

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp102-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33/PIC24 Family Reference Manual" sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, if present on the device (regardless if ADC module is not used) (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10V-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts, in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between Bit Positions 16 and 31 for right shifts, and between Bit Positions 0 and 16 for left shifts.

TABLE	4-26:	PERI	PHERAI	_ PIN S	ELECT	OUTPU	T REGIS	TER MA	P FOR o	IsPIC33	3FJ32(0	SP/MC) ²	04 DE	/ICES	
															т

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	—	—			RP1R<4:0>	>		—	—	—			RP0R<4:0>			0000
RPOR1	06C2	-		_			RP3R<4:0>	>		_	_	_			RP2R<4:0>			0000
RPOR2	06C4	-		_			RP5R<4:0>	>		_	_	_			RP4R<4:0>			0000
RPOR3	06C6	—	_	_			RP7R<4:0>	>		_	_	—			RP6R<4:0>			0000
RPOR4	06C8	_	_	_			RP9R<4:0>	>		_	_	_			RP8R<4:0>			0000
RPOR5	06CA	_	_	_			RP11R<4:0	>		_	_	_		F	RP10R<4:0>			0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_	_	_		F	RP12R<4:0>			0000
RPOR7	06CE	_	_	_			RP15R<4:0	>		_	_	_		F	RP14R<4:0>			0000
RPOR8	06D0	_	_	_			RP17R<4:0	>		_	_	_		F	RP16R<4:0>			0000
RPOR9	06D2	-		_			RP19R<4:0	>		_	_	_		F	RP18R<4:0>			0000
RPOR10	06D4	_	_	_			RP21R<4:0	>		_	_	_		F	RP20R<4:0>			0000
RPOR11	06D6	_	_	_			RP23R<4:0	>		_	_	_		F	RP22R<4:0>			0000
RPOR12	06D8	_	_	-			RP25R<4:0	>		_	-	—		F	RP24R<4:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: PORTA REGISTER MAP FOR dsPIC33FJ16(GP/MC)101/102 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_		_		_	_	_	_	_	_	_		-	rrisa<4:0>			001F
PORTA	02C2	—	_	_	_	_	_	_	_	-	—	_			RA<4:0			xxxx
LATA	02C4	—	_	_	_	_	_	_	_	-	—	_			LATA<4:0			xxxx
ODCA	02C6		_	_	_	_	_	_	_	_		_	(ODCA<4:2>		_	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PORTA REGISTER MAP FOR dsPIC33FJ32(GP/MC)101/102 DEVICES

	File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
Ī	TRISA	02C0	_	_	_	_	_	_	_	_	_	_	_		٦	rrisa<4:0>			001F
ſ	PORTA	02C2	_	_	_	_	_	_	_		_	_	_			RA<4:0			xxxx
ſ	LATA	02C4	_	_	_	_	_	_	_		_	_	_			LATA<4:0			xxxx
. [ODCA	02C6	_			—		_	_	_	_	_	_		ODCA	<3:2>	_	-	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-33: PORTB REGISTER MAP FOR dsPIC33FJ32GP101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB<	:15:14>	—			—	-	TRISB<9:7	>		—	TRISB4			TRISE	3<1:0>	C393
PORTB	02CA	RB<1	5:14>	_	_	_	_		RB<9:7>		_	_	RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC	LATB<	15:14>	_	_	_	_		LATB<9:7>	>	_	_	LATB4	_	_	LATB	<1:0>	xxxx
ODCB	02CE	ODCB<	:15:14>	_	_		_	(ODCB<9:7	>	-	_	_			-		0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33FJ32MC101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8		TRISB<	<15:12>		—	_	-	TRISB<9:7	>	_	—	TRISB4	_	_	TRISE	3<1:0>	F393
PORTB	02CA		RB<1	5:12>		_	_		RB<9:7>		_	—	RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC		LATB<	15:12>		_	_		LATB<9:7>	•	_	—	LATB4	_	_	LATB	<1:0>	xxxx
ODCB	02CE		ODCB<	<15:12>		_	-	(ODCB<9:7:	>	_	—	_	_	_	—	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PORTB REGISTER MAP FOR dsPIC33FJ32(GP/MC)102 AND dsPIC33FJ32(GP/MC)104 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8								TRISB<	:15:0>								FFFF
PORTB	02CA								RB<1	5:0>								xxxx
LATB	02CC								LATB<	15:0>								xxxx
ODCB	02CE					0	DCB<15:5>						-	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PORTC REGISTER MAP FOR dsPIC33FJ32(GP/MC)104 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	—	_	_	—	_	—					TRISC	C<9:0>					FFFF
PORTC	02D2		_	_	—	_	_					RC<	:9:0>					xxxx
LATC	02D4		_	_	—	_	_					LATC	<9:0>					xxxx
ODCC	02D6	_	_	_	—	_	—		ODC	C<9:6>			—	_	_	—		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

