

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp102t-i-ml

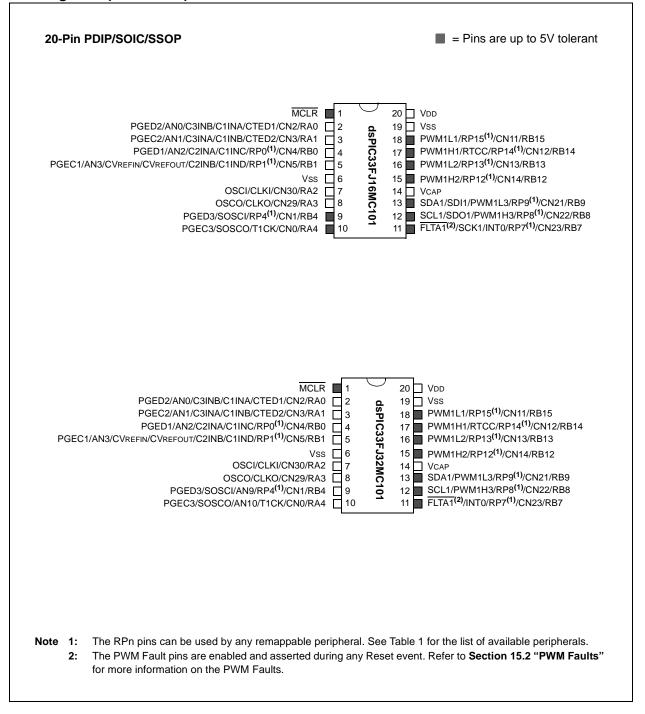
Email: info@E-XFL.COM

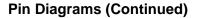
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

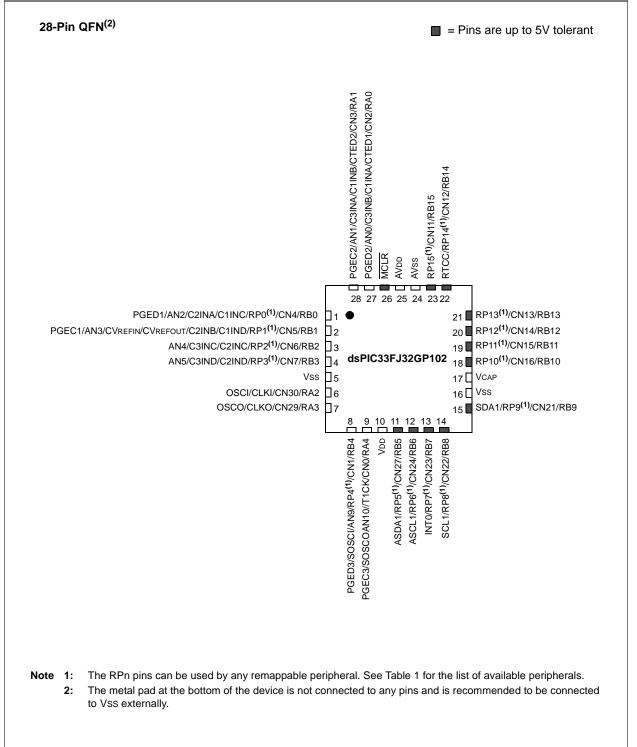
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

		rte)			Rem	appa	ble l	Perip	herals	5	М		Ŋ						
Device	Pins	Program Flash (Kbyte)	RAM (Kbytes)	Remappable Pins	16-bit Timer ^(1,2)	Input Capture	Output Compare	UART	External Interrupts ⁽³⁾	SPI	Motor Control PWM	PWM Faults	10-Bit, 1.1 Msps ADC	RTCC	I²C™	Comparators	CTMU	I/O Pins	Packages
dsPIC33FJ16GP101	18	16	1	8	3	3	2	1	3	1		—	1 ADC, 4-ch	Y	1	3	Y	13	PDIP, SOIC
	20	16	1	8	3	3	2	1	3	1	_	—	1 ADC, 4-ch	Y	1	3	Y	15	SSOP
dsPIC33FJ16GP102	28	16	1	16	3	3	2	1	3	1	_	_	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1		—	1 ADC, 6-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ16MC101	20	16	1	10	3	3	2	1	3	1	6-ch	1	1 ADC, 4-ch	Y	1	3	Y	15	PDIP, SOIC, SSOP
dsPIC33FJ16MC102	28	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	VTLA


TABLE 1:dsPIC33FJ16(GP/MC)101/102 DEVICE FEATURES


Note 1: Two out of three timers are remappable.


2: One pair can be combined to create one 32-bit timer.

3: Two out of three interrupts are remappable.

Pin Diagrams (Continued)

																1		
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300	ADC1 Data Buffer 0										xxxx						
ADC1BUF1	0302								ADC1 D	Data Buffer	1							xxxx
ADC1BUF2	0304		ADC1 Data Buffer 2 x										xxxx					
ADC1BUF3	0306								ADC1 D	Data Buffer	3							xxxx
ADC1BUF4	0308								ADC1 D	Data Buffer	4							xxxx
ADC1BUF5	030A								ADC1 D	Data Buffer	5							xxxx
ADC1BUF6	030C								ADC1 D	Data Buffer	6							xxxx
ADC1BUF7	030E								ADC1 D	Data Buffer	7							xxxx
ADC1BUF8	0310								ADC1 D	Data Buffer	8							xxxx
ADC1BUF9	0312								ADC1 D	Data Buffer	9							xxxx
ADC1BUFA	0314								ADC1 D	ata Buffer	10							xxxx
ADC1BUFB	0316								ADC1 D	ata Buffer	11							xxxx
ADC1BUFC	0318								ADC1 D	ata Buffer	12							xxxx
ADC1BUFD	031A								ADC1 D	ata Buffer	13							xxxx
ADC1BUFE	031C								ADC1 D	ata Buffer	14							xxxx
ADC1BUFF	031E								ADC1 D	ata Buffer	15							xxxx
AD1CON1	0320	ADON	_	ADSIDL	_	_	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	_	_	CSCNA	CHPS1	CHPS0	BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326		_	—	_	_	CH123NB1	CH123NB0	CH123SB	_	—	_	_	_	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB	—	—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	—		CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	_	—	—	—		PCFG<	10:9> ⁽¹⁾	—	_	—		—		PCF	G<3:0>		0000
AD1CSSL	0330	_	—	—	—		CSS<1	0:9> ⁽¹⁾	—	_	—		—		CSS	S<3:0>		0000

TABLE 4-15: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)101 DEVICES

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)101/102 devices only.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

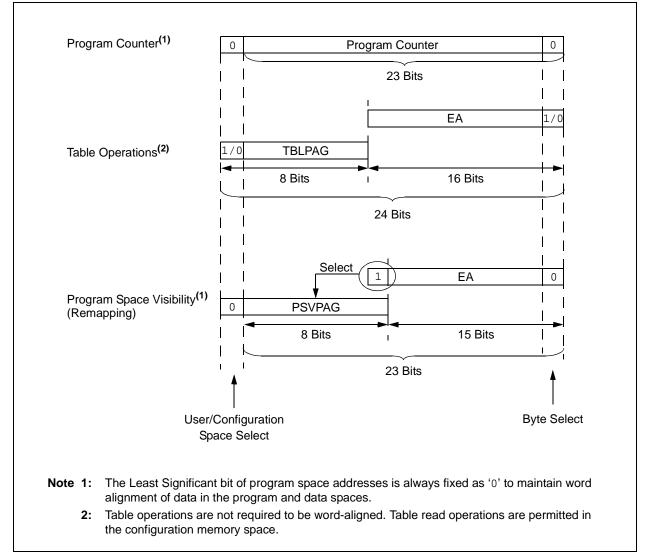

TABLE 4-16: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES																		
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Data	Buffer 0								xxxx
ADC1BUF1	0302		ADC1 Data Buffer 1										xxxx					
ADC1BUF2	0304								ADC1 Data	Buffer 2								xxxx
ADC1BUF3	0306								ADC1 Data	Buffer 3								xxxx
ADC1BUF4	0308								ADC1 Data	Buffer 4								xxxx
ADC1BUF5	030A								ADC1 Data	Buffer 5								xxxx
ADC1BUF6	030C								ADC1 Data	Buffer 6								xxxx
ADC1BUF7	030E								ADC1 Data	Buffer 7								xxxx
ADC1BUF8	0310								ADC1 Data	Buffer 8								xxxx
ADC1BUF9	0312		ADC1 Data Buffer 9									xxxx						
ADC1BUFA	0314							A	ADC1 Data E	Buffer 10								xxxx
ADC1BUFB	0316							ŀ	ADC1 Data B	Buffer 11								xxxx
ADC1BUFC	0318							ŀ	ADC1 Data E	Buffer 12								xxxx
ADC1BUFD	031A							ŀ	ADC1 Data E	Buffer 13								xxxx
ADC1BUFE	031C							A	ADC1 Data E	Buffer 14								xxxx
ADC1BUFF	031E							A	ADC1 Data E	Buffer 15								xxxx
AD1CON1	0320	ADON	_	ADSIDL	_	—	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	_	—	CSCNA	CHPS1	CHPS0	BUFS		SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	—	_	_	_	—	CH123NB1	CH123NB0	CH123SB	_			_	_	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA			CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	—	_	—	_	—		10:9> ⁽¹⁾	_	_	_			PC	FG<5:0>			0000
AD1CSSL	0330	CSS<10:9> ⁽¹⁾ CSS<5:0> 00							0000									

TABLE 4-16: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)101/102 devices only.

5.2 RTSP Operation

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions); and to program one word. Table 26-12 shows typical erase and programming times. The 8-row erase pages are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the operation is finished.

The programming time depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3). Use the following formula to calculate the minimum and maximum values for the Word write time and page erase time (see Parameters D138a and D138b, and Parameters D137a and D137b in Table 26-12, respectively).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 8-3) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

 $T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 + 0.02) \times (1 - 0.00375)} = 47.4 \mu s$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 - 0.02) \times (1 - 0.00375)} = 49.3 \mu s$$

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one word (24 bits) of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Note:	Performing a page erase operation on the									
	last page of program memory will clear the									
	Flash Configuration Words, thereby									
	enabling code protection as a result.									
	Therefore, users should avoid performing									
	page erase operations on the last page of									
	program memory.									

Refer to **"Flash Programming"** (DS70191) in the *"dsPIC33/PIC24 Family Reference Manual"* for details and codes examples on programming using RTSP.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

D / M A	D 444 A	D.4.4. 0	DAMA	DALLA	DALLA	DAMA	D 44/ 6						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE						
bit 15							bi						
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0						
SFTACERR		<u> </u>	MATHERR	ADDRERR	STKERR	OSCFAIL							
bit 7	BIVOLINI			ABBRERR	OTTLETT	00017112	bi						
Legend:													
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
6:4 <i>7</i>		www.unt.Nie.otie.ev.F	Niachla hit										
bit 15		rrupt Nesting E											
	 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled 												
bit 14	-	cumulator A O		lag bit									
	1 = Trap was	 1 = Trap was caused by overflow of Accumulator A 0 = Trap was not caused by overflow of Accumulator A 											
	0 = Trap was	not caused by	overflow of Ad	ccumulator A									
bit 13		cumulator B O	-	-									
		caused by ove not caused by											
bit 12	-	-	Dverflow Trap F	lag hit									
			•	flow of Accumu	•								
	•	•	•	overflow of Accu									
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit												
				flow of Accumu									
	-	-	-	overflow of Accu	umulator B								
bit 10	OVATE: Accumulator A Overflow Trap Enable bit												
	1 = Trap overflow of Accumulator A 0 = Trap is disabled												
bit 9		umulator B Ove	erflow Trap En	able bit									
		flow of Accum											
	0 = Trap is di	sabled											
bit 8	COVTE: Cata	astrophic Overf	low Trap Enab	ole bit									
			erflow of Accur	mulator A or B i	s enabled								
hit 7	0 = Trap is dis	sabled Shift Accumula	tor Error State	ia hit									
bit 7					chift								
	 1 = Math error trap was caused by an invalid accumulator shift 0 = Math error trap was not caused by an invalid accumulator shift 												
bit 6		ithmetic Error :	-										
		or trap was cau	•	•									
		r trap was not	-	ivide-by-zero									
bit 5	Unimplemented: Read as '0'												
it 4	MATHERR: Arithmetic Error Status bit 1 = Math error trap has occurred												
	1 14-41		una al										

INTOONA, INTERDURT CONTROL DECISTER A

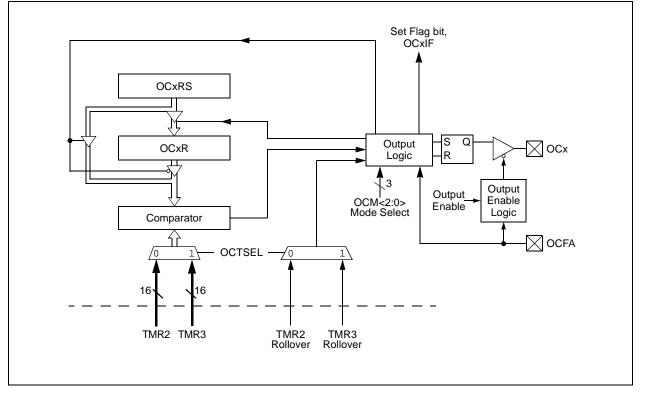
8.2 Oscillator Control Registers

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y					
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾					
bit 15					•		bit 8					
DAMA	DAMO			D/0 0		DANO	DAVA					
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0					
CLKLOCK	IOLOCK	LOCK		CF		LPOSCEN	OSWEN					
bit 7							bit (
Legend:		C = Clearable	e bit	y = Value set	from Configura	tion bits on PO	R					
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown					
bit 15	Unimplemen	ted: Read as '	0'									
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only)							
	101 = Low-Po 100 = Second 011 = Primary 010 = Primary 001 = Fast R	C Oscillator (Fl ower RC Oscill dary Oscillator y Oscillator (M y Oscillator (M C Oscillator (Fl C Oscillator (Fl	ator (LPRC) (SOSC) S, EC) with PL S, HS, EC) RC) with Divid	L	L (FRCPLL)							
bit 11	Unimplemented: Read as '0'											
bit 10-8	NOSC<2:0>:	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾										
	110 = Fast R 101 = Low-Po 100 = Second 011 = Primar 010 = Primar 001 = Fast R	C Oscillator (FI C Oscillator (FI ower RC Oscill dary Oscillator y Oscillator (Mi y Oscillator (Mi C Oscillator (FI C Oscillator (FI	RC) with Divid ator (LPRC) (SOSC) S, EC) with PL S, HS, EC) RC) with Divid	le-by-16 _L	L (FRCPLL)							
bit 7	CLKLOCK: C	lock Lock Ena	ble bit									
					KSM<1:0> (FO	SC<7:6>) = 0b	01):					
		itching is disab itching is enab			n be modified by	/ clock switchin	a					
bit 6		ipheral Pin Sel	-			,	~					
	1 = Periphera	al Pin Select is	locked, a write		l Pin Select regi ieral Pin Select							
bit 5	LOCK: PLL L	ock Status bit	(read-only)									
		that PLL is in that PLL is ou			satisfied progress or PLL	is disabled						
bit 4	Unimplemen	ted: Read as '	0'									
	/rites to this regis				Oscillator (Part	t VI) " (DS7064∠	1) in the					
	irect clock switch his applies to cloc											

mode as a transitional clock source between the two PLL modes.

14.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare" (DS70209) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Output Compare Control register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 14-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

REGISTER	16-2: SPIXC	ON1: SPIx C	ONTROL RE	EGISTER 1			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7		l		1			bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	DISSCK: Disa	able SCKx pin	bit (SPI Maste	r modes only)			
		PI clock is disa	•	tions as I/O			
		PI clock is ena					
bit 11		able SDOx pin					
		is not used by is controlled b		oin functions as	s I/O		
pit 10	-	ord/Byte Comm	-	ect bit			
	1 = Communi	cation is word-	wide (16 bits)				
	0 = Communi	cation is byte-	wide (8 bits)				
bit 9	SMP: SPIx D	ata Input Samp	ole Phase bit				
		<u>:</u> a sampled at er a sampled at m					
	Slave mode:	-		n Slave mode.			
bit 8	CKE: Clock E	dge Select bit	(1)				
						lle clock state (ve clock state (
bit 7	SSEN: SPIX S	Slave Select E	nable bit (Slav	e mode) ⁽²⁾			
		s used for Slav s not used by th		is controlled b	by port function		
oit 6	CKP: Clock F	Polarity Select I	oit				
				ve state is a lov e state is a high			
bit 5	MSTEN: Mas	ter Mode Enab	ole bit				
	1 = Master m 0 = Slave mo						
	he CKE bit is not FRMEN = 1).	used in the Fra	amed SPI moo	des. Program ti	his bit to '0' for	the Framed SP	'l modes
	his bit must be cl						
3: D	o not set both pri	mary and seco	ondary prescal	ers to a value o	of 1:1.		

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware clears at end of master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master) 1 = Enables Receive mode for I^2C ; hardware clears at end of eighth bit of the master receive data byte 0 = Receive sequence is not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as l²C master) 1 = Initiates Stop condition on SDAx and SCLx pins; hardware clears at end of the master Stop sequence 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware clears at end of the master Repeated Start sequence 0 = Repeated Start condition is not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiates Start condition on SDAx and SCLx pins; hardware clears at end of master Start sequence 0 = Start condition is not in progress

	REGI	STER		X WASK GA	ATING CONTI	ROL				
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7							bit 0			
Legend:										
R = Readable b	oit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at P	OR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unki	nown			
bit 15	1 = The mas 0 = The mas	king (blanking)	function will pro function will pro	event any asse	erted ('0') compa erted ('1') compa					
bit 14	-	nted: Read as		L :4						
bit 13	1 = MCI is c	Gate C Input In connected to OF not connected to	R gate	DIT						
bit 12	OCNEN: OF	R Gate C Input	Inverted Enabl	e bit						
	 1 = Inverted MCI is connected to OR gate 0 = Inverted MCI is not connected to OR gate 									
bit 11	OBEN: OR	R Gate B Input Inverted Enable bit								
		onnected to OF ot connected to								
bit 10		R Gate B Input								
		MBI is connect MBI is not con								
bit 9	OAEN: OR	Gate A Input Er	nable bit							
		onnected to OF ot connected to								
bit 8	OANEN: OF	R Gate A Input	Inverted Enabl	e bit						
		MAI is connect MAI is not con	•							
bit 7	1 = Inverted	ative AND Gate ANDI is conne ANDI is not co	cted to OR gat	te						
bit 6	1 = ANDI is	tive AND Gate connected to C not connected	R gate							
bit 5	ACEN: AND 1 = MCI is c	O Gate A1 C Inp connected to AN	out Inverted En	able bit						
		of connected 1-								
bit 4		ot connected to	-	nabla kit						

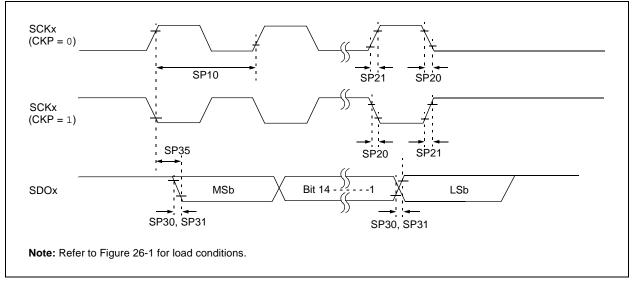
DECISTED 20-4. CMVMSKCON- COMPADATOR V MASK GATING CONTROL

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,Ad	cc,Wx,Wxd,Wy,Wyd	Wx, Wxd, Wy, Wyd Multiply Wm by Wn to Accumulator			OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ad	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ad	cc,Wx,Wxd,Wy,Wyd	(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,2
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,2
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
~ .		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
~=		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACI	TERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Parameter No.	Typical ⁽¹⁾	Max	Units Conditions							
Operating Cur	rent (IDD) ⁽²⁾ –	dsPIC33FJ1	6(GP/MC)10X	Devices						
DC20d	0.7	1.7	mA	-40°C						
DC20a	0.7	1.7	mA	+25°C	- 3.3V	LPRC				
DC20b	1.0	1.7	mA	+85°C	3.3V	(32.768 kHz) ⁽³⁾				
DC20c	1.3	1.7	mA	+125°C						
DC21d	1.9	2.6	mA	-40°C						
DC21a	1.9	2.6	mA	+25°C	- 3.3V	1 MIPS ⁽³⁾				
DC21b	1.9	2.6	mA	+85°C	- 3.3V	T MIPS(*)				
DC21c	2.0	2.6	mA	+125°C						
DC22d	6.5	8.5	mA	-40°C						
DC22a	6.5	8.5	mA	+25°C	- 3.3V	4 MIPS ⁽³⁾				
DC22b	6.5	8.5	mA	+85°C	3.3V	4 1011250				
DC22c	6.5	8.5	mA	+125°C						
DC23d	12.2	16	mA	-40°C						
DC23a	12.2	16	mA	+25°C	2.21/	10 MIPS ⁽³⁾				
DC23b	12.2	16	mA	+85°C	- 3.3V	10 MIPS**				
DC23c	12.2	16	mA	+125°C]					
DC24d	16	21	mA	-40°C						
DC24a	16	21	mA	+25°C	- 3.3V	16 MIPS				
DC24b	16	21	mA	+85°C	3.3V	10 101173				
DC24c	16	21	mA	+125°C	7					

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)


Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

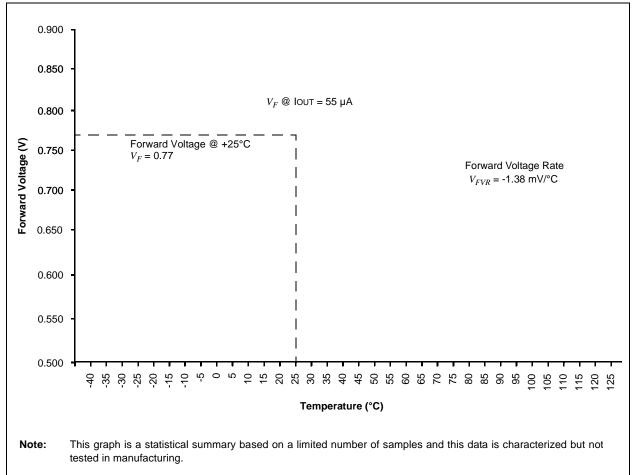
2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU executing while(1) statement
- 3: These parameters are characterized, but not tested in manufacturing.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 26-30	—	—	0,1	0,1	0,1
10 MHz	—	Table 26-31	—	1	0,1	1
10 MHz	—	Table 26-32	—	0	0,1	1
15 MHz	—	—	Table 26-33	1	0	0
11 MHz	—	—	Table 26-34	1	1	0
15 MHz	_	_	Table 26-35	0	1	0
11 MHz			Table 26-36	0	0	0

FIGURE 26-11: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

TABLE 26-41:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X


AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	—	-	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	—		ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

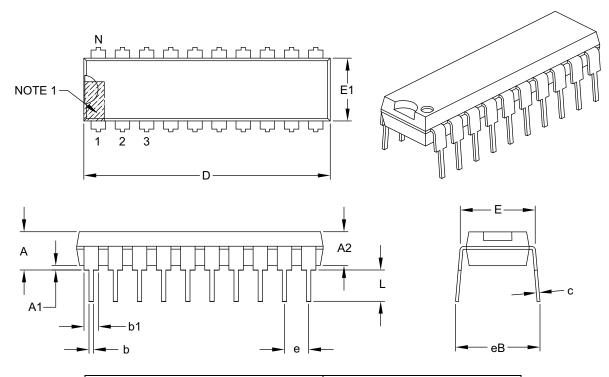

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-33: FORWARD VOLTAGE VERSUS TEMPERATURE

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	Ν	20		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

SPIx Master Transmit Mode (Half-Duplex)
for dsPIC33FJ16(GP/MC)10X
SPIx Master Transmit Mode (Half-Duplex)
for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
Timer1 External Clock
Timer2/4 External Clock
Timer3/5 External Clock
Timing Specifications
Comparator Module
Comparator Timing
Comparator Voltage Reference
Comparator Voltage Reference Settling Time

U

UART	
Control Registers	213
Helpful Tips	212
Resources	212
Universal Asynchronous Receiver	
Transmitter (UART)	
Using the RCON Status Bits	
v	
Voltage Regulator (On-Chip)	
W	
Watchdog Timer (WDT)	267
Programming Considerations	
WWW Address	387
WWW, On-Line Support	