

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp102t-e-so

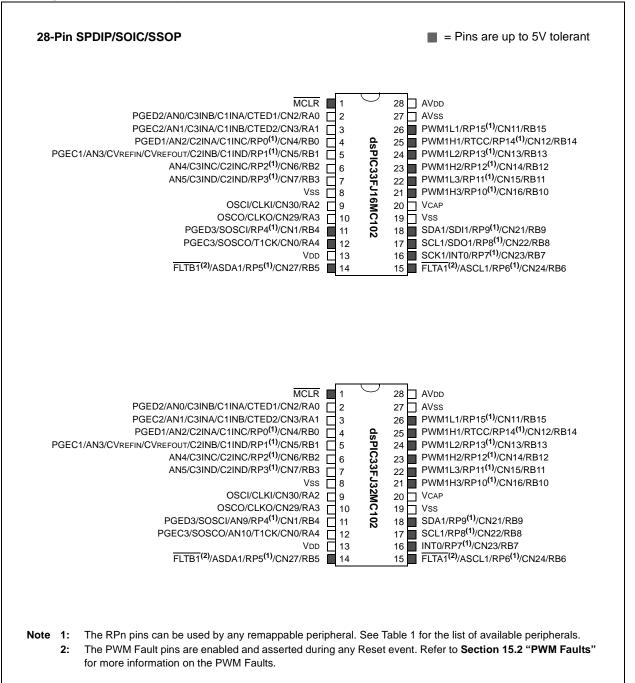
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

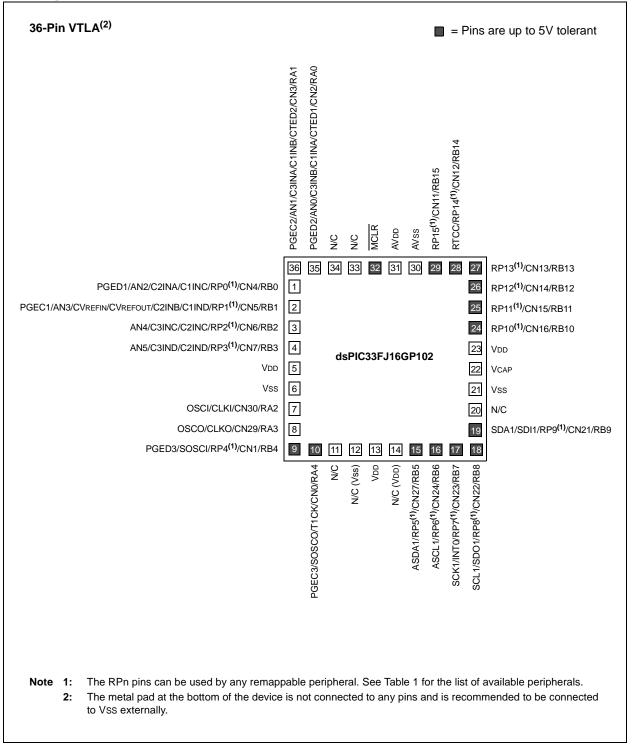
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

