

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp102t-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33/PIC24 Family Reference Manual" sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, if present on the device (regardless if ADC module is not used) (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10V-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

TABLE 4-33: PORTB REGISTER MAP FOR dsPIC33FJ32GP101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB<	:15:14>	—			—	-	TRISB<9:7	>		—	TRISB4			TRISE	3<1:0>	C393
PORTB	02CA	RB<1	5:14>	_	_	_	—		RB<9:7>		_	_	RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC	LATB<	15:14>	_	_	_	—		LATB<9:7>	>	_	_	LATB4	_	_	LATB	<1:0>	xxxx
ODCB	02CE	ODCB<	:15:14>	_	_		_	(ODCB<9:7	>	-	_	_			-		0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33FJ32MC101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8		TRISB<	<15:12>		—	—	-	TRISB<9:7	>	_	—	TRISB4	_	_	TRISE	3<1:0>	F393
PORTB	02CA		RB<1	5:12>		_	_		RB<9:7>		_	—	RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC		LATB<	15:12>		_	_		LATB<9:7>	•	_	—	LATB4	_	_	LATB	<1:0>	xxxx
ODCB	02CE		ODCB<	<15:12>		_	_	(ODCB<9:7:	>	_	—	_	_	_	—	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PORTB REGISTER MAP FOR dsPIC33FJ32(GP/MC)102 AND dsPIC33FJ32(GP/MC)104 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8								TRISB<	:15:0>								FFFF
PORTB	02CA								RB<1	5:0>								xxxx
LATB	02CC								LATB<	15:0>								xxxx
ODCB	02CE		ODCB<15:5>								0000							

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PORTC REGISTER MAP FOR dsPIC33FJ32(GP/MC)104 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	—	_	_	—	_	—					TRISC	C<9:0>					FFFF
PORTC	02D2		_	_	—	_	_					RC<	:9:0>					xxxx
LATC	02D4		_	_	—	_	_					LATC	<9:0>					xxxx
ODCC	02D6	_	_	_	—	_	—		ODC	C<9:6>			—	_	_	—		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER	<i>i</i> -J. II 30. I	NTERRUPT								
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF			
oit 15							bi			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF			
bit 7							bi			
Legend:	- h:4		h.:4							
R = Readable -n = Value at		W = Writable '1' = Bit is se		0 = Unimplem	nented bit, read					
-n = value at	POR	I = DILIS SE	l		areu	x = Bit is unkn	own			
bit 15-14	Unimplemen	ted: Read as	'O'							
bit 13	AD1IF: ADC1	Conversion (Complete Interi	rupt Flag Status	s bit					
		request has or								
	-	request has no		.						
bit 12			er Interrupt Flag	g Status bit						
	•	request has oc request has no								
bit 11	-	-	nterrupt Flag S	Status bit						
		= Interrupt request has occurred								
	•	request has no								
bit 10		-	ot Flag Status k	bit						
	•	request has oc request has no								
bit 9	-	-	pt Flag Status	bit						
		request has or								
	-	request has no								
bit 8		Interrupt Flag								
		request has or request has no								
bit 7	•	Interrupt Flag								
		request has oc								
	0 = Interrupt i	request has no	ot occurred							
bit 6	-	-		upt Flag Status	bit					
	•	request has oc request has no								
bit 5	-	-	nel 2 Interrupt F	-lag Status bit						
	-	request has or	-	<u>.</u>						
		request has no								
bit 4	-	ted: Read as								
bit 3	T1IF: Timer1	Interrupt Flag	Status bit							
		request has or								

