

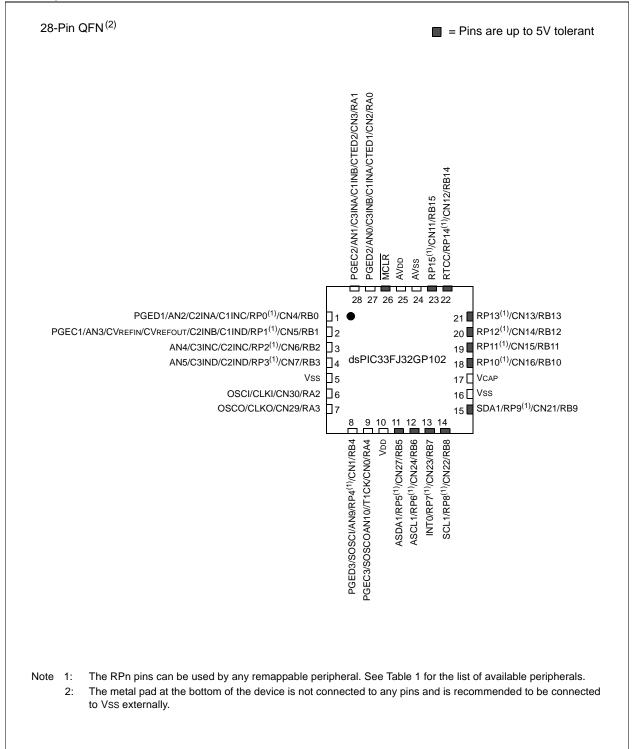
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp104t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

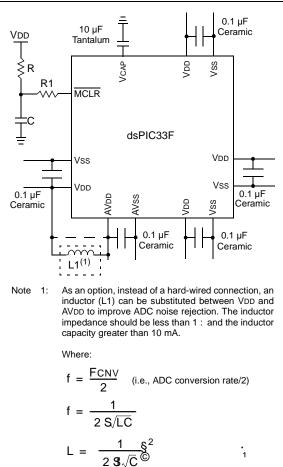

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	. 33
3.0	CPU	
4.0	Memory Organization	. 49
5.0	Flash Program Memory	. 83
6.0	Resets	. 87
7.0	Interrupt Controller	. 95
8.0	Oscillator Configuration	125
9.0	Power-Saving Features	133
10.0	I/O Ports	139
11.0	Timer1	165
12.0	Timer2/3 and Timer4/5	167
13.0	Input Capture	175
14.0	Output Compare	177
15.0	Motor Control PWM Module	181
16.0	Serial Peripheral Interface (SPI)	
17.0	Inter-Integrated Circuit [™] (I ² C [™])	203
	Universal Asynchronous Receiver Transmitter (UART)	
	10-Bit Analog-to-Digital Converter (ADC)	
20.0	Comparator Module	231
21.0	Real-Time Clock and Calendar (RTCC)	
22.0	Charge Time Measurement Unit (CTMU)	255
23.0	Special Features	261
24.0	Instruction Set Summary	269
25.0	Development Support	277
26.0	Electrical Characteristics	
27.0	High-Temperature Electrical Characteristics	
28.0	Packaging Information	343
Appe	ndix A: Revision History	373
Index		381
The N	/icrochip Web Site	387
Custo	mer Change Notification Service	387
	mer Support	
Produ	Ict Identification System	389

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

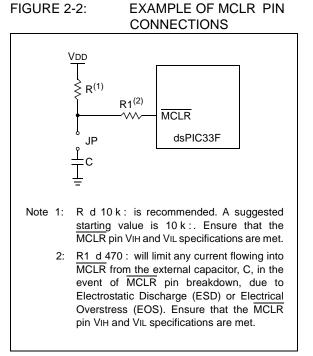
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (V CAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to Section 26.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 23.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the \overline{MCLR} pin.