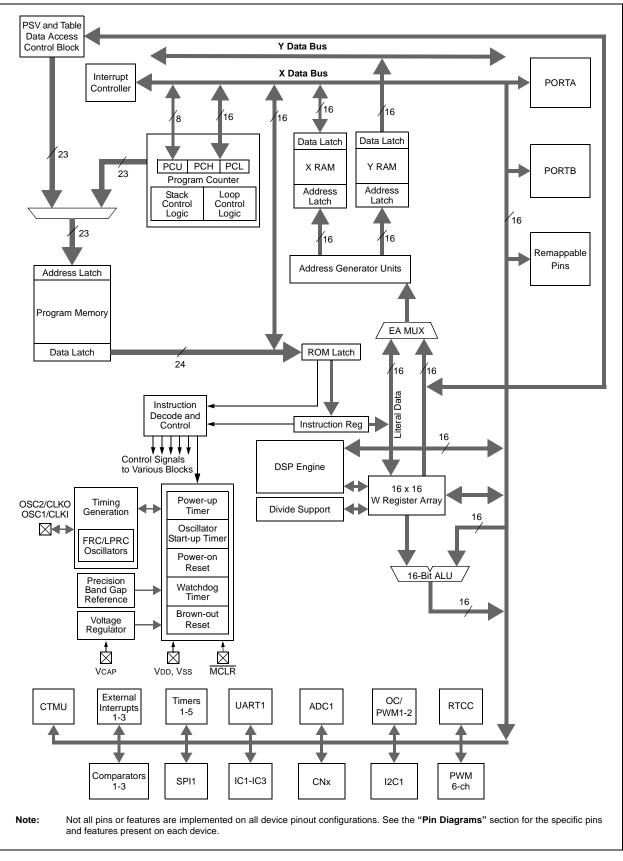
		rte)			Rem	appa	ble l	Perip	herals	5	М		Ŋ						
Device	Pins	Program Flash (Kbyte)	RAM (Kbytes)	Remappable Pins	16-bit Timer ^(1,2)	Input Capture	Output Compare	UART	External Interrupts ⁽³⁾	SPI	Motor Control PWM	PWM Faults	10-Bit, 1.1 Msps ADC	RTCC	I²C™	Comparators	CTMU	I/O Pins	Packages
dsPIC33FJ16GP101	18	16	1	8	3	3	2	1	3	1		—	1 ADC, 4-ch	Y	1	3	Y	13	PDIP, SOIC
	20	16	1	8	3	3	2	1	3	1	_	—	1 ADC, 4-ch	Y	1	3	Y	15	SSOP
dsPIC33FJ16GP102	28	16	1	16	3	3	2	1	3	1	_	_	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1		—	1 ADC, 6-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ16MC101	20	16	1	10	3	3	2	1	3	1	6-ch	1	1 ADC, 4-ch	Y	1	3	Y	15	PDIP, SOIC, SSOP
dsPIC33FJ16MC102	28	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	VTLA


TABLE 1:dsPIC33FJ16(GP/MC)101/102 DEVICE FEATURES

Note 1: Two out of three timers are remappable.


2: One pair can be combined to create one 32-bit timer.

3: Two out of three interrupts are remappable.


Pin Diagrams (Continued)

Pin Diagrams (Continued)

FIGURE 1-1: dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 BLOCK DIAGRAM

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz (for MSPLL mode) or 3 MHz < FIN < 8 MHz (for ECPLL mode) to comply with device PLL start-up conditions. HSPLL mode is not supported. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The fixed PLL settings of 4x after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can enable the PLL and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or MPLAB REAL ICE in-circuit emulator is selected as a debugger, it automatically initializes all of the Analog-to-Digital input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in the register that correspond to the Analog-to-Digital pins that are initialized by MPLAB ICD 3 or MPLAB REAL ICE in-circuit emulator, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain Analog-to-Digital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 3 or MPLAB REAL ICE in-circuit emulator is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all Analog-to-Digital pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternately, connect a 1k to 10k resistor between Vss and unused pins.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	_	US	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	R/W-0	IF
bit 7	SAID	SAIDW	ACCOAT	IF L3. 7	F3V	RND	bit
							Dit
Legend:		C = Clearable	e bit				
R = Readabl	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is cle	ared	'x = Bit is unk	nown	U = Unimple	mented bit, read	d as '0'	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	-	tiply Unsigned		ol bit			
		ne multiplies a	•				
	0 = DSP engi	ne multiplies a	ire signed				
bit 11		Loop Termina					
	1 = Terminate 0 = No effect	es executing Do	o loop at the e	nd of current lo	oop iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops are active					
	•						
	• 001 = 1 DO lo	on is activo					
		ops are active					
bit 7	SATA: ACCA	Saturation En	able bit				
		itor A saturatio					
		itor A saturatio					
bit 6		Saturation En					
		tor B saturatio					
bit 5				ine Saturation	Enable bit		
		ce write satura					
		ce write satura					
bit 4	ACCSAT: Acc	cumulator Satu	uration Mode S	Select bit			
		ration (super s					
L:1 0		ration (normal	,	··· (2)			
bit 3		terrupt Priority rrupt Priority Le					
		rupt Priority Le	•				
bit 2				ace Enable bit			
		space is visible					
	-	space is not vi		pace			
bit 1		ng Mode Sele					
		onventional) ro (convergent)					
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit			
	-			iply operations			
	0 = Fractional	l mode is enab	led for DSP m	nultiply operation	ons		

