

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp104t-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

		rte)			Rem	appa	ble l	Perip	herals	5	М		Ŋ						
Device	Pins	Program Flash (Kbyte)	RAM (Kbytes)	Remappable Pins	16-bit Timer ^(1,2)	Input Capture	Output Compare	UART	External Interrupts ⁽³⁾	SPI	Motor Control PWM	PWM Faults	10-Bit, 1.1 Msps ADC	RTCC	I²C™	Comparators	CTMU	I/O Pins	Packages
dsPIC33FJ16GP101	18	16	1	8	3	3	2	1	3	1		—	1 ADC, 4-ch	Y	1	3	Y	13	PDIP, SOIC
	20	16	1	8	3	3	2	1	3	1	_	—	1 ADC, 4-ch	Y	1	3	Y	15	SSOP
dsPIC33FJ16GP102	28	16	1	16	3	3	2	1	3	1	_	_	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1		—	1 ADC, 6-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ16MC101	20	16	1	10	3	3	2	1	3	1	6-ch	1	1 ADC, 4-ch	Y	1	3	Y	15	PDIP, SOIC, SSOP
dsPIC33FJ16MC102	28	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	VTLA

TABLE 1:dsPIC33FJ16(GP/MC)101/102 DEVICE FEATURES

Note 1: Two out of three timers are remappable.

2: One pair can be combined to create one 32-bit timer.

3: Two out of three interrupts are remappable.

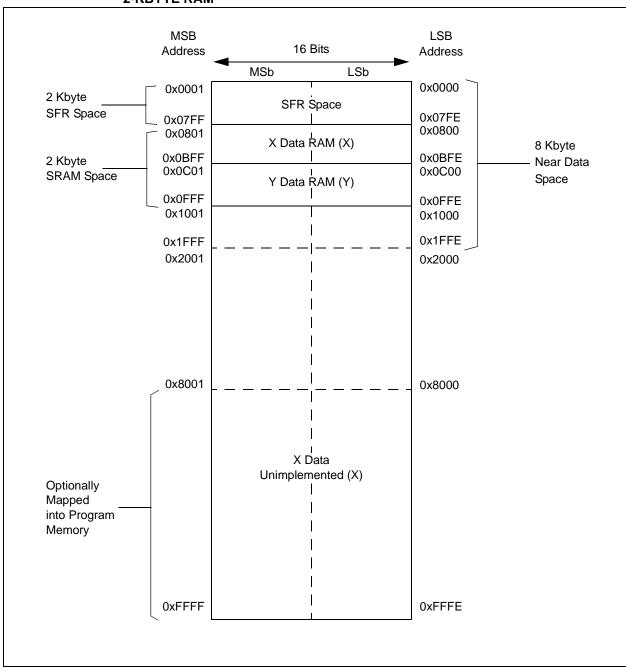
TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)								
Pin Name	Pin Type	Buffer Type	PPS	Description				
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.				
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.				
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.				
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.				
FLTA1(1,2,4)	1	ST	No	PWM1 Fault A input.				
FLTB1 ^(3,4)	1	ST	No	PWM1 Fault B input.				
PWM1L1	0		No	PWM1 Low Output 1.				
PWM1H1	0		No	PWM1 High Output 1.				
PWM1L2	0		No	PWM1 Low Output 2.				
PWM1H2	0		No	PWM1 High Output 2.				
PWM1L3	0		No	PWM1 Low Output 3.				
PWM1H3	Ō	_	No	PWM1 High Output 3.				
RTCC	0	Digital	No	RTCC Alarm output.				
CTPLS	0	Digital	Yes	CTMU pulse output.				
CTED1	I	Digital	No	CTMU External Edge Input 1.				
CTED2	I	Digital	No	CTMU External Edge Input 2.				
CVREFIN	I	Analog	No	Comparator Voltage Positive Reference Input.				
CVREFOUT	0	Analog	No	Comparator Voltage Positive Reference Output.				
C1INA	I	Analog	No	Comparator 1 Positive Input A.				
C1INB	i	Analog	No	Comparator 1 Negative Input B.				
C1INC	i	Analog	No	Comparator 1 Negative Input C.				
C1IND	i	Analog	No	Comparator 1 Negative Input D.				
C1OUT	Ō	Digital	Yes	Comparator 1 Output.				
C2INA	Ĩ	Analog	No	Comparator 2 Positive Input A.				
C2INB	l i	Analog	No	Comparator 2 Negative Input B.				
C2INC	i	Analog	No	Comparator 2 Negative Input D.				
C2INC C2IND		Analog	No	Comparator 2 Negative Input C.				
C2OUT	0	Digital	Yes	Comparator 2 Output.				
		•						
C3INA		Analog	No	Comparator 3 Positive Input A.				
C3INB		Analog	No	Comparator 3 Negative Input B.				
C3INC		Analog	No	Comparator 3 Negative Input C.				
C3IND C3OUT		Analog Digital	No Yes	Comparator 3 Negative Input D. Comparator 3 Output.				
		ST		Data I/O pin for Programming/Debugging Communication Channel 1.				
PGED1	I/O		No					
PGEC1		ST	No	Clock input pin for Programming/Debugging Communication Channel 1.				
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.				
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.				
PGED3 PGEC3	I/O	ST ST	No No	Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3.				
	- ·							
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
				input or output Analog = Analog input P = Power				
S	I = Schr	nitt Frigger	input w	ith CMOS levels O = Output I = Input				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: An external pull-down resistor is required for the FLTA1 pin in dsPIC33FJXXMC101 (20-pin) devices.