-. חוור - - -• •

U-0					EGISTER 0		
0-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	-	imer1 Interrupt					
		pt is Priority 7 (•	itv interrupt)			
	•						
	•						
	•						
		pt is Priority 1 pt source is dis	ablad				
L:1 4 4		-					
bit 11	-	ted: Read as '					
bit 10-8		: Output Compa		•	ity bits		
		pt is Priority 7 (nignest priori	ity interrupt)			
	•						
	•						
		pt is Priority 1					
	000 = Interru	pt source is dis					
bit 7	000 = Interru Unimplemen	pt source is dis nted: Read as '	0'				
	000 = Interru Unimplemen	pt source is dis	0'	errupt Priority b	vits		
	000 = Interru Unimplemen IC1IP<2:0>:	pt source is dis nted: Read as '	0' Channel 1 Inte		its		
	000 = Interru Unimplemen IC1IP<2:0>:	pt source is dis ted: Read as ' Input Capture (0' Channel 1 Inte		its		
	000 = Interru Unimplemen IC1IP<2:0>:	pt source is dis ted: Read as ' Input Capture (0' Channel 1 Inte		its		
	000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru • •	pt source is dis ited: Read as ' Input Capture (pt is Priority 7 (0' Channel 1 Inte		its		
	000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru • • 001 = Interru	pt source is dis ted: Read as ' Input Capture (0' Channel 1 Inte highest priori		vits		
bit 6-4	000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru • 001 = Interru 000 = Interru	pt source is dis ited: Read as ' Input Capture (pt is Priority 7 (pt is Priority 1	^{0'} Channel 1 Inte highest priori abled		its		
bit 6-4 bit 3	000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen	pt source is dis ited: Read as ' Input Capture (pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as '	^{0'} Channel 1 Inte highest priori abled 0'	ity interrupt)	its		
bit 6-4 bit 3	000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen INT0IP<2:0>	pt source is dis nted: Read as ' Input Capture (pt is Priority 7 (pt is Priority 1 pt source is dis	0' Channel 1 Inte highest priori abled 0' rupt 0 Priority	ity interrupt) ^r bits	vits		
bit 6-4 bit 3	000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen INT0IP<2:0>	pt source is dis ited: Read as ' Input Capture (pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as ' : External Inter	0' Channel 1 Inte highest priori abled 0' rupt 0 Priority	ity interrupt) ^r bits	its		
bit 7 bit 6-4 bit 3 bit 2-0	000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen INT0IP<2:0>	pt source is dis ited: Read as ' Input Capture (pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as ' : External Inter	0' Channel 1 Inte highest priori abled 0' rupt 0 Priority	ity interrupt) ^r bits	its		
bit 6-4 bit 3	000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen INT0IP<2:0> 111 = Interru	pt source is dis ited: Read as ' Input Capture (pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as ' : External Inter	0' Channel 1 Inte highest priori abled 0' rupt 0 Priority	ity interrupt) ^r bits	vits		

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

REGISTER	10-9: RPINE	20: PERIPH	ERAL PIN S	ELECT INPU	TREGISTER	20	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SCK1R4 ⁽¹⁾	SCK1R3 ⁽¹⁾	SCK1R2 ⁽¹⁾	SCK1R1 ⁽¹⁾	SCK1R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			SDI1R4 ⁽¹⁾	SDI1R3 ⁽¹⁾	SDI1R2 ⁽¹⁾	SDI1R1 ⁽¹⁾	SDI1R0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readabl		W = Writable		-	nented bit, read		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
1 1 4 5 4 0			o.!				
bit 15-13	-	ted: Read as '			.		
bit 12-8			Clock Input (S	CK1IN) to the	Corresponding	RPn Pin bits	
	11111 = Inpu 11110 = Res						
	11110 = Res	erved					
	11010 = Res						
	11001 = I npu	ut tied to RP25					
	•						
	•						
	00001 = Inpu	ut tied to RP1					
	00000 = Inpu						
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	SDI1R<4:0>:	Assign SPI1 E	Data Input (SD	11) to the Corre	esponding RPn	Pin bits ⁽¹⁾	
	11111 = I npu						
	11110 = Res	erved					
	•						
	•						
	11010 = Res	erved					
		ut tied to RP25					
	00001 = Inpu	it tied to RP1					
	000001 = Inpu						
		•					