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 7-1: dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 INTERRUPT VECTOR TABLE

1		7	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector	_	
	Address Error Trap Vector	_	
	Stack Error Trap Vector	_	
	Math Error Trap Vector	_	
	Reserved	-	
	Reserved	_	
	Reserved Interrupt Vector 0	0x000014	
	Interrupt Vector 1	0,000014	
		-	
	~		
	~	_	
	Interrupt Vector 52	0x00007C	(4)
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ity	Interrupt Vector 54	0x000080	
iori	~		
ā	~		
der	~		
Decreasing Natural Order Priority	Interrupt Vector 116	0x0000FC	
ra	Interrupt Vector 117	0x0000FE	
atu	Reserved	0x000100	
Z	Reserved	0x000102	
sing	Reserved		
eas	Oscillator Fail Trap Vector		
ecr	Address Error Trap Vector		
ă	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~	4	
	~	4	
	~ Interrupt Vector 52	0x000470	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
		0x00017C	
	Interrupt Vector 53 Interrupt Vector 54	0x00017E 0x000180	
	~	0000180	
	~	-	
	~	_	
	- Interrupt Vector 116	-	
	Interrupt Vector 117	0x0001FE	
*	Start of Code	0x000200	L
Note 1: See	e Table 7-1 for the list of impleme	ented interrupt v	ectors.

bit 7							bit 0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
OA	OB	SA	SB	OAB	SAB	DA	DC
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0> ⁽²⁾
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0> ⁽²⁾
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 3	IC3	RPINR8	IC3R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<4:0>
SDI1 SPI Data Input 1	SDI1	RPINR20	SDI1R<4:0> ⁽²⁾
SCK1 SPI Clock Input 1	SCK1	RPINR20	SCK1R<4:0> ⁽²⁾
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0> ⁽²⁾

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

2: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

11.1 Timer1 Control Register

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾	_	TSIDL	—	_		_	_				
bit 15				•			bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
—	TGATE	TCKPS1	TCKPS0		TSYNC	TCS ⁽¹⁾	—				
bit 7							bit (
Legend:											
R = Readable		W = Writable		-	mented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
bit 15	TON: Timer1	On hit(1)									
DIL 15	1 = Starts 16-										
	0 = Stops 16-										
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	TSIDL: Timer	1 Stop in Idle	Node bit								
				device enters I	dle mode						
		s module opera		ode							
bit 12-7	-	ted: Read as '									
bit 6		er1 Gated Time	Accumulation	n Enable bit							
	When TCS = This bit is ign										
	When TCS =										
		e accumulatio									
		e accumulatio									
bit 5-4		Timer1 Input (Clock Prescal	e Select bits							
	11 = 1:256 10 = 1:64										
	01 = 1:8										
	00 = 1:1										
bit 3	-	ted: Read as '									
bit 2			ock Input Syn	chronization Se	elect bit						
	<u>When TCS =</u> 1 = Synchron	<u>1:</u> izes external c	lock input								
		synchronize ex		nput							
	When TCS =	•									
	This bit is ign										
bit 1		Clock Source									
		clock from pin,	T1CK (on the	rising edge)							
	0 = Internal c										
bit 0	Unimplament	ted: Read as '	o'								

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

15.4 PWM Control Registers

R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 PTEN PTSIDL bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTOPS3 PTOPS2 PTOPS1 PTOPS0 PTCKPS1 PTCKPS0 PTMOD1 PTMOD0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PTEN: PWMx Time Base Timer Enable bit 1 = PWMx time base is on 0 = PWMx time base is off bit 14 Unimplemented: Read as '0' bit 13 PTSIDL: PWMx Time Base Stop in Idle Mode bit 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode bit 12-8 Unimplemented: Read as '0' bit 7-4 PTOPS<3:0>: PWMx Time Base Output Postscale Select bits 1111 = 1:16 postscale 0001 = 1:2 postscale 0000 = 1:1 postscale bit 3-2 PTCKPS<1:0>: PWMx Time Base Input Clock Prescale Select bits 11 = PWMx time base input clock period is 64 Tcy (1:64 prescale) 10 = PWMx time base input clock period is 16 Tcy (1:16 prescale) 01 = PWMx time base input clock period is 4 Tcy (1:4 prescale) 00 = PWMx time base input clock period is TCY (1:1 prescale) bit 1-0 PTMOD<1:0>: PWMx Time Base Mode Select bits 11 = PWMx time base operates in a Continuous Up/Down Count mode with interrupts for double **PWM updates** 10 = PWMx time base operates in a Continuous Up/Down Count mode 01 = PWMx time base operates in Single Pulse mode

REGISTER 15-1: PxTCON: PWMx TIME BASE CONTROL REGISTER

00 = PWMx time base operates in a Free-Running mode

REGISTER 15-12: PxDC1: PWMx DUTY CYCLE 1 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PDC	1<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PDC	1<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = B		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown	

bit 15-0 PDC1<15:0>: PWMx Duty Cycle 1 Value bits

REGISTER 15-13: PxDC2: PWMx DUTY CYCLE 2 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PDC2<15:8>								
bit 15 bit								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PDC2<7:0>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PDC2<15:0>: PWMx Duty Cycle 2 Value bits

REGISTER 15-14: PxDC3: PWMx DUTY CYCLE 3 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PDC	3<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
N/W-0	N/W-0	N/ VV-U			N/VV-0	N/W-0	N/W-0	
			PDC	3<7:0>				
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

bit 15-0 PDC3<15:0>: PWMx Duty Cycle 3 Value bits

REGISTER	19-4: ADICI	15123: ADC1		ANNEL $1, 2,$	SELECT RE	GIJIER						
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
_	—	—	—	—	CH123NB1	CH123NB0	CH123SB					
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
-	_	_	_	_	CH123NA1	CH123NA0	CH123SA					
bit 7					0111201011	0111201010	bit (
Legend: R = Readab	la hit	W = Writable b	4	LI – Unimplo	mented bit, read	d oo 'O'						
			L	-								
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15-11	Unimplement	ted: Read as '0'										
	-				er Comple D hit	_						
bit 10-9	CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits											
		<u>dsPIC33FJ16(GP/MC)101/102 Devices Only:</u> 11 = Reserved										
		11 = Reserved										
	0x = CH1, CH2, CH3 negative inputs are AVss											
	dsPIC33FJ32(GP/MC)101/102 Devices Only:											
		ative input is AN				utive input is not	t connected					
	10 = Reserve		is, criz nega		anto, ens nega	live input is not	Connecteu					
		l2, CH3 negative	e inputs are A	AVss								
		(GP/MC)104 De	-									
		ative input is AN			N10 CH3 nega	tive input is AN	111					
		10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8 0x = CH1, CH2, CH3 negative inputs are AVss										
bit 8	CH123SB: Ch	CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit										
	dsPIC33FJXX(GP/MC)101 Devices Only:											
	1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected											
	0 = CH1 posit	ive input is AN0	, CH2 positiv	e input is AN1	, CH3 positive i	nput is AN2						
	All Other Dev	All Other Devices:										
	1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5											
	0 = CH1 posit	ive input is AN0	, CH2 positiv	e input is AN1	, CH3 positive i	nput is AN2						
bit 7-3	Unimplemen	ted: Read as '0'										
bit 2-1	CH123NA<1:	0>: Channel 1, 2	2, 3 Negative	Input Select f	or Sample A bit	S						
		10-9> for the ava	-	-								
bit 0		nannel 1, 2, 3 Po		-	nle A hit							
UIL U			•									
	Relief to bit 8	for the available	seuings.									

REGISTER 19-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

REGISTER 23-1: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R
		DEVID<	23:16> ⁽¹⁾			
						bit 16
R	R	R	R	R	R	R
						bit 8
R	R	R	R	R	R	R
		DEVID	<7:0> ⁽¹⁾			
						bit 0
	R	R R	R R R R R R DEVID< R R R	DEVID<23:16> ⁽¹⁾ R R R R DEVID<15:8> ⁽¹⁾	DEVID<23:16> ⁽¹⁾ R R R R R R DEVID<15:8> ⁽¹⁾ R R R R R R	DEVID<23:16> ⁽¹⁾ R R R R R R R DEVID<15:8> ⁽¹⁾ R R R R R R R

 Legend:
 R = Read-Only bit
 U = Unimplemented bit

bit 23-0 **DEIDV<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70659) for the list of device ID values.

