

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp102-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the primary reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ16MC102 product page of the Microchip Web site (www.microchip.com). In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "CPU" (DS70204)
- "Data Memory" (DS70202)
- "Program Memory" (DS70203)
- "Flash Programming" (DS70191)
- "Reset" (DS70192)
- "Watchdog Timer and Power-Saving Modes" (DS70196)
- "Timers" (DS70205)
- "Input Capture" (DS70198)
- "Output Compare" (DS70209)
- "Motor Control PWM" (DS70187)
- "Analog-to-Digital Converter (ADC)" (DS70183)
- "UART" (DS70188)
- "Serial Peripheral Interface (SPI)" (DS70206)
- "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- "CodeGuard Security" (DS70199)
- "Programming and Diagnostics" (DS70207)
- "Device Configuration" (DS70194)
- "I/O Ports with Peripheral Pin Select (PPS)" (DS70190)
- "Real-Time Clock and Calendar (RTCC)" (DS70301)
- "Introduction (Part VI)" (DS70655)
- "Oscillator (Part VI)" (DS70644)
- "Interrupts (Part VI)" (DS70633)
- "Comparator with Blanking" (DS70647)
- "Charge Time Measurement Unit (CTMU)" (DS70635)

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70204) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ16(GP/MC)101/102 The and dsPIC33FJ32(GP/MC)101/102/104 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can serve as a data, address, or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices are capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory, while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain Working registers to each address space.

5.2 RTSP Operation

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions); and to program one word. Table 26-12 shows typical erase and programming times. The 8-row erase pages are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the operation is finished.

The programming time depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3). Use the following formula to calculate the minimum and maximum values for the Word write time and page erase time (see Parameters D138a and D138b, and Parameters D137a and D137b in Table 26-12, respectively).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 8-3) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

 $T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 + 0.02) \times (1 - 0.00375)} = 47.4 \mu s$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 - 0.02) \times (1 - 0.00375)} = 49.3 \mu s$$

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one word (24 bits) of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Note:	Performing a page erase operation on the							
	last page of program memory will clear the							
	Flash Configuration Words, thereby							
	enabling code protection as a result.							
	Therefore, users should avoid performing							
	page erase operations on the last page of							
	program memory.							

Refer to **"Flash Programming"** (DS70191) in the *"dsPIC33/PIC24 Family Reference Manual"* for details and codes examples on programming using RTSP.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

REGISTER	(-5: IFS0: I	INTERRUPT	FLAG STAT	US REGISTI	ERU					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF			
bit 15							bit 8			
										
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF			
bit 7							bit 0			
Logond										
R = Readable	hit	W = Writable	hit	U = Unimpler	mented hit rea	d as '0'				
-n = Value at	POR	(1) = Bit is set		0' = Bit is cle	ared	x = Bit is unkn	own			
			·			. 20.000.000	<u> </u>			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	AD1IF: ADC1	1 Conversion C	omplete Inter	rupt Flag Statu	s bit					
	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	t occurred	O (1)						
bit 12	U1 I XIF: UAF	RI1 Transmitte	r Interrupt Flag	g Status bit						
	0 = Interrupt	request has oc	t occurred							
bit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag	Status bit						
	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	t occurred							
bit 10	SPI1IF: SPI1	PI1IF: SPI1 Event Interrupt Flag Status bit								
	1 = Interrupt 0 = Interrupt	request has oc	t occurred							
bit 9	SPI1EIF: SPI	1 Fault Interru	ot Flag Status	bit						
	1 = Interrupt	= Interrupt request has occurred								
	0 = Interrupt	request has no	t occurred							
bit 8	T3IF: limer3	3IF: Timer3 Interrupt Flag Status bit								
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 7	T2IF: Timer2	T2IF: Timer2 Interrupt Flag Status bit								
	1 = Interrupt	1 = Interrupt request has occurred								
	0 = Interrupt	request has no	t occurred							
bit 6	OC2IF: Output	OC2IF: Output Compare Channel 2 Interrupt Flag Status bit								
	1 = Interrupt 0 = Interrupt	request has oc request has no	t occurred							
bit 5	IC2IF: Input C	Capture Chann	el 2 Interrupt l	Flag Status bit						
	1 = Interrupt	request has oc	curred	-						
	0 = Interrupt	request has no	t occurred							
bit 4	Unimplemen	ted: Read as '	0'							
DIT 3	1 - Interrupt	Interrupt Flag	Status bit							
	1 = 111errupt 0 = Interrupt	request has oc	t occurred							
		•								

-יסוור - - -• •

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
			—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
—	_	IC3IE	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

DIT 15-6	Unimplemented: Read as 10
bit 5	IC3IE: Input Capture Channel 3 Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 4-0	Unimplemented: Read as '0'

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	U-0
FLTA1IE ⁽¹⁾	RTCIE	—	—	—	—	PWM1IE ⁽¹⁾	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	FLTA1IE: PWM1 Fault A Interrupt Enable bit ⁽¹⁾
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 14	RTCIE: RTCC Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 13-10	Unimplemented: Read as '0'
bit 9	PWM1IE: PWM1 Interrupt Enable bit ⁽¹⁾
	1 – Interrupt request is enabled
	\perp = interrupt request is enabled
	0 = Interrupt request is enabled
bit 8-0	0 = Interrupt request is enabled Unimplemented: Read as '0'

Note 1: These bits are available in dsPIC(16/32)MC10X devices only.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
—	—	CTMUIE	_	—	—	_	—		
bit 15							bit 8		
r									
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	—	—	—		_	U1EIE	FLTB1IE ⁽¹⁾		
bit 7							bit 0		
r									
Legend:									
R = Readabl	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$					
bit 15-14	Unimplemen	nted: Read as ')'						
bit 13	CTMUIE: CT	MU Interrupt Er	hable bit						
	1 = Interrupt	request is enab	led						
	0 = Interrupt	request is not e	nabled						
bit 12-2	Unimplemen	ted: Read as '0)'						
bit 1	U1EIE: UAR	T1 Error Interrup	ot Enable bit						
	1 = Interrupt	request is enab	led						
	0 = Interrupt	request is not e	nabled	(4)					
bit 0	FLTB1IE: PV	VM1 Fault B Inte	errupt Enable	bit ⁽¹⁾					
	1 = Interrupt	request has occ	curred						
	0 = Interrupt	request has not	occurred						
Note 1: Th	his bit is available	e in dsPIC(16/3	2)MC102/104	4 devices only.					

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	<u> </u>	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	CTMUIP2	CTMUIP1	CTMUIP0	_	<u> </u>		<u> </u>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	CTMUIP<2:0	CTMU Interr	upt Priority bi	ts			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-27: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		_			RP21R<4:0>(1)	
bit 15	·						bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		_			RP20R<4:0>(1)	
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set	Bit is set $0' = Bit$ is cleared $x = Bit$ is unknown		Iown		
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP21R<4:0>:	Peripheral Ou	Itput Function	is Assigned to	RP21 Output I	Pin bits ⁽¹⁾	
	(see Table 10	-2 for periphera	al function nu	mbers)			
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	RP20R<4:0>:	Peripheral Ou	Itput Function	is Assigned to	RP20 Output I	Pin bits ⁽¹⁾	
	(see Table 10	-2 for periphera	al function nu	mbers)			

REGISTER 10-21: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

REGISTER 10-22: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—				RP23R<4:0>(1	1)			
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—				RP22R<4:0>(1	1)			
bit 7							bit 0		
Legend:									
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	RP23R<4:0>:	Peripheral Ou	tput Function	is Assigned to	RP23 Output F	Pin bits ⁽¹⁾			
	(see Table 10	-2 for periphera	al function nu	mbers)					
bit 7-5	Unimplemen	ted: Read as '	0'						
bit 4-0	RP22R<4:0>	Peripheral Ou	tput Function	is Assigned to	RP22 Output F	Pin bits ⁽¹⁾			
	(see Table 10	-2 for periphera	al function nu	mbers)					
Note 1:	These bits are ava	ilable in dsPIC	33FJ32(GP/N	IC)104 devices	s only.				

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—				RP25R<4:0> ⁽¹⁾	1	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP24R<4:0> ⁽¹⁾)	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	างพท
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP25R<4:0>	Peripheral Ou	tput Functior	n is Assigned to	RP25 Output P	in bits ⁽¹⁾	
	(see Table 10	-2 for periphera	al function nu	imbers)			
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	RP24R<4:0>	Peripheral Ou	tput Functior	n is Assigned to	RP24 Output Pi	in bits ⁽¹⁾	
	(see Table 10	-2 for periphera	al function nu	imbers)			

REGISTER 10-23: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

11.0 **TIMER1**

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 11-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Load the timer value into the TMR1 register.
- 2. Load the timer period value into the PR1 register.
- 3. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 4. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 5. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.
- 7. Set the TON bit (= 1) in the T1CON register.

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

NOTES:

FIGURE 19-4: ADC1 CONVERSION CLOCK PERIOD BLOCK DIAGRAM

19.3 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determine when the ADC analog scan channel list, defined in the AD1CSSL register, starts over from the beginning.
- The ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used, subject to the SMPI<3:0> bits (AD1CON2<5:2>). There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

19.4 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http:// www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554109

19.4.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33/PIC24 Family Reference Manual"* sections
- Development Tools

REGISTER 21-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0	CAL<7:0>: RTC Drift Calibration bits
	01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute
	•
	•
	•
	00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment
	11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute
	•
	•
	•
	10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

				_			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
DAVA	DAMO	DANO	DANO	DAMO	D/W/O	DAMA	DANIO
R/W-U	R/W-U			R/W-U	R/W-U	R/W-U	R/W-U
ARP17	ARP16	ARP15	ARP14	ARP13	ARP12	ARP11	ARPIU
							DIL U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	ALRMEN: Ala	arm Enable bit	ad automation	lly offer on old	arm overt when		
	CHIME = 0 = Alarm is 0	enabled (clean : 0) disabled		illy aller all ala	ann event when		0> = 0x00 and
bit 14	CHIME: Chim	ne Enable bit					
	1 = Chime is 0 = Chime is	enabled; ARP disabled; ARP	T<7:0> bits ar T<7:0> bits st	e allowed to ro op once they i	oll over from 0x0 reach 0x00	00 to 0xFF	
bit 13-10	AMASK<3:0>	Alarm Mask	Configuration	bits			
	0000 = Every	/ half second					
	0001 = Every 0010 = Every	/ second					
	0011 = Every	minute					
	0100 = Every	/ 10 minutes					
	0101 = Every 0110 = Once	a dav					
	0111 = Once	a week					
	1000 = Once	a month		wedfer Febru			
	1001 = Once 101x = Rese	a year (except rved – do not u	i when configu Ise	Ired for Februa	ary 29th, once e	every 4 years)	
	11xx = Rese	rved – do not u	ise				
bit 9-8	ALRMPTR<1	:0>: Alarm Val	ue Register W	indow Pointer	bits		
	Points to the c the ALRMPTF	corresponding A R<1:0> value de	Alarm Value re ecrements on	gisters when re every read or v	eading ALRMVA	ALH and ALRM	/ALL registers; hes '00'.
	ALRMVAL<15	<u>5:8>:</u>					
	00 = ALRMM	IN /D					
	10 = ALRMM	NTH					
	11 = Unimple	mented					
	ALRMVAL<7:	0>:					
		EC					
	10 = ALRMD	AY					
	11 = Unimple	mented					
bit 7-0	ARPT<7:0>:	Alarm Repeat	Counter Value	bits			
	11111111 = .	Alarm will repe	at 255 more ti	mes			
	•						
	•	Ale					
	The counter of 0xFF unless (Alarm will not r lecrements on CHIME = 1.	epeat any alarm eve	ent. The counte	er is prevented	from rolling ove	er from 0x00 to

REGISTER 21-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

The Configuration Shadow register map is shown in Table 23-1.

TABLE 23-1: CONFIGURATION SHADOW REGISTER MAP

File Name	Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FGS	F80004	_	_	_	—	_	_	GCP	GWRP
FOSCSEL	F80006	IESO	PWMLOCK ⁽¹⁾	—	WDTWIN1	WDTWIN0	FNOSC2	FNOSC1	FNOSC0
FOSC	F80008	FCKSM1	FCKSM0	IOL1WAY	—	—	OSCIOFNC	POSCMD1	POSCMD0
FWDT	F8000A	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0
FPOR	F8000C	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	ALTI2C1	—	—	—	
FICD	F8000E	Reserved ⁽²⁾	_	Reserved ⁽³⁾	Reserved ⁽³⁾	_	_	ICS1	ICS0

Legend: — = unimplemented, read as '1'.

Note 1: These bits are available in dsPIC33FJ(16/32)MC10X devices only.

2: This bit is reserved for use by development tools.

3: These bits are reserved, program as '0'.

The Configuration Flash Word maps are shown in Table 23-2 and Table 23-3.

TABLE 23-2: CONFIGURATION FLASH WORDS FOR dsPIC33FJ16(GP/MC)10X DEVICES⁽¹⁾

File Name	Addr.	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2	002BFC	—	IESO	PWMLOCK(2)	PWMPIN ⁽²⁾	WDTWIN1	WDTWIN0	FNOSC2	FNOSC1	FNOSC0	FCKSM1	FCKSM0	OSCIOFNC ⁽⁵⁾	IOL1WAY	LPOL ⁽²⁾	ALTI2C1	POSCMD1	POSCMD0
CONFIG1	002BFE	_	Reserved ⁽³⁾	Reserved ⁽³⁾	GCP	GWRP	Reserved ⁽⁴⁾	HPOL ⁽²⁾	ICS1	ICS0	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0

Legend: — = unimplemented, read as '1'.

Note 1: During a Power-on Reset (POR), the contents of these Flash locations are transferred to the Configuration Shadow registers.

2: These bits are reserved in dsPIC33FJ16GP10X devices and read as '1'.

3: These bits are reserved, program as '0'.

4: This bit is reserved for use by development tools and must be programmed as '1'.

5: This bit is programmed to '0' during final tests in the factory.

TABLE 23-3: CONFIGURATION FLASH WORDS FOR dsPIC33FJ32(GP/MC)10X DEVICES⁽¹⁾

File Name	Addr.	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2	0057FC	—	IESO	PWMLOCK(2)	PWMPIN ⁽²⁾	WDTWIN1	WDTWIN0	FNOSC2	FNOSC1	FNOSC0	FCKSM1	FCKSM0	OSCIOFNC ⁽⁵⁾	IOL1WAY	LPOL ⁽²⁾	ALTI2C1	POSCMD1	POSCMD0
CONFIG1	0057FE	—	Reserved ⁽³⁾	Reserved ⁽³⁾	GCP	GWRP	Reserved ⁽⁴⁾	HPOL ⁽²⁾	ICS1	ICS0	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0

Legend: — = unimplemented, read as '1'.

Note 1: During a Power-on Reset (POR), the contents of these Flash locations are transferred to the Configuration Shadow registers.

2: These bits are reserved in dsPIC33FJ32GP10X devices and read as '1'.

3: These bits are reserved, program as '0'.

4: This bit is reserved for use by development tools and must be programmed as '1'.

5: This bit is programmed to '0' during final tests in the factory.

TABLE 26-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CH	ARACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions			
SP70	TscP	Maximum SCKx Input Frequency	—		15	MHz	See Note 3			
SP72	TscF	SCKx Input Fall Time	_			ns	See Parameter DO32 and Note 4			
SP73	TscR	SCKx Input Rise Time	_			ns	See Parameter DO31 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time				ns	See Parameter DO32 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time				ns	See Parameter DO31 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns				
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	-	—	ns				
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4			
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40			ns	See Note 4			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 26-44:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

АС СНА		rics	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions			
SP70	TscP	Maximum SCKx Input Frequency	—	_	11	MHz	See Note 3			
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4			
SP73	TscR	SCKx Input Rise Time				ns	See Parameter DO31 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See Parameter DO32 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns				
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		_	ns				
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4			
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40			ns	See Note 4			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-31: ADC CONVERSION TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS					
Dimension	MIN	NOM	MAX				
Number of Pins	N	44					
Pitch	е		0.65 BSC				
Overall Height	А	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.20 REF					
Overall Width	E		8.00 BSC				
Exposed Pad Width	E2	6.30	6.45	6.80			
Overall Length	D		8.00 BSC				
Exposed Pad Length	D2	6.30	6.45	6.80			
Contact Width	b	0.25	0.30	0.38			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	К	0.20	-	-			

A1

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

A3

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13