REGISTER 5	5-1: NVMCO	N: FLASH I	MEMORY C	ONTROL RE	GISTER		
R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR			—		_
bit 15							bit 8
	(4)			(4)	(4)	(4)	(4)
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	ERASE	—	—	NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7							bit 0
Legend:		SO = Settat	ale Only hit				
R = Readable	hit				mantad hit raad		
		W = Writabl		-	nented bit, read		
-n = Value at I	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15	WR: Write Con	trol bit ⁽¹⁾					
5			v program or	r erase operati	on; the operatic	on is self-timed	and the bit is
		hardware on		•			
	0 = Program o				e		
bit 14	WREN: Write E	nable bit ⁽¹⁾					
	1 = Enables Fl		erase operati	ions			
	0 = Inhibits Fla						
bit 13	WRERR: Write	Sequence Er	ror Flag bit ⁽¹⁾)			
			•		rmination has oc	curred (bit is se	t automaticallv
		attempt of the				(
	0 = The progra			pleted normally	/		
bit 12-7	Unimplemente	ed: Read as 'd)'				
bit 6	ERASE: Erase	/Program Ena	ble bit ⁽¹⁾				
					3:0> on the nex		
			-	Cified by NVINC	P<3:0> on the	next WR comm	land
bit 5-4	Unimplemente			(1.0)			
bit 3-0	NVMOP<3:0>:	NVM Operati	on Selection	bits ^(1,2)			
	If ERASE = 1:	_					
	1111 = No ope		4				
	1101 = Erase (1100 = No ope	•	ient				
	0011 = No ope						
	0010 = Memor		operation				
	0001 = No ope						
	0000 = No ope	ration					
	If ERASE = 0:						
	1111 = No ope						
	1101 = No ope						
	1100 = No ope						
	0011 = Memor 0010 = No ope		in operation				
	0001 = No ope						
	0000 = No ope						
	-						
	ese bits can only						
	other combination			implemented.	ECISTED		
REGISTER 5	-2. IN VIVINE				LOISIEK		

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

| U-0 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| — | — | | | — | | | _ |

© 2011-2014 Microchip Technology Inc.

D / M A	D 444 A	D.4.4. 0	DAMA	DALLA	DALLA	DAMA	D 44/ 6
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bi
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR		<u> </u>	MATHERR	ADDRERR	STKERR	OSCFAIL	
bit 7	BIVOLINI			ABBRERR	OTTLETT	00017112	bi
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
6:4 <i>7</i>		www.unt.Nie.otie.ev.F	Niachla hit				
bit 15		rrupt Nesting E nesting is disat					
		nesting is cloat					
bit 14	-	cumulator A O		lag bit			
	1 = Trap was	caused by ove	erflow of Accur	nulator A			
	0 = Trap was	not caused by	overflow of Ad	ccumulator A			
bit 13		cumulator B O	-	-			
		caused by ove not caused by					
bit 12	-	-		Dverflow Trap F	lag hit		
			•	flow of Accumu	•		
	•	•	•	overflow of Accu			
bit 11	COVBERR: A	Accumulator B	Catastrophic C	Overflow Trap F	lag bit		
				flow of Accumu			
	-	-	-	overflow of Accu	umulator B		
bit 10		Imulator A Ove		able bit			
	⊥ = Trap over 0 = Trap is di	flow of Accum	ulator A				
bit 9		umulator B Ove	erflow Trap En	able bit			
		flow of Accum					
	0 = Trap is di	sabled					
bit 8	COVTE: Cata	astrophic Overf	low Trap Enab	ole bit			
			erflow of Accur	mulator A or B i	s enabled		
hit 7	0 = Trap is dis	sabled Shift Accumula	tor Error State	ia hit			
bit 7				llid accumulator	chift		
				invalid accumul			
bit 6		ithmetic Error :	-				
		or trap was cau	-	-			
		r trap was not	-	ivide-by-zero			
bit 5	•	ted: Read as '					
bit 4	MATHERR: A	Arithmetic Error	Status bit				
	1 14-41	or trap has occu	una al				

INTOONA, INTERDURT CONTROL DECISTER A

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0			
bit 15							bit 8			
U-0	U-0	U-0	R/W-1 T2CKR4	R/W-1 T2CKR3	R/W-1 T2CKR2	R/W-1 T2CKR1	R/W-1 T2CKR0			
bit 7			1201411	1201410	1201112		bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	iown			
			(- 1							
bit 15-13	-	ted: Read as								
bit 12-8		-	r3 External Clo	ck (T3CK) to t	he Correspondi	ng RPn Pin bits	5			
	11111 = Inpu									
	11110 = Res	erved								
	•									
	•									
	11010 = Reserved									
	11001 = Inpu	t tied to RP25								
	•									
	00001 = Inpu									
	00000 = Inpu	t tied to RP0								
bit 7-5	00000 = Inpu Unimplemen	t tied to RP0 ted: Read as								
bit 7-5 bit 4-0	00000 = Inpu Unimplemen	t tied to RP0 ted: Read as		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5			
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	3			
	00000 = Inpu Unimplemen T2CKR<4:0>	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5			
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5			
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to ti	he Correspondi	ng RPn Pin bits	5			
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5			
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	3			
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5			
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	3			
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5			
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved erved It tied to RP25	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5			

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

REGISTER	10-9: RPINE	20: PERIPH	ERAL PIN S	ELECT INPU	TREGISTER	20				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—	—	SCK1R4 ⁽¹⁾	SCK1R3 ⁽¹⁾	SCK1R2 ⁽¹⁾	SCK1R1 ⁽¹⁾	SCK1R0 ⁽¹⁾			
bit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
			SDI1R4 ⁽¹⁾	SDI1R3 ⁽¹⁾	SDI1R2 ⁽¹⁾	SDI1R1 ⁽¹⁾	SDI1R0 ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readabl		W = Writable		-	nented bit, read					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN			
1 1 4 5 4 0			o.!							
bit 15-13	-	ted: Read as '			.					
bit 12-8			Clock Input (S	CK1IN) to the	Corresponding	RPn Pin bits				
	11111 = Inpu 11110 = Res									
	11110 = Res	erved								
	11010 = Res									
	11001 = I npu	ut tied to RP25								
	•									
	•									
	00001 = Inpu	ut tied to RP1								
		00000 = Input tied to RP0								
bit 7-5	Unimplemen	ted: Read as '	0'							
bit 4-0	SDI1R<4:0>:	Assign SPI1 E	Data Input (SD	11) to the Corre	esponding RPn	Pin bits ⁽¹⁾				
	11111 = I npu									
	11110 = Res	erved								
	•									
	11010 = Reserved									
		ut tied to RP25								
	00001 = Inpu	it tied to RP1								
	000001 = Inpu									
		•								

REGISTER 10-9: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

REGISTER	12-3: T4CO	N: TIMER4 C	ONTROL RI	EGISTER ⁽¹⁾						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	—	TSIDL	—	—	—	—	—			
bit 15							bita			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_			
bit 7							bit			
Legend: R = Readab	le hit	W = Writable	hit	II – Unimpler	mented bit, rea	nd as 'O'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	TON: Timer4									
	$\frac{\text{When T32}}{1 = \text{Starts 32}}$									
	1 = Starts 32 - 0 = Stops 32 - 0 = Stops 32 - 0 = Stops 32 - 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0									
	When T32 =									
	1 = Starts 16-									
	0 = Stops 16-	bit Timer4								
bit 14	Unimplemen	Unimplemented: Read as '0'								
bit 13	TSIDL: Timer4 Stop in Idle Mode bit									
		ues module op s module opera		device enters l ode	ldle mode					
bit 12-7	Unimplemen	ted: Read as '	0'							
bit 6	TGATE: Time	er4 Gated Time	e Accumulation	n Enable bit						
	When TCS =									
	This bit is ign									
	<u>When TCS =</u> 1 = Cotod time	<u>0:</u> ne accumulatio	n in anablad							
		ne accumulatio								
bit 5-4		: Timer4 Input		le Select bits						
	11 = 1:256	· · · · · · · · · · · · · · · · · · ·	0.000.00000							
	10 = 1:64									
	01 = 1:8	01 = 1:8								
	00 = 1:1									
bit 3		T32: 32-Bit Timer Mode Select bit								
		1 = Timer4 and Timer5 form a single 32-bit timer 0 = Timer4 and Timer5 act as two 16-bit timers								
bit 2 Unimplemented: Read as '0'										
bit 1	-	Clock Source								
		clock from pin,		rising edge)						
	0 = Internal c			nonig ougo)						
bit 0	Unimplemen	ted: Read as '	0'							
Note 1: ⊤	his register is ava	ailable in dsPIC	C33FJ32(GP/N	MC)10X device	s only.					
	-		`		-					

REGISTER 12-3: T4CON: TIMER4 CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL		—		—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
0-0	0-0	0-0	0-0	0-0	0-0	FRMDLY	0-0
 bit 7						TRIMDET	bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15 bit 14 bit 13	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy	Plx support is me Sync Pulse rnc pulse input rnc pulse outpu ame Sync Puls rnc pulse is act	enabled (SSx disabled Direction Cor (slave) t (master) e Polarity bit ive-high		Frame Sync pu	ulse input/output)
bit 12-2 bit 1	Unimplemen FRMDLY: Fra 1 = Frame Sy	rnc pulse is act ted: Read as ' ame Sync Pulse rnc pulse coinc rnc pulse prece	0' e Edge Select ides with first	bit clock			
bit 0	-			to '1' by the us	er application		

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

NOTES:

21.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

21.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 21-1).

By writing the RTCVALH byte, the RTCC Pointer value (RTCPTR<1:0> bits) decrements by one until it reaches '00'. Once it reaches '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 21-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window				
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11		YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 21-2).

By writing the ALRMVALH byte, the Alarm Pointer value (ALRMPTR<1:0> bits) decrements by one until it reaches '00'. Once it reaches '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

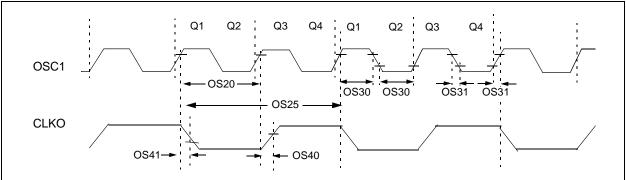
TABLE 21-2:	ALRMVAL REGISTER
	MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11		_			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL, bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

21.1.2 WRITE LOCK


In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 21-1).

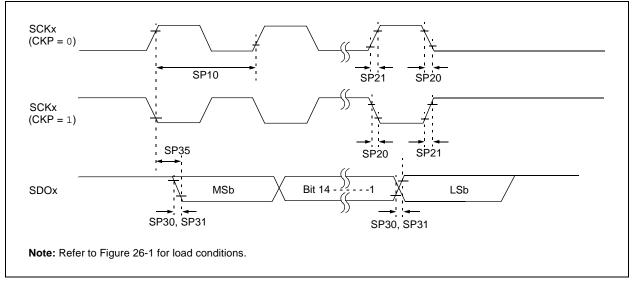
Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 21-1.