- 2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.
- 3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.

PPS = Peripheral Pin Select


- 4: The PWM Fault pins are enabled during any Reset event. Refer to **Section 15.2 "PWM Faults"** for more information on the PWM Faults.
- 5: Not all pins are available on all devices. Refer to the specific device in the "**Pin Diagrams**" section for availability.
- 6: These pins are available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.

3.4 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0				
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC				
bit 15	·						bit 8				
(2))) (2)	(2)									
R/W-0 ⁽³		R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С				
bit 7							bit				
Legend:		C = Clearable	bit								
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15		ator A Overflow									
		ator A has overf ator A has not o									
bit 14		ator B Overflow									
DIL 14		ator B has overf									
		ator B has not o									
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	itus bit ⁽¹⁾							
	1 = Accumula	ator A is saturat	ed or has be	en saturated at	some time						
		ator A is not sat		(4)							
bit 12		SB: Accumulator B Saturation 'Sticky' Status bit ⁽¹⁾ 1 = Accumulator B is saturated or has been saturated at some time									
		ator B is saturat ator B is not sat		en saturated at	some time						
bit 11	OAB: OA C	OAB: OA OB Combined Accumulator Overflow Status bit									
		ators A or B hav									
bit 10	SAB: SA S	SAB: SA SB Combined Accumulator 'Sticky' Status bit									
					urated at some	time in the past					
		ccumulator A o			it will clear SA a	and SB					
bit 9	-			Cleaning this bi							
	•	DA: DO Loop Active bit 1 = DO loop is in progress									
		not in progres	5								
bit 8	DC: MCU AL	U Half Carry/Bo	prrow bit								
			ow-order bit	(for byte-sized o	data) or 8th low-	order bit (for wo	rd-sized data				
		sult occurred	h low-order	hit (for hyte-siz	ed data) or 8th	low-order bit (f	or word-sized				
	•	he result occur									
Note 1:	This bit can be rea	nd or cleared (ne	ot set).								
	The IPL<2:0> bits										
	Level. The value in	n parentheses i	ndicates the	IPL if IPL<3> =	1. User interru	ots are disabled	when				
	IPL<3> = 1.										

