

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp104-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the "dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70659) for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- "MPLAB[®] ICD 3 Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS51616)
- *"Using MPLAB[®] REAL ICE™"* (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

					GISTER		
R/SO-0(1)	R/W-0(1)	R/W-0('')	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR					—
bit 15							bit 8
	(1)			(1)	(1)		
U-0	R/W-0(")	U-0	U-0	R/W-0(1)	R/W-0(1)	R/W-0(1)	R/W-0(1)
	ERASE	—	—	NVMOP3(2)	NVMOP2(2)	NVMOP1 ⁽²⁾	NVMOP0(2)
bit 7							bit 0
Legend:		SO - Sotta	ble Only hit				
R – Readable	bit	W = Writab		II – Unimplen	nented hit read	l as '0'	
R = Reauable		4^{\prime} = Witab		0' = 0 in the set	arad	v – Ritic unkr	
-11 = value at r		1 = DIL IS S	el		areu		IOWIT
bit 15	WR: Write Cont 1 = Initiates a F cleared by 0 = Program or	rol bit ⁽¹⁾ Flash memor hardware on rerase opera	y program or ce operation i tion is comple	erase operations complete ete and inactive	on; the operatio	on is self-timed	and the bit is
bit 14	WREN: Write E 1 = Enables Fla 0 = Inhibits Flas	nable bit ⁽¹⁾ ash program/ sh program/e	/erase operati erase operatio	ons			
bit 13	 WRERR: Write Sequence Error Flag bit⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally 						
bit 12-7	Unimplemente	d: Read as '	0'				
bit 6	ERASE: Erase/	Program Ena	able bit ⁽¹⁾				
	1 = Performs th0 = Performs th	ne erase ope ne program o	ration specifie	ed by NVMOP<	3:0> on the nex P<3:0> on the	kt WR comman next WR comm	d and
bit 5-4	Unimplemente	d: Read as '	0'				
bit 3-0	NVMOP<3:0>:	NVM Operat	ion Selection	bits ^(1,2)			
	If ERASE = 1: 1111 = No oper 1101 = Erase G 1100 = No oper 0011 = No oper 0000 = No oper 0000 = No oper If ERASE = 0: 1111 = No oper 1001 = No oper 1101 = No oper 1011 = No oper 1001 = No oper 1010 = No oper 0011 = Memory 0010 = No oper 0011 = Memory 0010 = No oper 0001 = No oper 0001 = No oper 0001 = No oper	ration General Segn ration ration ration ration ration ration ration ration ration ration ration ration ration	nent operation am operation				
Note 1: The	ese bits can only b	be reset on a	POR.				
2: All REGISTER 5	other combination	ns of NVMOF Y: NONVOL	<pre>2<3:0> are uni ATILE MEN</pre>	implemented. IORY KEY R	EGISTER		

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

| U-0 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| _ | — | _ | _ | _ | _ | _ | |

© 2011-2014 Microchip Technology Inc.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	—				—
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—		_	—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 15	ALTIVT: Enab	ole Alternate Int	terrupt Vector	Table bit			
	1 = Uses Alte	rnate Interrupt	Vector Table	(- I - f I4)			
L:1 4 4	0 = Uses stan	dard Interrupt	vector lable (default)			
Dit 14	DISI: DISI IN	struction Status	s dit				
	1 = DISI Inst 0 = DISI inst	ruction is active	e ctive				
bit 13-3	Unimplemen	ted: Read as ')'				
bit 2	INT2EP: Exte	rnal Interrupt 2	Edae Detect	Polarity Selec	t bit		
	1 = Interrupt of	on negative edg	ge	,			
	0 = Interrupt o	on positive edg	e				
bit 1	INT1EP: Exte	rnal Interrupt 1	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of	on negative edg	ge				
	0 = Interrupt o	on positive edge	e				
bit 0	INTOEP: Exte	rnal Interrupt 0	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of	on negative edg	ge				
		n positive edge	C				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER	(-5: IFS0: I	INTERRUPT	FLAG STAT	US REGISTI	ERU					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF			
bit 15							bit 8			
										
