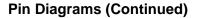
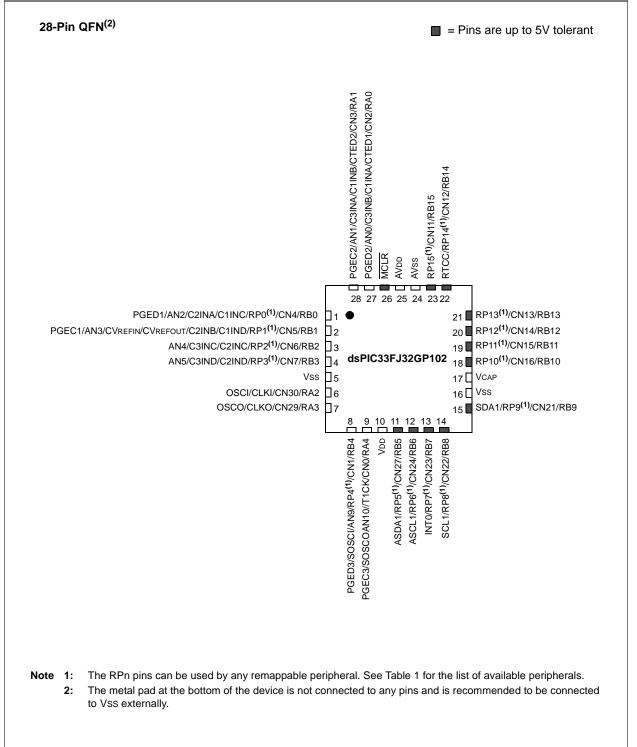


Welcome to E-XFL.COM

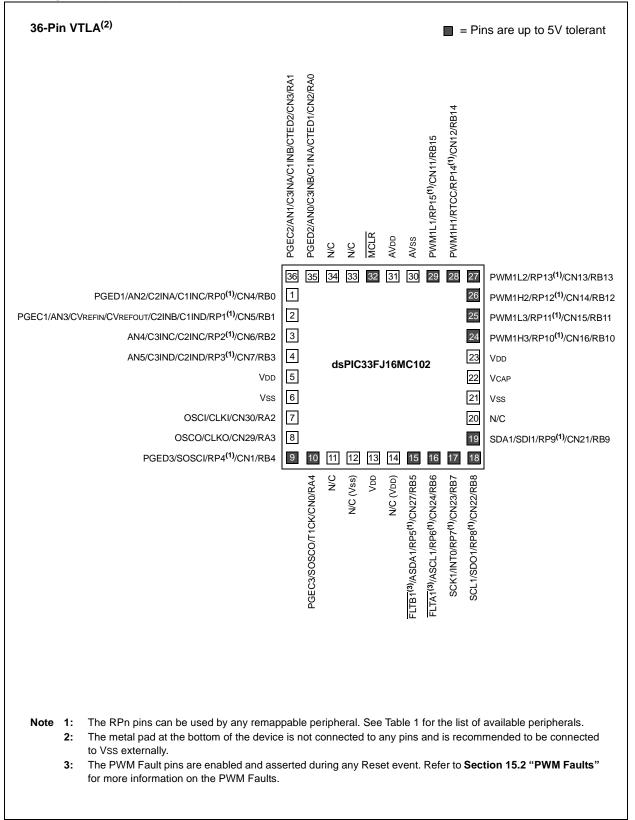
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