REGISTER 3-1: SR: CPU STATUS REGISTER

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJ32(GP/MC)101/102/104 DEVICES WITH 2-KBYTE RAM

REGISTER	<i>i</i> -J. II 30. I	NTERRUPT										
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF					
pit 15							bi					
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF					
bit 7							bi					
Legend:	- h:4		h.:4									
R = Readable -n = Value at		W = Writable '1' = Bit is se		0 = Unimplem	nented bit, read							
-n = value at	POR	I = DILIS SE	l		areu	x = Bit is unkn	own					
bit 15-14	Unimplemen	ted: Read as	'O'									
bit 13	AD1IF: ADC1	Conversion (Complete Interi	rupt Flag Status	s bit							
		AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit 1 = Interrupt request has occurred										
	-	request has no		.								
bit 12		U1TXIF: UART1 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred										
	•	request has oc request has no										
bit 11	-	-	nterrupt Flag S	Status bit								
		request has or										
	•	request has no										
bit 10		-	ot Flag Status k	bit								
	•	1 = Interrupt request has occurred0 = Interrupt request has not occurred										
bit 9	-	SPI1EIF: SPI1 Fault Interrupt Flag Status bit										
		request has or										
	-	request has no										
bit 8		Interrupt Flag										
		request has or request has no										
bit 7	•	•										
		T2IF: Timer2 Interrupt Flag Status bit 1 = Interrupt request has occurred										
	0 = Interrupt i	request has no	ot occurred									
bit 6	-	OC2IF: Output Compare Channel 2 Interrupt Flag Status bit										
	•	request has oc request has no										
bit 5	-	-	nel 2 Interrupt F	-lag Status bit								
	-	request has or	-	<u>.</u>								
		request has no										
bit 4	-	ted: Read as										
bit 3	T1IF: Timer1	Interrupt Flag	Status bit									
		request has or										

-. חוור - - -• •

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	—	IC3IF		—	—		_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn				nown			

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

bit 15-6	Unimplemented: Read as '0'
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit
	 I = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4-0	Unimplemented: Read as '0'

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	U-0
FLTA1IF ⁽¹⁾	RTCIF	—	—	—	_	PWM1IF ⁽¹⁾	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—			—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	FLTA1IF: PWM1 Fault A Interrupt Flag Status bit ⁽¹⁾
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 14	RTCIF: RTCC Interrupt Flag Status bit
	 I = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-10	Unimplemented: Read as '0'
bit 9	PWM1IF: PWM1 Interrupt Flag Status bit ⁽¹⁾
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

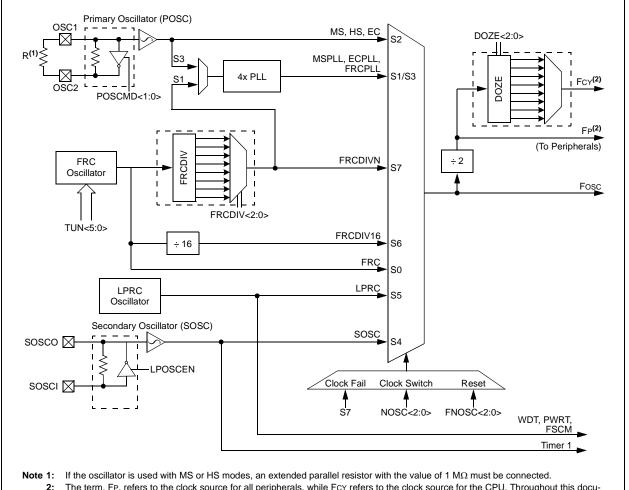
Note 1: These bits are available in dsPIC(16/32)MC10X devices only.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
—	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0						
bit 15							bit						
	D A A A	D 444 o	D M (a		D 444 4	D 444 o							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0						
bit 7							bit						
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown						
bit 15	-	ted: Read as '											
bit 14-12		Change Notifica		-									
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)									
	•												
	•												
	001 = Interru	001 = Interrupt is Priority 1											
	000 = Interru	pt source is dis	abled										
bit 11	Unimplemen	ted: Read as '	0'										
bit 10-8	CMIP<2:0>: Comparator Interrupt Priority bits												
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)									
	•												
	•												
	• 001 = Interrupt is Priority 1												
	000 = Interrupt source is disabled												
bit 7		Ited: Read as '											
bit 6-4	-	>: I2C1 Master		upt Priority bi	ts								
		pt is Priority 7 (
	•	. ,		, i ,									
	•												
	• 001 – Intorru	• 001 = Interrupt is Priority 1											
		pt is Fliolity 1 pt source is dis	abled										
bit 3		ited: Read as '											
bit 2-0	-	>: I2C1 Slave E		ot Priority bits									
		pt is Priority 7 (-	-									
	•												
	•												
	•												
	• • 001 = Interru	pt is Prioritv 1											

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	—	—	—
bit 15	·			·			bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2 ⁽¹⁾	T5IP1 ⁽¹⁾	T5IP0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown	
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	INT2IP<2:0>:	External Inter	rupt 2 Priority	bits			
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru						
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	T5IP<2:0>: ⊺	ïmer5 Interrupt	Priority bits ⁽¹)			
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
	h h :						

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7


Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator (Part VI)" (DS70644) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The oscillator system for dsPIC33FJ16(GP/MC)101/ 102 and dsPIC33FJ32(GP/MC)101/102/104 devices provides:

- External and internal oscillator options as clock sources
- An on-chip, 4x Phase Lock Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection
- A simplified diagram of the oscillator system is shown in Figure 8-1.

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a Doze ratio of 1:2 or lower.

FIGURE 8-1: OSCILLATOR SYSTEM DIAGRAM

9.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the powersaving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the UART module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the UART module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMDx) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMDx control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is enabled only if both the associated bit in the PMDx register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMDx register by default.

Note: If a PMDx bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMDx bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
	—	—	_	—	CMPMD	RTCCMD	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-11	Unimplemen	ted: Read as '0	,				

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 10	CMPMD: Comparator Module Disable bit
	1 = Comparator module is disabled
	0 = Comparator module is enabled
bit 9	RTCCMD: RTCC Module Disable bit
	1 = RTCC module is disabled
	0 = RTCC module is enabled
bit 8-0	Unimplemented: Read as '0'

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—		_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	—	—	—	—	CTMUMD	—	—
bit 7							bit C
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-3 Unimplemented: Read as '0'

bit 2 CTMUMD: CTMU Module Disable bit

1 = CTMU module is disabled

0 = CTMU module is enabled

bit 1-0 Unimplemented: Read as '0'

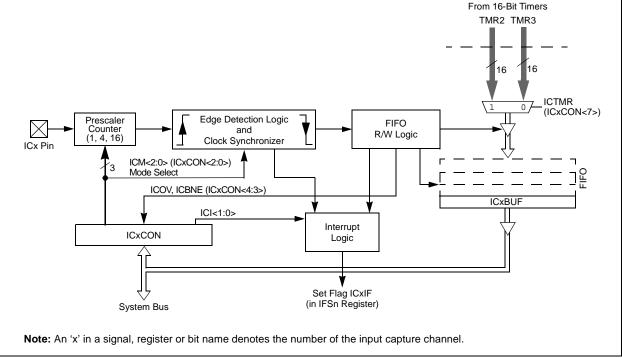
R/W-1 R/W-1 CTSR1 U1CTSR0 bit 8 R/W-1 R/W-1 1RXR1 U1RXR0 bit 0								
bit 8 R/W-1 R/W-1 1RXR1 U1RXR0								
R/W-1 R/W-1 1RXR1 U1RXR0								
1RXR1 U1RXR0								
1RXR1 U1RXR0								
)'								
, Bit is unknown								
RPn Pin bits								
00001 = Input tied to RP1 00000 = Input tied to RP0								
hita								
n bits								

REGISTER 10-8: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

13.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70198) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices support up to three input capture channels. The input capture module captures the 16-bit value of the selected Time Base register when an event occurs on the ICx pin. The events that cause a capture event are listed below in three categories:


- 1. Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- 2. Capture timer value on every edge (rising and falling).
- 3. Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values:
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

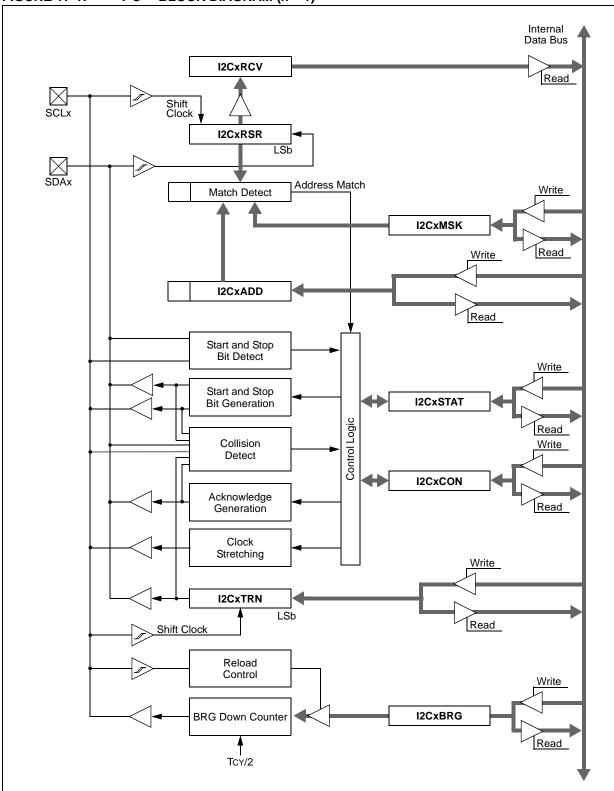


FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (x = 1)

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (Bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect
	0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read-only/clear only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	1 = Receive buffer has data, at least one more character can be read
	0 = Receive buffer is empty

Note 1: Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for transmit operation.

REGISTER 20-3: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT REGISTER (CONTINUED)

bit 3-0	SELSRCA<3:0>: Mask A Input Select bits
bit 5-0	
	1111 = Reserved
	1110 = Reserved
	1101 = Reserved
	1100 = Reserved
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved
	0110 = Reserved
	0101 = PWM1H3
	0100 = PWM1L3
	0011 = PWM1H2
	0010 = PWM1L2
	0001 = PWM1H1
	0000 = PWM1L1

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)							
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	СОМ	f	$f = \overline{f}$	1	1	N,Z
	0011	СОМ	f,WREG	WREG = f	1	1	N,Z
		СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
10	CF	CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CD0		f	Compare f with 0x0000	1	1	
19	CPO	CP0			1	1	C,DC,N,OV,Z
20	GDD	CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	-		C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if \neq	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = $f - 2$	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

25.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

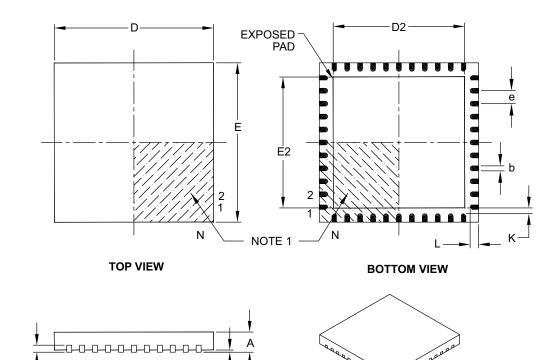
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


25.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	_	-

A1

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

A3

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 26.0 "Electrical	Updated the Absolute Maximum Ratings.
Characteristics"	Updated TABLE 26-3: Thermal Packaging Characteristics.
	Updated TABLE 26-6: DC Characteristics: Operating Current (Idd).
	Updated TABLE 26-7: DC Characteristics: Idle Current (lidle).
	Updated TABLE 26-8: DC Characteristics: Power-Down Current (Ipd).
	Updated TABLE 26-9: DC Characteristics: Doze Current (Idoze).
	Updated TABLE 26-10: DC Characteristics: I/O Pin Input Specifications.
	Replaced all SPI specifications and figures (see Table 26-29 through Table 26-44 and Figure 26-11 through Figure 26-26).
Section 28.0 "Packaging	Added the following Package Marking Information and Package Drawings:
Information"	44-Lead TQFP
	• 44-Lead QFN
	 44-Lead VTLA (referred to as TLA in the package drawings)