U-0	<u>U-0</u>	U-0	R/W-0	R/W-0	R-0	R-0	R-0					
_		_	US	EDT ⁽¹⁾	DL2	DL1	DL0					
bit 15							bit 8					
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0					
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF					
bit 7		_		-	_	11	bit (
Legend:		C = Clearable										
R = Readable		W = Writable		-n = Value at	-	'1' = Bit is set						
0' = Bit is clea	ared	'x = Bit is unk	nown	U = Unimpier	mented bit, read							
bit 15-13	Unimplement	ed: Read as '	0'									
bit 12	US: DSP Mul	tiply Unsigned	Signed Contro	ol bit								
	•	ne multiplies a	•									
L:4.4.4	-	ne multiplies a	-									
bit 11	-	-	ation Control bi		on itoration							
	 1 = Terminates executing DOloop at the end of current loop iteration 0 = No effect 											
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status bi	ts								
	111 = 7 DOloops are active											
	:											
	• 001 = 1 DOloop is active											
	000 = 0 DOloops are active											
bit 7	SATA: ACCA	SATA: ACCA Saturation Enable bit										
		tor A saturatio										
bit 6		tor A saturatio										
DILO	SATB: ACCB Saturation Enable bit 1 = Accumulator B saturation is enabled											
	 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled 											
bit 5	SATDW: Data	SATDW: Data Space Write from DSP Engine Saturation Enable bit										
	1 = Data space write saturation is enabled											
1.1.4	0 = Data space write saturation is disabled ACCSAT: Accumulator Saturation Mode Select bit											
bit 4				elect bit								
	1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation)											
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾											
	1 = CPU Interrupt Priority Level is greater than 7											
			evel is 7 or less									
bit 2	•	•	ity in Data Spa									
	1 = Program space is visible in data space 0 = Program space is not visible in data space											
bit 1	•	ng Mode Selec	•									
	1 = Biased (c	onventional) ro	ounding is enal									
h it 0			ounding is ena									
bit 0	-		tiplier Mode Se I for DSP multi									
			led for DSP multi									
				1.2.1.5.200								

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

	SFR																	All
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6 I	Bit 5 E	Bit 4 E	it 3	Bit 2 E	Sit1 B	it O	Resets
ADC1BUF0	0300		ADC1 Data Buffer 0 x											хххх				
ADC1BUF1	0302								ADC1 D	Data Buffer	1							xxxx
ADC1BUF2	0304								ADC1 D	Data Buffer	2							xxxx
ADC1BUF3	0306								ADC1 D	Data Buffer	3							xxxx
ADC1BUF4	0308								ADC1 D	Data Buffer	4							хххх
ADC1BUF5	030A								ADC1 D	Data Buffer	5							хххх
ADC1BUF6	030C								ADC1 D	Data Buffer	6							хххх
ADC1BUF7	030E								ADC1 D	Data Buffer	7							хххх
ADC1BUF8	0310								ADC1 D	Data Buffer	8							хххх
ADC1BUF9	0312								ADC1 D	Data Buffer	9							хххх
ADC1BUFA	0314								ADC1 D	ata Buffer	10							хххх
ADC1BUFB	0316								ADC1 D	ata Buffer	11							xxxx
ADC1BUFC	0318									ata Buffer								xxxx
ADC1BUFD	031A								ADC1 D	ata Buffer	13							хххх
ADC1BUFE	031C									ata Buffer								XXXX
ADC1BUFF	031E									ata Buffer							1	XXXX
AD1CON1	0320	ADON	—	ADSIDL		_	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0		—	CSCNA	CHPS1	CHPS0	BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	—		SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	_	—			—	CH123NB1	CH123NB0	CH123SB	—	—		—	—	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB			CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	_		CH0SA4	CH0SA3		CH0SA1	CH0SA0	0000
AD1PCFGL	032C		_					10:9> ⁽¹⁾		—	_					G<3:0>		0000
AD1CSSL	0330	—	—	—	—		CSS<1	0:9> ⁽¹⁾	—	—	—	—	—		CSS	8<3:0>		0000

TABLE 4-15: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)101 DEVICES

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)101/102 devices only.

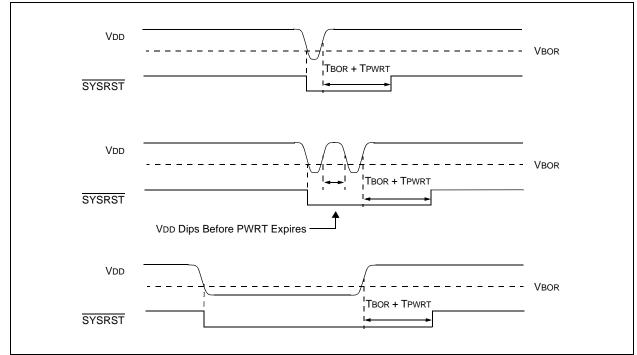
6.3 POR

A POR circuit ensures the device is reset from poweron. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. The delay, TPOR, ensures that the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 26.0 "Electrical Characteristics" for details.

The Power-on Reset (POR) status bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.4 BOR and PWRT


The on-chip regulator has a BOR circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.

The Brown-out Reset (BOR) status bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The Power-up Timer (PWRT) provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

Refer to Section 23.0 "Special Features" for further details.

Figure 6-3 shows the typical brown-out scenarios. The Reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point.

FIGURE 6-3: BROWN-OUT RESET SITUATIONS

6.10.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the Uninitialized W register as an Address Pointer will reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.10.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a Security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an interrupt or trap vector.

6.11 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note:	The status bits in the RCON register						
	should be cleared after they are read so						
	that the next RCON register value after a						
	device Reset will be meaningful.						

Table 6-3 provides a summary of Reset flag bit operation.