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF			
bit 7							bit 0			
Logond										
R = Readable	hit	W = Writable	hit	U = Unimpler	mented hit rea	d as '0'				
-n = Value at	POR	(1) = Bit is set		0' = Bit is cle	ared	x = Bit is unkn	own			
			·	0 200000		. 20.000.000	<u> </u>			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	AD1IF: ADC1	1 Conversion C	omplete Inter	rupt Flag Statu	s bit					
	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	t occurred	O (1)						
bit 12	U1 I XIF: UAF	U1TXIF: UART1 Transmitter Interrupt Flag Status bit								
	0 = Interrupt	request has oc	t occurred							
bit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag	Status bit						
	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	t occurred							
bit 10	SPI1IF: SPI1	SPITIF: SPIT Event Interrupt Flag Status bit								
	1 = Interrupt 0 = Interrupt	request has oc	t occurred							
bit 9	SPI1EIF: SPI	1 Fault Interru	ot Flag Status	bit						
	1 = Interrupt	= Interrupt request has occurred								
	0 = Interrupt	request has no	t occurred							
bit 8	T3IF: limer3	Interrupt Flag	Status bit							
	1 = Interrupt 0 = Interrupt	1 = Interrupt request has occurred 0 = Interrupt request has not occurred								
bit 7	T2IF: Timer2	Interrupt Flag	Status bit							
	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	t occurred							
bit 6	OC2IF: Output	ut Compare Ch	annel 2 Interr	upt Flag Status	s bit					
	1 = Interrupt 0 = Interrupt	1 = Interrupt request has occurred								
bit 5	IC2IF: Input C	IC2IF: Input Capture Channel 2 Interrupt Flag Status bit								
	1 = Interrupt	request has oc	curred	-						
	0 = Interrupt	request has no	t occurred							
bit 4	Unimplemen	ted: Read as '	0'							
DIT 3	1 - Interrupt	Interrupt Flag	Status bit							
	1 = 111errupt 0 = Interrupt	request has oc	t occurred							
		•								

-י חוור - - -• •

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:							
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)							
	See MPLAB IDE Help for more information.							

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

NOTES:

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DTBPS1	DTBPS0	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0			
bit 15		•		÷	•		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DTAPS1	DTAPS0	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0			
bit 7		•		·	·		bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-14	DTBPS<1:0>	: Dead-Time U	nit B Prescale	e Select bits						
	11 = Clock pe	eriod for Dead-	Time Unit B is	8 TCY						
	10 = Clock pe	eriod for Dead-	Time Unit B is	s 4 Tcy						
	01 = Clock pe	eriod for Dead-	Time Unit B is	2 TCY						
	00 = Clock period	eriod for Dead-	Time Unit B is	S TCY						
bit 13-8	DTB<5:0>: U	nsigned 6-Bit [Dead-Time Va	lue for Dead-T	ime Unit B bits					
bit 7-6	DTAPS<1:0>	: Dead-Time U	nit A Prescale	e Select bits						
	11 = Clock pe	eriod for Dead-	Time Unit A is	8 TCY						
	10 = Clock period	eriod for Dead-	Time Unit A is	s 4 Tcy						
	01 = Clock pe	01 = Clock period for Dead-Time Unit A is 2 Tcy								

REGISTER 15-7: PxDTCON1: PWMx DEAD-TIME CONTROL REGISTER 1

- 00 = Clock period for Dead-Time Unit A is TCY
- bit 5-0 DTA<5:0>: Unsigned 6-Bit Dead-Time Value for Dead-Time Unit A bits

REGISTER 15-12: PxDC1: PWMx DUTY CYCLE 1 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	1<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	:1<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 PDC1<15:0>: PWMx Duty Cycle 1 Value bits

REGISTER 15-13: PxDC2: PWMx DUTY CYCLE 2 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC2	<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC2	2<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PDC2<15:0>: PWMx Duty Cycle 2 Value bits

REGISTER 15-14: PxDC3: PWMx DUTY CYCLE 3 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC:	3<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PDC3<15:0>: PWMx Duty Cycle 3 Value bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PWMKE	/<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PWMKE	Y<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			le bit	U = Unimplemented, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x =			x = Bit is unl	known			

REGISTER 15-15: PWMxKEY: PWMx UNLOCK REGISTER

bit 15-0 PWMKEY<15:0>: PWMx Unlock bits

If the PWMLOCK Configuration bit is asserted (PWMLOCK = 1), the PWMxCON1, PxFLTACON and PxFLTBCON registers are writable only after the proper sequence is written to the PWMxKEY register. If the PWMLOCK Configuration bit is deasserted (PWMLOCK = 0), the PWMxCON1, PxFLTACON and PxFLTBCON registers are writable at all times. Refer to "**Motor Control PWM**" (DS70187) in the "*dsPIC33/ PIC24 Family Reference Manual*" for details on the unlock sequence.