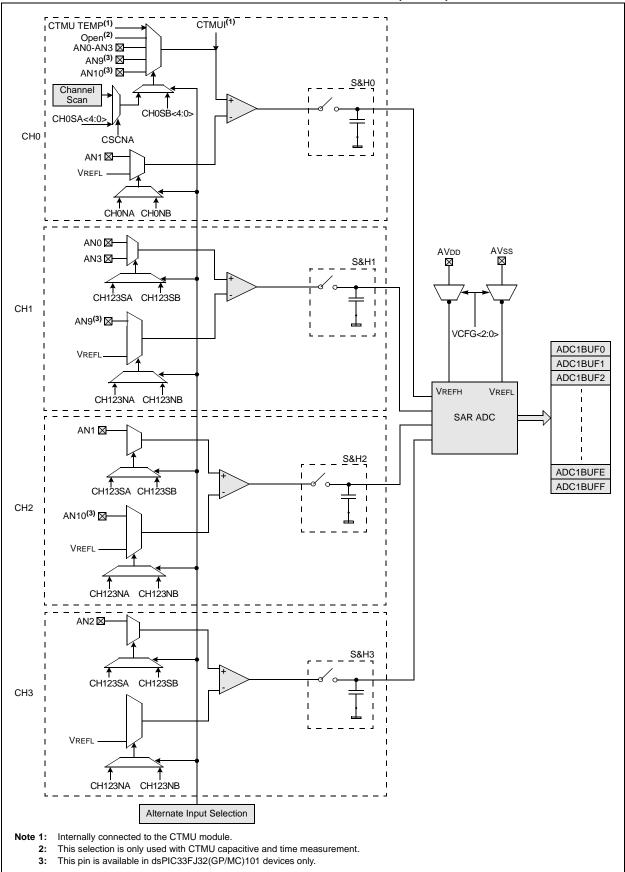
REGISTER 10-9: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—		—	_		—			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I			
bit 7							bit (
Legend:			L :4							
R = Readab		W = Writable		•	nented bit, read					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN			
bit 15-6	Unimplement	ted: Read as '	o'							
bit 5	•			nal Going Activ	o hit					
DIT D		e provided fron	Ũ	nai Going Activ						
		provided from								
bit 4	DTS3I: Dead-	Time Select fo	r PWM3 Sign	al Going Inactiv	ve bit					
		e provided fron								
		e provided fron								
bit 3			•	nal Going Activ	e bit					
		e provided fron								
h :+ 0		e provided fron			e hit					
bit 2		e provided fron	•	al Going Inactiv	e dit					
		e provided from								
bit 1		-		nal Going Activ	e bit					
		DTS1A: Dead-Time Select for PWM1 Signal Going Active bit 1 = Dead time provided from Unit B								
		e provided fron								
bit 0	DTS1I: Dead-	Time Select for	r PWM1 Sign	al Going Inactiv	ve bit					
		e provided fron	n Unit B							
		e provided fron								

REGISTER 15-8: PxDTCON2: PWMx DEAD-TIME CONTROL REGISTER 2

18.1 UART Helpful Tips

- In multi-node, direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.


18.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access
	the product page using the link above,
	enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554109

18.2.1 KEY RESOURCES

- "UART" (DS70188) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33/PIC24 Family Reference Manual"* sections
- Development Tools

	19-5: AD1C				CT REGISTE	IN IN	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	—	—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15							bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA		_	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7				1			bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is clea		x = Bit is unkr	nown
bit 15		-	e Input Select f	or Sample B bi	t		
		0 negative inpu 0 negative inpu					
bit 14-13		ited: Read as					
bit 12-8	-		ositive Input Se	lect for Sample	B hits		
511 12 0		0 = Reserved:	-	loot for Gampie	Disto		
			input is AN15	2)			
			ected, all inputs				
			input is connect		emperature se	nsor	
			input is AN12 ⁽² input is AN11 ⁽²				
	01011 = Cha	annel 0 positive	input is AN10 ^{(;}	3)			
			input is AN9 ⁽³⁾				
			input is AN8 ⁽²⁾				
			input is AN7 ⁽²⁾				
		nnel 0 positive	input is AN6 ^{•-}				
	00100 = 010		input is AN5 ⁽¹⁾)			
			input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾)			
	00011 = Cha 00010 = Cha	annel 0 positive annel 0 positive annel 0 positive	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2)			
	00011 = Cha 00010 = Cha 00001 = Cha	annel 0 positive annel 0 positive annel 0 positive annel 0 positive	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2 input is AN2)			
h:+ 7	00011 = Cha 00010 = Cha 00001 = Cha 00000 = Cha	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2 input is AN1 input is AN0				
bit 7	00011 = Cha 00010 = Cha 00001 = Cha 00000 = Cha CH0NA: Cha	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2 input is AN1 input is AN0 e Input Select f		t		
bit 7	00011 = Cha 00010 = Cha 00001 = Cha 00000 = Cha CHONA: Cha 1 = Channel	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2 input is AN1 input is AN0 e Input Select fut is AN1		t		
	00011 = Cha 00010 = Cha 00001 = Cha 00000 = Cha CH0NA: Cha 1 = Channel 0 = Channel	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2 input is AN1 input is AN0 e Input Select fut is AN1 ut is AVSS		t		
bit 6-5	00011 = Cha 00010 = Cha 00001 = Cha 00000 = Cha CH0NA: Cha 1 = Channel 0 = Channel Unimplemer	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu ated: Read as	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2 input is AN1 input is AN0 e Input Select f at is AN1 at is AVSS	or Sample A bi			
bit 7 bit 6-5 bit 4-0	00011 = Cha 00010 = Cha 00001 = Cha 00000 = Cha CH0NA: Cha 1 = Channel 0 = Channel Unimplemer CH0SA<4:0	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu ated: Read as •: Channel 0 P	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2 input is AN1 input is AN0 e Input Select fut is AN1 ut is AVSS	or Sample A bi			
bit 6-5 bit 4-0	00011 = Cha 00010 = Cha 00001 = Cha 00000 = Cha CH0NA: Cha 1 = Channel 0 = Channel Unimplemer CH0SA<4:0	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu ated: Read as •: Channel 0 P c12-8> for the a	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2 input is AN1 input is AN0 e Input Select f at is AN1 at is AVss o' ositive Input Se available setting	or Sample A bi lect for Sample ls.	e A bits	01, where it is r	eserved.
bit 6-5 bit 4-0 Note 1: Thi	00011 = Cha 00010 = Cha 00001 = Cha 00000 = Cha CH0NA: Cha 1 = Channel 0 = Channel Unimplemer CH0SA<4:0 Refer to bits<	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inpu 0 negative inpu ated: Read as •: Channel 0 P at2-8> for the a ilable in all dev	input is AN5 ⁽¹⁾ input is AN4 ⁽¹⁾ input is AN3 input is AN2 input is AN1 input is AN0 e Input Select fut is AN1 it is AVss o' ositive Input Se available setting	or Sample A bi lect for Sample js. the dsPIC33F.	A bits JXX(GP/MC)10		

DECISTED 40 F. ADAOLION, ADOA INDUT OLIANINEL A OEL FOT DEOLOTED

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768
	1110 = 1:16,384
	• 0001 = 1:2
	0001 = 1.2 0000 = 1:1
PLLKEN	PLL Lock Enable bit
	1 = Clock switch to PLL will wait until the PLL lock signal is valid
	0 = Clock switch will not wait for the PLL lock signal
ALTI2C	Alternate I ² C [™] Pins bit
	$1 = I^2C$ is mapped to SDA1/SCL1 pins
	$0 = I^2C$ is mapped to ASDA1/ASCL1 pins
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicate on PGEC1 and PGED1
	10 = Communicate on PGEC2 and PGED2
	01 = Communicate on PGEC3 and PGED3
PWMPIN	00 = Reserved, do not use Motor Control PWM Module Pin Mode bit
PVVIVIPIN	
	 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins)
HPOL	Motor Control PWM High Side Polarity bit
	1 = PWM module high side output pins have active-high output polarity
	0 = PWM module high side output pins have active-low output polarity
LPOL	Motor Control PWM Low Side Polarity bit
	1 = PWM module low side output pins have active-high output polarity
	0 = PWM module low side output pins have active-low output polarity

TABLE 23-4: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

23.4 Watchdog Timer (WDT)

For dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

23.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT Time-out (TWDT) period of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods, ranging from 1 ms to 131 seconds, can be achieved.

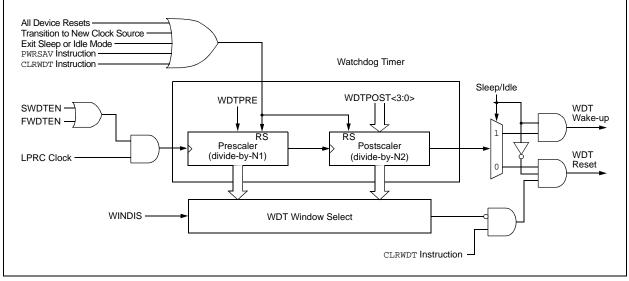
The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 23-2: WDT BLOCK DIAGRAM

23.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.


23.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disables the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
Operati	Operating Voltage						
DC10	Supply \	/oltage ⁽³⁾					
	Vdd		VBOR	_	3.6	V	Industrial and Extended
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—		V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal		1.75	Vss	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.024	—	—	V/ms	0-2.4V in 0.1s

TABLE 26-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

TABLE 26-5: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low		2.40	2.48	2.55	V	See Note 2

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

DC CHARACTERISTICS			(unless oth	perating Condition erwise stated) emperature -40°C -40°C				
Parameter No.	Typical ⁽¹⁾	Max	Units	Units Conditions				
Operating Current (IDD) ⁽²⁾ – dsPIC33FJ16(GP/MC)10X Devices								
DC20d	0.7	1.7	mA	-40°C				
DC20a	0.7	1.7	mA	+25°C	- 3.3V	LPRC		
DC20b	1.0	1.7	mA	+85°C	3.3V	(32.768 kHz) ⁽³⁾		
DC20c	1.3	1.7	mA	+125°C				
DC21d	1.9	2.6	mA	-40°C				
DC21a	1.9	2.6	mA	+25°C	- 3.3V	1 MIPS ⁽³⁾		
DC21b	1.9	2.6	mA	+85°C		T MIPS(*)		
DC21c	2.0	2.6	mA	+125°C				
DC22d	6.5	8.5	mA	-40°C				
DC22a	6.5	8.5	mA	+25°C	- 3.3V	4 MIPS ⁽³⁾		
DC22b	6.5	8.5	mA	+85°C	3.3V	4 MIPS(**		
DC22c	6.5	8.5	mA	+125°C				
DC23d	12.2	16	mA	-40°C				
DC23a	12.2	16	mA	+25°C	2.21/	10 MIPS ⁽³⁾		
DC23b	12.2	16	mA	+85°C	- 3.3V	10 MIPS**		
DC23c	12.2	16	mA	+125°C]			
DC24d	16	21	mA	-40°C				
DC24a	16	21	mA	+25°C	3.3V	16 MIPS		
DC24b	16	21	mA	+85°C	3.3V	10 101175		
DC24c	16	21	mA	+125°C]			

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU executing while(1) statement
- 3: These parameters are characterized, but not tested in manufacturing.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				
DI60a	licl	Input Low Injection Current	0	-5 ^(5,8)	_	mA	All pins excep <u>t VDD,</u> Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO and RB14
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO, RB14 and digital 5V tolerant designated pins
DI60c	∑ lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

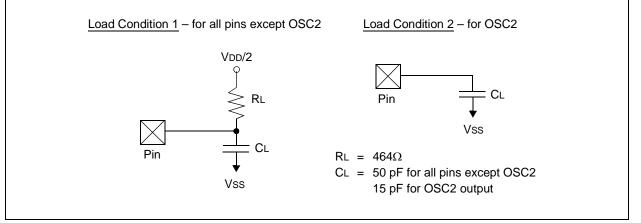
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.

6: Non-5V tolerant pins, VIH source > (VDD + 0.3), 5V tolerant pins, VIH source > 5.5V. Characterized but not tested.

- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.


26.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family AC characteristics and timing parameters.

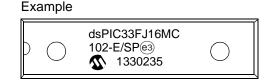
TABLE 26-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	$\begin{array}{ll} \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \\ \mbox{Operating voltage VDD range as described in Section 26.1 "DC Characteristics".} \end{array}$				

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 Pin		_	15	pF	In MS and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx			400	pF	In I ² C™ mode


28.1 Package Marking Information (Continued)

28-Lead SPDIP

28-Lead SOIC

Example

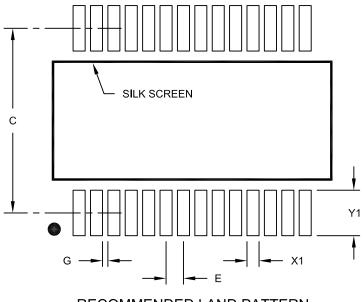
28-Lead SSOP

28-Lead QFN

36-Lead VTLA

Example

Example



Example

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimensi	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

Revision C (June 2011)

This revision includes the following global update:

• All JTAG references have been removed

All other major changes are referenced by their respective section in Table A-2.

In addition, minor text and formatting changes were incorporated throughout the document.

TABLE A-2:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
High-Performance, Ultra Low Cost 16-bit Digital Signal Controllers	The TMS, TDI, TDO, and TCK pin names were removed from these pin diagrams:
	28-pin SPDIP/SOIC/SSOP
	• 28-pin QFN
	• 36-pin TLA
Section 1.0 "Device Overview"	Updated the Buffer Type to Digital for the CTED1 and CTED2 pins (see Table 1-1).
Section 4.0 "Memory Organization"	Updated the SFR Address for IC2CON, IC3BUF, and IC3CON in the Input Capture Register Map (see Table 4-7).
	Added the VREGS bit to the RCON register in the System Control Register Map (see Table 4-27).
Section 6.0 "Resets"	Added the VREGS bit to the RCON register (see Register 6-1).
Section 8.0 "Oscillator Configuration"	Updated the definition for COSC<2:0> = 001 and NOSC<2:0> = 001 in the OSCCON register (see Register 8-1).
Section 15.0 "Motor Control PWM Module"	Updated the title for Example 15-1 to include a reference to the Assembly language.
	Added Example 15-2, which provides a C code version of the write- protected register unlock and Fault clearing sequence.
Section 19.0 "10-bit Analog-to-Digital Converter (ADC)"	Updated the CH0 section and added Note 2 in both ADC block diagrams (see Figure 19-1 and Figure 19-2).
	Updated the multiplexer values in the ADC Conversion Clock Period Block Diagram (see Figure 19-3.
	Added the 01110 bit definitions and updated the 01101 bit definitions for the CH0SB<4:0> and CH0SA<4:0> bits in the AD1CHS0 register (see Register 19-5).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Removed Section 22.1 "Measuring Capacitance", Section 22.2 "Measuring Time", and Section 22.3 "Pulse Generation and Delay"
	Updated the key features.
	Added the CTMU Block Diagram (see Figure 22-1).
	Updated the ITRIM<5:0> bit definitions and added Note 1 to the CTMU Current Control register (see Register 22-3).

TABLE A-3: MAJOR	SECTION UPDATES (CONTINUED)
Section Name	Update Description
Section 7.0 "Interrupt	Updated the Interrupt Vectors (see Table 7-1).
Controller"	The following registers were updated or added:
	Register 7-5: IFS0: Interrupt Flag Status Register 0
	Register 7-11: IEC1: Interrupt Enable Control Register 1
	Register 7-21: IPC6: Interrupt Priority Control Register 6
Section 9.0 "Power- Saving Features"	Updated 9.5 PMD Control Registers.
Section 10.0 "I/O Ports"	Updated TABLE 10-1: Selectable Input Sources (Maps Input to Function) ⁽¹⁾ .
	Updated TABLE 10-2: Output Selection for Remappable Pin (RPn)
	The following registers were updated or added:
	 Register 10-4: RPINR4: Peripheral Pin Select Input Register 4
	 Register 10-6: RPINR8: Peripheral Pin Select Input Register 8
	 Register 10-19: RPOR8: Peripheral Pin Select Output Register 8
	 Register 10-20: RPOR9: Peripheral Pin Select Output Register 9
	 Register 10-21: RPOR10: Peripheral Pin Select Output Register 10
	 Register 10-22: RPOR11: Peripheral Pin Select Output Register 11
	Register 10-23: RPOR12: Peripheral Pin Select Output Register 12
Section 12.0 "Timer2/3 and Timer4/5"	The features and operation information was extensively updated in support of Timer4/5 (see Section 12.1 "32-Bit Operation" and Section 12.2 "16-Bit Operation").
	The block diagrams were updated in support of the new timers (see Figure 12-1, Figure 12-2, and Figure 12-3).
	The following registers were added:
	Register 12-3: T4CON: Timer4 Control Register(1)
	Register 12-4: T5CON: Timer5 Control Register(1)
Section 15.0 "Motor	Updated TABLE 15-1: Internal Pull-down resistors on PWM Fault pins.
Control PWM Module"	Note 2 was added to Register 15-5: PWMXCON1: PWMx Control Register 1 ⁽¹⁾ .
Section 19.0 "10-Bit	The number of available input pins and channels were updated from six to 14.
Analog-to-Digital Converter (ADC)"	Updated FIGURE 19-1: ADC1 Block Diagram for dsPIC33FJXX(GP/MC)101 Devices.
. ,	Updated FIGURE 19-2: ADC1 Block Diagram for dsPIC33FJXX(GP/MC)102 Devices.
	Added FIGURE 19-3: ADC1 Block Diagram for dsPIC33FJ32(GP/MC)104 Devices.
	The following registers were updated:Register 19-4: AD1CHS123: ADC1 Input Channel 1, 2, 3 Select Register
	Register 19-5: AD1CHS0: ADC1 INPUT Channel 0 select Register
	Register 19-6: AD1CSSL: ADC1 Input Scan Select Register Low ^(1,2,3)
	 Register 19-7: AD1PCFGL: ADC1 Port Configuration Register Low^(1,2,3)

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)

NOTES: