C module is busy 0 = No collision Hardware sets at occurrence of a write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: Receive Overflow Flag bit
Sit 0	1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow
	Hardware sets at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5	D_A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	 0 = Indicates that the last byte received was a device address Hardware clears at device address match. Hardware sets by reception of a slave byte.

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG2	VCFG1	VCFG0	—	—	CSCNA	CHPS1	CHPS0			
bit 15							bit			
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	e bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-13	VCFG<2:0	>: Converter Vo	Itage Reference	e Configuration	bits					
		ADREF+	ADREF-							
	xxx	AVdd	AVss							
bit 12-11	Unimplem	ented: Read as	'0'							
bit 10	-	can Input Select		During Sample	A bit					
	1 = Scans	inputs		c .						
	0 = Does r	not scan inputs								
bit 9-8	CHPS<1:0>: Select Channels Utilized bits									
	1x = Converts CH0, CH1, CH2 and CH3									
	01 = Conv 00 = Conv	erts CH0 and Cł erts CH0	41							
bit 7	BUFS: Buf	fer Fill Status bit	(valid only whe	en BUFM = 1)						
	1 = ADC1 is currently filling second half of buffer, user should access data in the first half									
		is currently filling	-	ffer, user applic	ation should a	ccess data in th	ie second ha			
bit 6	-	ented: Read as								
	SMPI<3:0>	Sample/Conve	•	•						
bit 5-2						loopyort oogua				
bit 5-2		terrupts at the c								
bit 5-2		terrupts at the c terrupts at the c								
bit 5-2										
bit 5-2	1110 = In •									
bit 5-2	1110 = In • •		ompletion of co	nversion for ea	ch 15th sample	/convert seque	ence			
bit 5-2	1110 = In • • 0001 = In	terrupts at the c	ompletion of co	nversion for ea nversion for ea	ch 15th sample ch 2nd sample,	convert seque	ence			
	1110 = In • • 0001 = In 0000 = In	terrupts at the c	ompletion of co ompletion of co ompletion of co	nversion for ea nversion for ea	ch 15th sample ch 2nd sample,	convert seque	ence			
	1110 = In • • 0001 = In 0000 = In BUFM: But 1 = Starts	terrupts at the c terrupts at the c terrupts at the c ffer Fill Mode Se filling first half of	ompletion of co ompletion of co ompletion of co lect bit buffer on first i	nversion for ea nversion for ea nversion for ea nterrupt and th	ch 15th sample ch 2nd sample, ch sample/conv	/convert seque /convert seque vert sequence	nce			
bit 1	1110 = In • • 0001 = In 0000 = In BUFM: But 1 = Starts 0 = Always	terrupts at the c terrupts at the c terrupts at the c ffer Fill Mode Se filling first half of s starts filling bu	ompletion of co ompletion of co ompletion of co lect bit fuffer on first i ffer from the be	nversion for ea nversion for ea nversion for ea nterrupt and the ginning	ch 15th sample ch 2nd sample, ch sample/conv	/convert seque /convert seque vert sequence	nce			
	1110 = In • • 0001 = In 0000 = In BUFM: But 1 = Starts 0 = Always ALTS: Alte	terrupts at the c terrupts at the c terrupts at the c ffer Fill Mode Se filling first half of	ompletion of co ompletion of co ompletion of co lect bit buffer on first i ffer from the be ple Mode Sele	nversion for ea nversion for ea nversion for ea nterrupt and the ginning ct bit	ch 15th sample ch 2nd sample, ch sample/conv e second half o	/convert seque /convert seque /ert sequence f buffer on next	ence nce t interrupt			

REGISTER 19-2: AD1CON2: ADC1 CONTROL REGISTER 2

	.E 24-2:	INSTRU	ICTION SET OVERVIE				
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
	-	CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	СОМ	f	$f = \overline{f}$	1	1	N,Z
17	COM	COM	f,WREG	WREG = \overline{f}	1	1	N,Z
				$Wd = \overline{Ws}$,
40		COM	Ws,Wd		1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if \neq	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f - 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

25.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

25.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

DC CH	ARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	₋₅ (5,8)	_	mA	All pins excep <u>t VDD,</u> Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO and RB14	
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VcAP, SOSCI, SOSCO, RB14 and digital 5V tolerant designated pins	
DI60c	ΣΙΙΟΤ	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.