U-0	U-	0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	-	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15								bit 8
R/W-	0 R/W	/-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN	(2) CK	P	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7								bit 0
Legend:								
R = Read	dable bit	,	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Valu	e at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	Unimp	lemente	ed: Read as '	0'				
bit 12	DISSC	K: Disat	ole SCKx pin	bit (SPI Maste	er modes only)			
	1 = Interior	ernal SP	I clock is disa	bled, pin func	tions as I/O			
	0 = Inte	ernal SP	'I clock is ena	bled				
Dit 11		U: Disai	ble SDOx pin	Dit the readules r				
	1 = SD 0 = SD	Ox pin i Ox pin i	s not used by s controlled b	the module; p v the module	Din functions a	s I/O		
bit 10	MODE	16: Wor	d/Byte Comm	unication Sel	ect bit			
	1 = Co	mmunic	ation is word-	wide (16 bits)				
	0 = Co	mmunic	ation is byte-	vide (8 bits)				
bit 9	SMP: S	SPIx Dat	ta Input Samp	le Phase bit				
	Master	mode:						
	1 = lnp	ut data :	sampled at er	nd of data outp	out time			
	∪ = IIIp Slave r	ui uaia : node:	sampleu al m		utput time			
	SMP m	iust be c	cleared when	SPIx is used i	n Slave mode			
bit 8	CKE: C	lock Ed	lge Select bit	1)				
	1 = Se	rial outp	ut data chang	es on transitio	on from active	clock state to Id	le clock state (see bit 6)
	0 = Se i	rial outp	ut data chang	es on transitio	on from Idle clo	ock state to activ	ve clock state (s	see bit 6)
bit 7	SSEN:	SPIx SI	ave Select Er	nable bit (Slav	e mode) ⁽²⁾			
	$1 = \frac{SS}{SS}$	<u>x</u> pin is i	used for Slav	e mode		have a set from a time		
h :+ C	0 = 20	x pin is i Naak Da	not used by tr	ie module, pir	i is controlled i	by port function		
DIT 6			or clock in a h)II iah lovol: ootiv	va atata ia a lav			
	1 = Idle 0 = Idle	e state fo	or clock is a li	w level: active	e state is a hig	h level		
bit 5	MSTEN	MSTEN: Master Mode Enable bit						
	1 = Ma	ster mo	de					
	0 = Sla	ve mod	е					
Note 1:	The CKE bit	is not u	ised in the Fr	amed SPI mor	des. Program f	his bit to '0' for	the Framed SP	'l modes
	(FRMEN = 1	L).						
2:	This bit mus	t be clea	ared when FF	RMEN = 1.				
3:	Do not set b	not set both primary and secondary prescalers to a value of 1:1.						

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

REGISTER 20-2: CMxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

- bit 4 **CREF:** Comparator x Reference Select bit (VIN+ input)
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to CxINA pin

bit 3-2 Unimplemented: Read as '0'

- bit 1-0 CCH<1:0>: Comparator x Channel Select bits
 - 11 = VIN- input of comparator connects to INTREF
 - 10 = VIN- input of comparator connects to CXIND pin
 - 01 = VIN- input of comparator connects to CxINC pin
 - ${\tt 00}$ = VIN- input of comparator connects to CxINB pin

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Real-Time Clock and Calendar (RTCC)" (DS70310) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices, and its operation. Some of the key features of the RTCC module are:

- · Time: hours, minutes and seconds
- 24-hour format (military time)
- Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- · Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: external 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 21-1: RTCC BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

YRONE3

YRONE2

YRONE1

YRONE0

REGISTER 21-4: RTCVAL (WHEN RTCPTR<1:0> = 11): RTCC YEAR VALUE REGISTER⁽¹⁾

YRTEN0

bit 7				bit 0
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits
	Contains a value from 0 to 9.
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

YRTEN1

YRTEN3

YRTEN2

REGISTER 21-5: RTCVAL (WHEN RTCPTR<1:0> = 10): RTCC MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of 0 or 1.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-6: RTCVAL (WHEN RTCPTR<1:0> = 01): RTCC WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Re	ad as '0'
-----------------------------	-----------

- bit 10-8 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
- bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD Acc		Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	4 ASR		f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if greater than or equal		1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ, Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA, Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws.Wb	Write Z bit to Ws <wb></wb>	1	1	None

TABLE 24-2: INSTRUCTION SET OVERVIEW

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max. Units Conditions				
	Clock Parameters ⁽²⁾								
AD50	TAD	ADC Clock Period	76		_	ns			
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns			
Conversion Rates									
AD55	tCONV	Conversion Time		12 Tad	—	_			
AD56	FCNV	Throughput Rate			1.1	Msps			
AD57	TSAMP	Sample Time	2.0 Tad						
		Timin	g Paramo	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 Tad	—	3.0 Tad		Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad	—	3.0 Tad				
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾		0.5 TAD	_				
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾		—	20	μS			

TABLE 26-49: 10-BIT ADC CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	Х			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A