REGISTER 23-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R	
			DEVREV	<23:16> ⁽¹⁾				
bit 23							bit 16	
R	R		R	R	R			
к	ĸ	R			ĸ	R	R	
			DEVREV	<15:8> ⁽¹⁾				
bit 15							bit 8	
R	R	R	R	R	R	R	R	
			DEVRE\	/<7:0> ⁽¹⁾				
bit 7							bit 0	
Logondi	D. Dood only hit				nantad hit			
Legena:	R = Read-only bit	ead-only bit U = Unimplemented bit						

bit 23-0 DEVREV<23:0>: Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70659) for the list of device revision values.

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

25.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

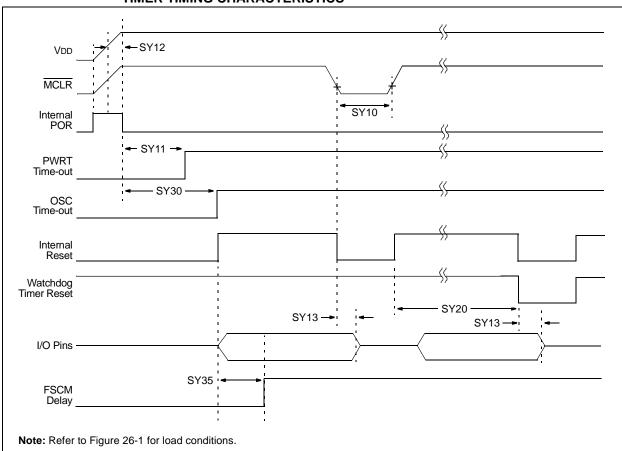
25.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

25.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

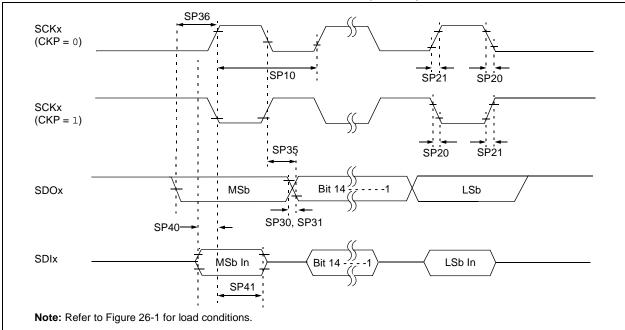

FIGURE 26-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 26-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

АС СН	ARACTI	ERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symb	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SY10	TMCL	MCLR Pulse Width (low)	2		_	μS		
SY11	TPWRT	Power-up Timer Period	_	64	_	ms		
SY12	TPOR	Power-on Reset Delay	3	10	30	μS		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset			1.2	μS		
SY20	TWDT1	Watchdog Timer Time-out Period	—	—	—	ms	See Section 23.4 "Watchdog Timer (WDT)" and LPRC Parameter F21a (Table 26-19).	
SY30	Tost	Oscillator Start-up Time		1024 * Tosc		_	Tosc = OSC1 period	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS		

Note 1: These parameters are characterized but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 26-21: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

TABLE 26-39:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

АС СНА	RACTERIST	ICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency	—	_	9	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

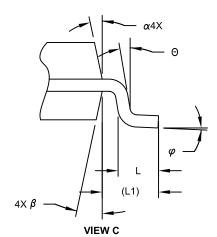
2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

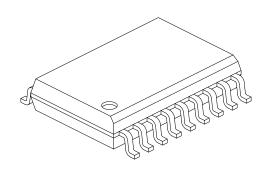
- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 26-41:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

AC CH	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscP	Maximum SCKx Input Frequency	—	-	15	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—	—		ns	See Parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns			
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.


3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Lin	nits	MIN	NOM	MAX	
Number of Pins	N		18		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	11.55 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	с	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2