6: Non-5V tolerant pins, VIH source > (VDD + 0.3), 5V tolerant pins, VIH source > 5.5V. Characterized but not tested.

- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 26-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CH	ARACTERIS	Standard Op (unless othe Operating ter	erwise st	t ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	—	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	_	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 26-43:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

AC CH	ARACTERIS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾ Max Units			Conditions
SP70	TscP	Maximum SCKx Input Frequency	—	-	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	—w	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	-	_	ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CH	ARACTER	RISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol TLO:SCL	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM10		Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μS		
			400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾		100	ns	1	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	-	
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode ⁽²⁾	40		ns	1	
IM26	THD:DAT	Data Input	100 kHz mode	0		μS		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2		μS	-	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period the first	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	clock pulse is generated	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	1	
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	-	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	1	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns		
		from Clock	400 kHz mode	—	1000	ns		
			1 MHz mode ⁽²⁾	_	400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be	
-	_		400 kHz mode	1.3		μS	free before a new	
			1 MHz mode ⁽²⁾	0.5	_	μs	transmission can start	
IM50	Св	Bus Capacitive L			400	pF		
IM51	TPGD	Pulse Gobbler De		65	390	ns	See Note 3	

TABLE 26-45: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest "dsPIC33/PIC24 Family Reference Manual" sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions						
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb			
VRD311	CVRAA	Absolute Accuracy	— — 0.5 LSb						
VRD312	CVRUR	Unit Resistor Value (R)	_	2k		Ω			

TABLE 26-53: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

TABLE 26-54: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions:3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No. Symbol Characteristic		Min.	Тур	Max.	Units	Conditions			
CTMU Current Source									
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	320	550	980	na	IRNG<1:0> bits (CTMUICON<9:8>) = 0b01		
CTMUI2	Ιουτ2	10x Range ⁽¹⁾	3.2	5.5	9.8	μΑ	IRNG<1:0> bits (CTMUICON<9:8>) = 0b10		
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	32	55	98	μΑ	IRNG<1:0> bits (CTMUICON<9:8>) = 0b1		
Internal Diode									
CTMUFV1	VF	Forward Voltage ⁽²⁾	_	0.77	_	V	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11 @ +25°C		
CTMUFV2	Vfvr	Forward Voltage Rate ⁽²⁾	—	-1.38		mV/⁰C	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11		

Note 1: Nominal value at center point of current trim range (ITRIM<5:0> bits (CTMUICON<15:10>) = 0b000000).

2: ADC module configured for conversion speed of 500 ksps. Parameters are characterized but not tested in manufacturing.

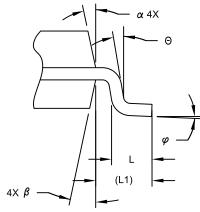
27.1 High-Temperature DC Characteristics

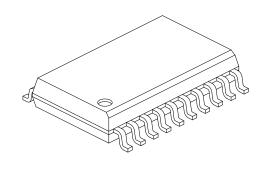
TABLE 27-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temperature Range	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104		
HDC5	Vbor – 3.6V ⁽¹⁾	-40°C to +150°C	5		

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., may have degraded performances below VDDMIN.

TABLE 27-2: THERMAL OPERATING CONDITIONS


Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O		W	
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W


TABLE 27-3: DC CHARACTERISTICS: OPERATING CURRENT (IDD))

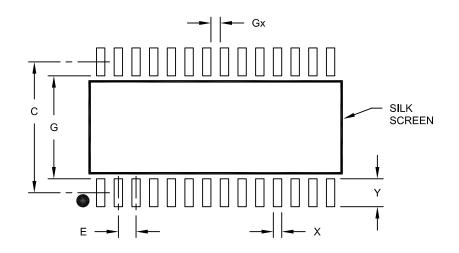
DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Parameter No. Typical Max			Units	Conditions			
Operating Cur	rent (IDD) – d	dsPIC33FJ1	6(GP/MC)10)	(Devices			
DC20e	1.3	1.7	mA	3.3V LPRC (32.768 kHz)			
DC22e	7.0	8.5	mA	3.3V 5 MIPS			

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension Lin	nits	MIN	NOM	MAX		
Number of Pins	N	20				
Pitch	е	1.27 BSC				
Overall Height	А			2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	12.80 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40 -		1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	X			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A