EXAMPLE 21-1: SETTING THE RTCWREN BIT

1			
	MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
	MOV	#0x55, W2	
	MOV	#0xAA, W3	
	MOV	W2, [W1]	;start 55/AA sequence
	MOV	W3, [W1]	
	BSET	RCFGCAL, #13	;set the RTCWREN bit

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			ed) -40°C ≤ TA ≤				
Param No.	Symb	Characteristic	Min Typ ⁽¹⁾ Max Units Condit				Conditions
OS10 FIN		External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	32	MHz	EC
		Oscillator Crystal Frequency	3.0 10 31		10 32 33	MHz MHz kHz	MS HS SOSC
OS20	Tosc	Tosc = 1/Fosc	31.25	—	DC	ns	
OS25	Тсү	Instruction Cycle Time ^(2,4)	62.5	_	DC	ns	
OS30	TosL, TosH	External Clock in (OSC1) ⁽⁵⁾ High or Low Time	0.45 x Tosc	—	_	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) ⁽⁵⁾ Rise or Fall Time	-	_	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,5)		6	10	ns	
OS41	TckF	CLKO Fall Time ^(3,5)		6	10	ns	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V, TA = +25°C

TABLE 26-16: EXTERNAL CLOCK TIMING REQUIREMENTS


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: These parameters are characterized by similarity, but are tested in manufacturing at FIN = 32 MHz only.
- **5:** These parameters are characterized by similarity, but are not tested in manufacturing.

AC CHARA	CTERISTICS		Standard Operating (unless otherwise Operating temperate	s tated) µre -40°C ≤ ⁻		
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 26-30	—	—	0,1	0,1	0,1
10 MHz	—	Table 26-31	—	1	0,1	1
10 MHz	—	Table 26-32	—	0	0,1	1
15 MHz	—	—	Table 26-33	1	0	0
11 MHz	—	—	Table 26-34	1	1	0
15 MHz	_	_	Table 26-35	0	1	0
11 MHz			Table 26-36	0	0	0

FIGURE 26-11: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

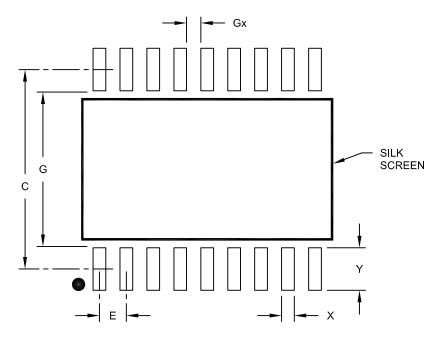

				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
AC CHARACTERISTICS			Operating temperature				
Param.	Symbol	Charact	teristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽¹⁾		300	ns	
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	
			400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100	—	ns	
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μS	
			400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeate Start condition
			400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μS	After this period, the first clock pulse is generated
			400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.6	—	μS	
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4000	—	ns	
			400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	
			400 kHz mode	0	1000	ns	ļ
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmissic can start
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS50	Св	Bus Capacitive Lo	bading		400	pF	