TABLE 6-3: RESET FLAG BIT OPERATION

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESETinstruction	POR, BOR
WDTO (RCON<4>)	WDT Time-out	PWRSAWnstruction, CLRWDTnstruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEPInstruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

Note: All Reset flag bits can be set or cleared by user software.

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. Devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 8.0 "Oscillator Configuration"

9.2 Instruction-Based Power-Saving Modes

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices have two special powersaving modes that are entered through the execution of a special PWRSAWhstruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAWhstruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device will wake-up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAWNSTRUCTION SYNTAX

 PWRSAV
 #SLEEP_MODE
 ; Put the device into SLEEP mode

 PWRSAV
 #IDLE_MODE
 ; Put the device into IDLE mode

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

REGISTER 10	-3: RPINR	3: PERIPHE	RAL PIN SEI		REGISTER 3	}	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7			1201(14	1201(10	1201112	120101	bit
Legend:							
R = Readable b	it	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at PC)R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-5 bit 4-0	11111 = Input11110 = Rest11010 = Rest11001 = Input100001 = Input000001 = Input000000 = Input100000 = Input11111 = Input11110 = Rest11010 = Rest	It tied to Vss erved It tied to RP25 It tied to RP1 It tied to RP0 ed: Read as ' : Assign Timer It tied to Vss erved erved It tied to RP25	0'			ng RPn Pin bits	

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

11.1 Timer1 Control Register

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾	_	TSIDL		—	—	—	_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS ⁽¹⁾	_				
bit 7							bit (
Legend:											
R = Readable		W = Writable		-	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
		O +:+(1)									
bit 15	TON: Timer1 1 = Starts 16-										
	0 = Stops 16-										
bit 14	-	ed: Read as '	0'								
bit 13	TSIDL: Timer	1 Stop in Idle N	Mode bit								
	1 = Discontinues module operation when device enters Idle mode										
		s module opera		ode							
bit 12-7	•	ed: Read as '									
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
	When TCS = 1: This bit is ignored.										
	When $TCS = 0$:										
	1 = Gated time accumulation is enabled										
	0 = Gated tim	e accumulation	n is disabled								
bit 5-4	TCKPS<1:0> Timer1 Input Clock Prescale Select bits										
	11 = 1:256 10 = 1:64										
	10 = 1.64 01 = 1.8										
	00 = 1:1										
bit 3	Unimplement	ed: Read as '	0'								
bit 2	TSYNC: Time	er1 External Cl	ock Input Synd	chronization Se	elect bit						
	When TCS = 1:										
	1 = Synchronizes external clock input										
	0 = Does not synchronize external clock input When TCS = 0:										
	This bit is igno										
bit 1	TCS: Timer1	Clock Source S	Select bit ⁽¹⁾								
		clock from pin,	T1CK (on the	rising edge)							
	0 = Internal cl	lock (ECY)									
bit 0	Unimplemented: Read as '0'										

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

NOTES:

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	PMOD3	PMOD2	PMOD1	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
	PEN3H ⁽²⁾	PEN2H ⁽²⁾	PEN1H ⁽²⁾	—	PEN3L ⁽²⁾	PEN2L ⁽²⁾	PEN1L ⁽²⁾	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-11	Unimplement	ed: Read as '()'					
bit 10-8 PMOD<3:1>: PWMx I/O Pair Mode bits								

REGISTER 15-5: PWMxCON1: PWMx CONTROL REGISTER 1⁽¹⁾

Note 1:	The PWMxCON1 register is a write-protected register. Refer to Section 15.3 "Write-Protected
	Registers" for more information on the unlock sequence.

1 = PWMx I/O pin pair is in the Independent PWM Output mode 0 = PWMx I/O pin pair is in the Complementary Output mode

0 = PWMxH pin is disabled, I/O pin becomes a general purpose I/O

0 = PWMxL pin is disabled, I/O pin becomes a general purpose I/O

Unimplemented: Read as '0'

Unimplemented: Read as '0'

PEN3H:PEN1H: PWMxH I/O Enable bits⁽²⁾

1 = PWMxH pin is enabled for PWMx output

PEN3L:PEN1L: PWMxL I/O Enable bits⁽²⁾

1 = PWMxL pin is enabled for PWMx output

- 2: The Reset status for these bits depends on the setting of the PWMPIN Configuration bit (FPOR<7>):
 - If PWMPIN = 1 (default), the PWM pins are controlled by the PORT register at Reset, meaning they are initially programmed as inputs (i.e., tri-stated).
 - If PWMPIN = 0, the PWM pins are controlled by the PWM module at Reset and are therefore, initially programmed as output pins.

bit 7

bit 3

bit 2-0

bit 6-4

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - 000 = Secondary prescale 8:1
- bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)⁽³⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both primary and secondary prescalers to a value of 1:1.