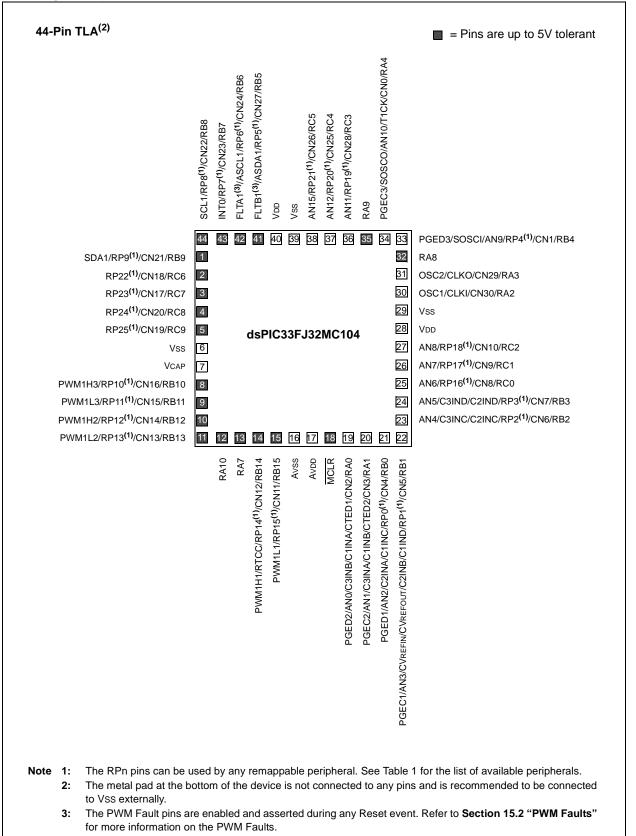

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Becano	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gp104t-i-tl


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Pin Diagrams (Continued)

Pin Diagrams (Continued)

TABLE 1-1	TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)							
Pin Name	Pin Type	Buffer Type	PPS	Description				
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.				
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.				
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.				
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.				
FLTA1(1,2,4)	1	ST	No	PWM1 Fault A input.				
FLTB1 ^(3,4)	1	ST	No	PWM1 Fault B input.				
PWM1L1	0		No	PWM1 Low Output 1.				
PWM1H1	0		No	PWM1 High Output 1.				
PWM1L2	0		No	PWM1 Low Output 2.				
PWM1H2	0		No	PWM1 High Output 2.				
PWM1L3	0		No	PWM1 Low Output 3.				
PWM1H3	Ō	_	No	PWM1 High Output 3.				
RTCC	0	Digital						
CTPLS	0	Digital	Yes	CTMU pulse output.				
CTED1	I	Digital	No	CTMU External Edge Input 1.				
CTED2	I	Digital	No	CTMU External Edge Input 2.				
CVREFIN	I	Analog	No	Comparator Voltage Positive Reference Input.				
CVREFOUT	0	Analog	No	Comparator Voltage Positive Reference Output.				
C1INA	I	Analog	No	Comparator 1 Positive Input A.				
C1INB	i	Analog	No	Comparator 1 Negative Input B.				
C1INC	i	Analog	No	Comparator 1 Negative Input C.				
C1IND	i	Analog	No	Comparator 1 Negative Input D.				
C1OUT	Ō	Digital	Yes	Comparator 1 Output.				
C2INA	Ĩ	Analog	No	Comparator 2 Positive Input A.				
C2INB	l i	Analog	No	Comparator 2 Negative Input B.				
C2INC	i	Analog	No	Comparator 2 Negative Input D.				
C2INC C2IND		Analog	No	Comparator 2 Negative Input C.				
C2OUT	0	Digital	Yes	Comparator 2 Output.				
		•						
C3INA		Analog	No	Comparator 3 Positive Input A.				
C3INB		Analog	No	Comparator 3 Negative Input B.				
C3INC		Analog	No	Comparator 3 Negative Input C.				
C3IND C3OUT		Analog Digital	No Yes	Comparator 3 Negative Input D. Comparator 3 Output.				
		ST		Data I/O pin for Programming/Debugging Communication Channel 1.				
PGED1	I/O		No					
PGEC1		ST	No	Clock input pin for Programming/Debugging Communication Channel 1.				
PGED2	I/O	ST	No					
PGEC2	I	ST	No					
PGED3 PGEC3	I/O	ST ST	No No					
	- ·			Clock input pin for Programming/Debugging Communication Channel 3.				
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
				input or output Analog = Analog input P = Power				
S	I = Schr	nitt Frigger	input w	ith CMOS levels O = Output I = Input				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: An external pull-down resistor is required for the FLTA1 pin in dsPIC33FJXXMC101 (20-pin) devices.

- 2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.
- 3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.

PPS = Peripheral Pin Select

- 4: The PWM Fault pins are enabled during any Reset event. Refer to **Section 15.2 "PWM Faults"** for more information on the PWM Faults.
- 5: Not all pins are available on all devices. Refer to the specific device in the "**Pin Diagrams**" section for availability.
- 6: These pins are available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

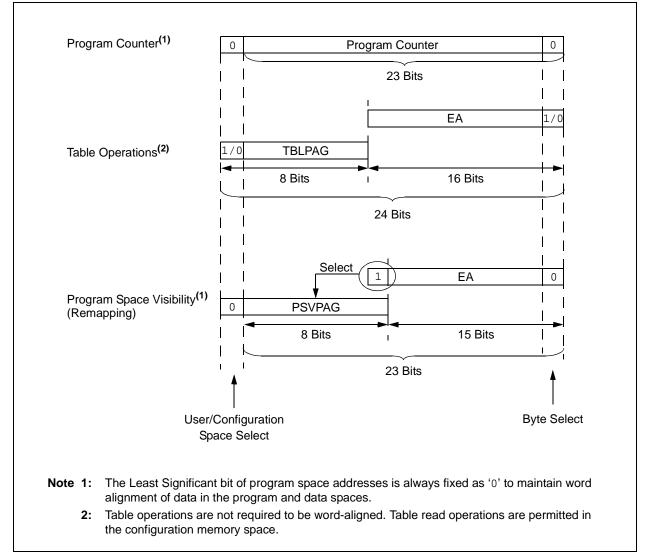
In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.


3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts, in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between Bit Positions 16 and 31 for right shifts, and between Bit Positions 0 and 16 for left shifts.

10.4 Peripheral Pin Select (PPS)

Peripheral Pin Select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

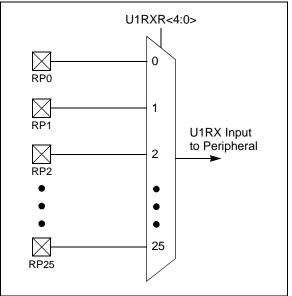
10.4.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 16 pins. The number of available pins depends on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


10.4.2.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-10). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

REGISTE	R 12-4: 15CO	N: IIMER5 C	UNIKOL RE	GISTER						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽³⁾	—	TSIDL ⁽²⁾	—	—	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
—	TGATE ⁽³⁾	TCKPS1 ⁽³⁾	TCKPS0 ⁽³⁾	—	—	TCS ⁽³⁾	—			
bit 7							bit 0			
1										
Legend:	b.1. b.34		L.14	II II.		-l (Q)				
R = Reada		W = Writable		-	mented bit, rea					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own			
bit 15	TON: Timer5	On hit(3)								
bit 10	1 = Starts 16-									
	0 = Stops 16-									
bit 14	Unimplemen	nted: Read as '	0'							
bit 13	TSIDL: Time	r5 Stop in Idle I	Node bit ⁽²⁾							
		ues timer opera			e mode					
	0 = Continue	s timer operatio	on in Idle mode	9						
bit 12-7	Unimplemen	nted: Read as '	0'	(-)						
bit 6		er5 Gated Time	Accumulation	n Enable bit ⁽³⁾						
	<u>When TCS =</u> This bit is ign									
	•									
		When TCS = 0: 1 = Gated time accumulation is enabled								
	0 = Gated tim	ne accumulatio	n is disabled							
bit 5-4	TCKPS<1:0>	: Timer5 Input	Clock Prescal	e Select bits ⁽³)					
		rescale value								
	10 = 1:64 pre									
	01 = 1:8 pres 00 = 1:1 pres									
bit 3-2	-	nted: Read as '	0'							
bit 1	TCS: Timer5 Clock Source Select bit ⁽³⁾									
		clock from T5C								
		lock (Fosc/2)								
bit 0	Unimplemen	nted: Read as '	0'							
Note 1:	This register is ava	ailable in dsPIC	33FJ32(GP/N	IC)10X device	es only.					
	When 32-bit timer			-	-	ster (T4CON<3>)	, the TSIDL			
	hit must be cleared	•	•	,	Ŭ	. ,				

REGISTER 12-4: T5CON: TIMER5 CONTROL REGISTER⁽¹⁾

2: When 32-bit timer operation is enabled (132 = 1) in the Timer4 Control register (14CON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: When the 32-bit timer operation is enabled (T32 = 1) in the Timer4 Control register (T4CON<3>), these bits have no effect.

15.0 MOTOR CONTROL PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Motor Control PWM" (DS70187) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16MC10X devices have a 6-channel Pulse-Width Modulation (PWM) module.

The PWM module has the following features:

- Up to 16-bit resolution
- On-the-fly PWM frequency changes
- Edge-Aligned and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation or BLDC
- Special event comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates configurable to be immediate or synchronized to the PWM time base

15.1 PWM1: 6-Channel PWM Module

This module simplifies the task of generating multiple synchronized PWM outputs. The following power and motion control applications are supported by the PWM module:

- 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

This module contains three duty cycle generators, numbered 1 through 3. The module has six PWM output pins, numbered PWM1H1/PWM1L1 through PWM1H3/PWM1L3. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

15.2 PWM Faults

The Motor Control PWM module incorporates up to two Fault inputs, FLTA1 and FLTB1. These Fault inputs are implemented with Class B safety features. These features ensure that the PWM outputs enter a safe state when either of the Fault inputs is asserted.

The FLTA1 and FLTB1 pins, when enabled and having ownership of a pin, also enable a soft internal pull-down resistor. The soft pull-down provides a safety feature by automatically asserting the Fault should a break occur in the Fault signal connection.

The implementation of internal pull-down resistors is dependent on the device variant. Table 15-1 describes which devices and pins implement the internal pull-down resistors.

TABLE 15-1: INTERNAL PULL-DOWN RESISTORS ON PWM FAULT PINS

Device	Fault Pin	Internal Pull-Down Implemented?						
dsPIC33FJXXMC101	FLTA1	No						
dsPIC33FJXXMC102	FLTA1	Yes						
	FLTB1	Yes						
dsPIC33FJ32MC104	FLTA1	Yes						
	FLTB1	Yes						

On devices without internal pull-downs on the Fault pin, it is recommended to connect an external pull-down resistor for Class B safety features.

15.2.1 PWM FAULTS AT RESET

During any Reset event, the PWM module maintains ownership of both PWM Fault pins. At Reset, both Faults are enabled in latched mode to guarantee the fail-safe power-up of the application. The application software must clear both of the PWM Faults before enabling the Motor Control PWM module.

The Fault condition must be cleared by the external circuitry driving the Fault input pin high and clearing the Fault interrupt flag. After the Fault pin condition has been cleared, the PWM module restores the PWM output signals on the next PWM period or half-period boundary. Refer to **"Motor Control PWM"** (DS70187) in the *"dsPIC33/PIC24 Family Reference Manual"* for more information on the PWM Faults.

Note: The number of PWM Faults mapped to the device pins depend on the specific variant. Regardless of the variant, both Faults will be enabled during any Reset <u>event.</u> The <u>application</u> must clear both FLTA1 and FLTB1 before enabling the Motor Control PWM module. Refer to the specific device pin diagrams to see which Fault pins are mapped to the device pins.

15.3 Write-Protected Registers

On dsPIC33FJ(16/32)MC10X devices, write protection is implemented for the PWMxCON1, PxFLTACON and PxFLTBCON registers. The write protection feature prevents any inadvertent writes to these registers. The write protection feature can be controlled by the PWMLOCK Configuration bit in the FOSCSEL Configuration register. The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring PWMLOCK (FOSCSEL<6>) = 0.

The user application can gain access to these locked registers either by configuring the PWMLOCK bit (FOSCSEL<6>) = 0 or by performing the unlock sequence. To perform the unlock sequence, the user application must write two consecutive values (0xABCD and 0x4321) to the PWMxKEY register to perform the unlock operation. The write access to the PWMxCON1, PxFLTACON or PxFLTBCON registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access.

To write to all registers, the PWMxCON1, PxFLTACON and PxFLTBCON registers require three unlock operations.

The correct unlocking sequence is described in Example 15-1 and Example 15-2.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—			—	PMOD3	PMOD2	PMOD1
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
—	PEN3H ⁽²⁾	PEN2H ⁽²⁾	PEN1H ⁽²⁾	—	PEN3L ⁽²⁾	PEN2L ⁽²⁾	PEN1L ⁽²⁾
bit 7							bit (
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown
) pin pair is in t) pin pair is in t					
bit 7		ted: Read as '	•	intary output			
bit 6-4	•	IH: PWMxH I/(2)			
	1 = PWMxH p	oin is enabled f oin is disabled,	or PWMx outp	out	purpose I/O		
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	PEN3L:PEN1	IL: PWMxL I/O	Enable bits ⁽²⁾)			
		in is enabled fo in is disabled,			purpose I/O		
Note 1:	The PWMxCON1 I Registers" for mo				to Section 15.3	Write-Protec	ted
2:	The Reset status f				PWMPIN Confi	guration bit (FP	POR<7>):
	• If PWMPIN = 1 (

REGISTER 15-5: PWMxCON1: PWMx CONTROL REGISTER 1⁽¹⁾

are initially programmed as inputs (i.e., tri-stated).
If PWMPIN = 0, the PWM pins are controlled by the PWM module at Reset and are therefore, initially programmed as output pins.

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated CircuitTM (I²CTM)" (DS70195) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated CircuitTM (I^2C^{TM}) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addresses
- I²C Master mode supports 7-bit and 10-bit addresses
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-Bit and 10-Bit Addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-Bit Addressing
- I²C slave operation with 10-Bit Addressing
- I²C master operation with 7-Bit or 10-Bit Addressing

For details about the communication sequence in each of these modes, refer to the Microchip web site (www.microchip.com) for the latest *"dsPIC33/PIC24 Family Reference Manual"* sections.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CxSTAT are read/write.

- I2CxRSR is the shift register used for shifting data
- I2CxRCV is the receive buffer and the register to which data bytes are written or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- · I2CxADD register holds the slave address
- ADD10 status bit indicates 10-Bit Addressing mode
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value

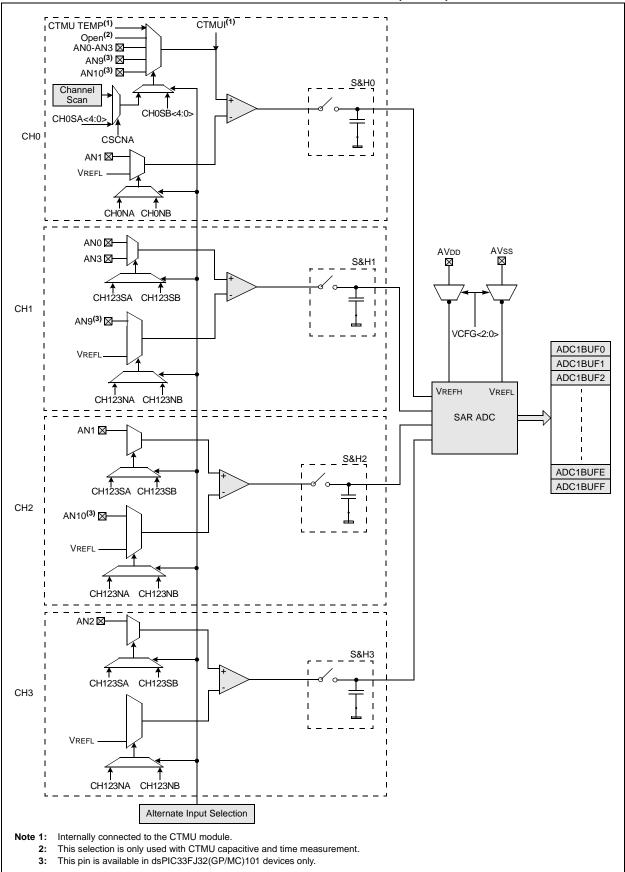
In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

17.3 I²C Control Registers

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7							bit (
Legend:		HC = Hardwa	re Clearable b	it							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own				
bit 15	12CEN: 12Cx	Enable bit									
	0 = Disables	the I2Cx modu	le; all l ² C™ pir		and SCLx pins a ed by port function		8				
bit 14	Unimplemer	nted: Read as '	0'								
oit 13		Cx Stop in Idle N									
		ues module op			in Idle mode						
		s module opera			2°						
oit 12		SCLREL: SCLx Release Control bit (when operating as I ² C slave)									
		1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch)									
	If STREN = 1		,								
	Bit is R/W (i.e beginning of	e., software car every slave da	ata byte transn	nission. Hardw	d write '1' to rele are clears at er ption.						
	-	reception. Hardware clears at every slave data byte reception. If STREN = 0:									
					k). Hardware cle slave address b		g of every slav				
bit 11	-	data byte transmission. Hardware clears at end of every slave address byte reception. IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit									
	1 = IPMI mod	de is enabled; a	-		-						
	0 = IPMI mod	de is disabled									
bit 10		10-Bit Slave Ac									
	-) is a 10-bit slav									
		is a 7-bit slave									
bit 9		able Slew Rate control is disa									
		e control is enal									
bit 8		us Input Levels									
	1 = Enables	I/O pin threshol SMBus input th	ds compliant v	vith SMBus sp	ecification						
bit 7	GCEN: Gene	eral Call Enable	bit (when ope	rating as I ² C s	lave)						
		interrupt when		-	ceived in the I2	CxRSR (module	e is enabled fo				
		, call address is	disabled								

0 = General call address is disabled


	0 2. 0 0.017				OIOTEIX		
R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit C
Legend:		C = Clearable b	oit	HC = Hardware Clearable bit			
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$			nown
bit 15,13	11 = Reserve 10 = Interrup transmit	D>: UARTx Trans ed; do not use t when a charact buffer becomes t when the last ch pleted	ter is transferre empty	ed to the Transr	mit Shift Registe	. ,	

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

00 = Interrupt when a character is transferred to the	Transmit Shift Register (this implies there is at least
one character open in the transmit buffer)	

bit 14	UTXINV: UARTx Transmit Polarity Inversion bit
	If IREN = 0:
	1 = UxTX Idle state is '0'
	0 = UxTX Idle state is '1'
	<u>If IREN = 1:</u>
	1 = IrDA encoded, UxTX Idle state is '1'
	0 = IrDA encoded, UxTX Idle state is '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽¹⁾
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)
	10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
	0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive
	buffer; receive buffer has one or more characters
Note 1	Pater to "ILAPT" (DS70199) in the "doDIC22/DIC24 Family Pateroneo Manual" for information on applying

Note 1: Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for transmit operation.

REGISTER 21-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

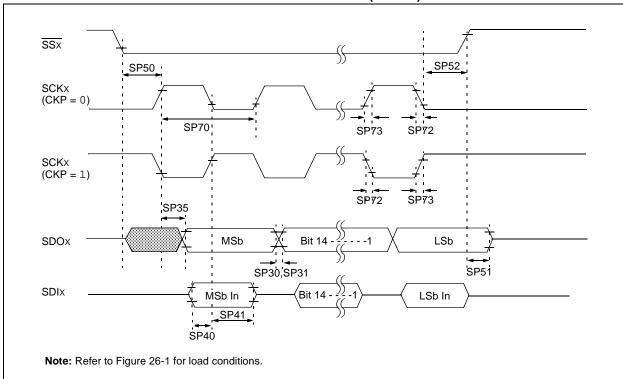
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of 0 or 1.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

TABLE 26-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	—	—	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	_			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-17: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

TABLE 26-50: COMPARATOR TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
300	TRESP	Response Time ^(1,2)	_	150	400	ns		
301	TMC20V	Comparator Mode Change to Output Valid ⁽¹⁾	—		10	μS		
302	Ton2ov	Comparator Enabled to Output Valid ⁽¹⁾	—		10	μs		

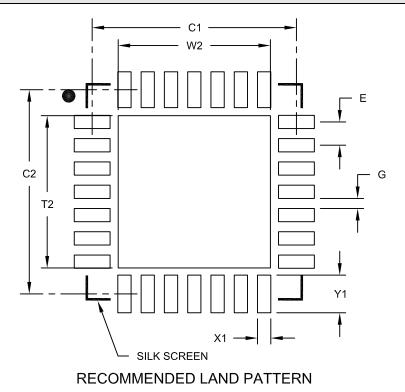
Note 1: Parameters are characterized but not tested.

2: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 26-51: COMPARATOR MODULE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Condition					
D300	VIOFF	Input Offset Voltage ⁽¹⁾	-20	±10	20	mV		
D301	VICM	Input Common-Mode Voltage ⁽¹⁾	0	_	AVDD – 1.5V	V		
D302	CMRR	Common-Mode Rejection Ratio ⁽¹⁾	-54	—	—	dB		
D305	IVREF	Internal Voltage Reference ⁽¹⁾	1.116	1.24	1.364	V		

Note 1: Parameters are characterized but not tested.


TABLE 26-52: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				Conditions
VR310	TSET	Settling Time ⁽¹⁾	—	—	10	μS	

Note 1: Settling time measured while CVRR = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch			0.65 BSC		
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A