TABLE 26-46: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

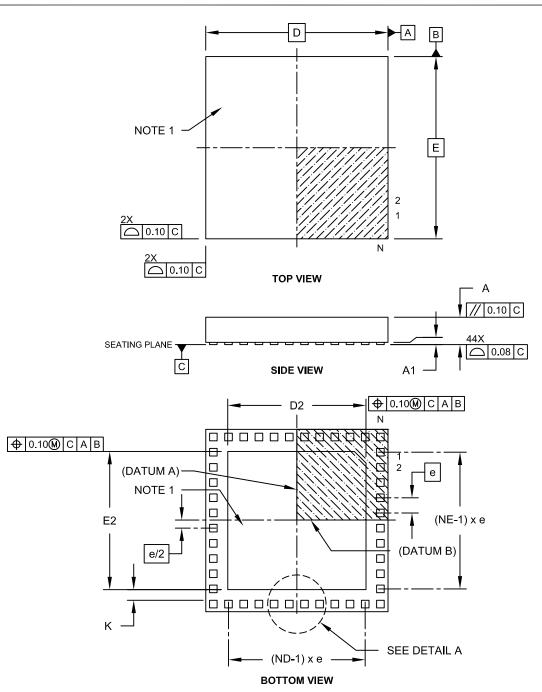
18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-157C Sheet 1 of 2

INDEX

1	•
r	١

Absolute Maximum Ratings
AC Characteristics
10-Bit ADC Specifications
ADC Specifications
Internal Fast RC (FRC) Accuracy
Internal Low-Power RC (LPRC) Accuracy 296, 342
Load Conditions
PLL Clock
Temperature and Voltage Specifications
ADC
Control Registers 222
Helpful Tips
Initialization217
Key Features217
Resources
Alternate Interrupt Vector Table (AIVT)95
Analog-to-Digital Converter (ADC)217
Arithmetic Logic Unit (ALU)

В

Bit-Reversed Addressing	
Example	77
Implementation	
Sequence Table (16-Entry)	77
Block Diagrams	
16-Bit Timer1 Module	
6-Channel PWM1 Module	182
ADC1 Conversion Clock Period	221
ADC1 for dsPIC33FJ32(GP/MC)104 Devices	220
ADC1 for dsPIC33FJXX(GP/MC)101 Devices	218
ADC1 for dsPIC33FJXX(GP/MC)102 Devices	219
Comparator I/O Operating Modes	231
Comparator Voltage Reference	
Connections for On-Chip Voltage Regulator	266
CTMU Module	256
Digital Filter Interconnect	233
DSP Engine	44
dsPIC33FJXX(GP/MC)10X CPU Core	38
dsPIC33FJXX(GP/MC)10X Devices	
I ² C Module	
Input Capture x Module	
MCLR Pin Connections	34
Multiplexing of Remappable Output for RPn	144
Oscillator System	
Output Compare x Module	
Real-Time Clock and Calendar (RTCC) Module	
Recommended Minimum Connection	
Remappable MUX Input for U1RX	142
Reset System	87
Shared Port Structure	140
SPIx Module	
Timer2 and Timer4 (16-Bit)	
Timer2/3 and Timer4/5 (32-Bit)	
Timer3 and Timer5 (16-Bit)	
UARTx Simplified	
User-Programmable Blanking Function	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	

С

Charge Time Measurement Unit. See CTMU.	
Clock Switching	132
Enabling	132
Sequence	132
Code Examples	
Assembly Code for Write-Protected Register	
Unlock, Fault Clearing Sequence	184
C Code for Write-Protected Register Unlock,	
Fault Clearing Sequence	184
Port Write/Read	141
PWRSAV Instruction Syntax	133
Setting the RTCWREN Bit	
Comparator	
Control Registers	
Configuration Bits	
Description	
CPU	
Control Registers	40
Data Addressing	
Overview	37
DSP Engine	
Adder/Subtracter	-
Overflow and Saturation	45
Barrel Shifter	
Data Accumulators	
Write Back	46
Data Accumulators and Adder/Subtracter.	
Multiplier	
Overview	
Special MCU Features	
CPU Clocking System	
Clock Selection	
Clock Sources	
Configuration Bit Values for Clock Selection	
PLL Configuration	
CTMU	
Control Registers	257
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	52
Memory Map for dsPIC33FJ16(GP/MC)101/102	
Devices, 1-Kbyte RAM	53
Memory Map for dsPIC33FJ32(GP/MC)101/102/104	
Devices, 2-Kbyte RAM	54
Near Data Space	52
Organization and Alignment	52
SFR Space	52
Software Stack	73
Width	52
X and Y Spaces	55

NOTES: