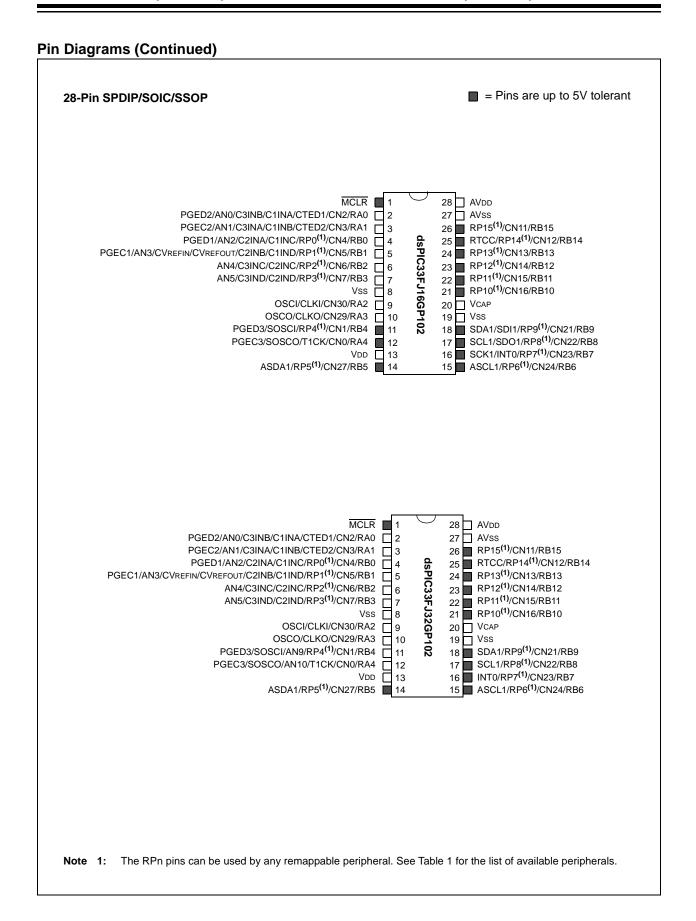


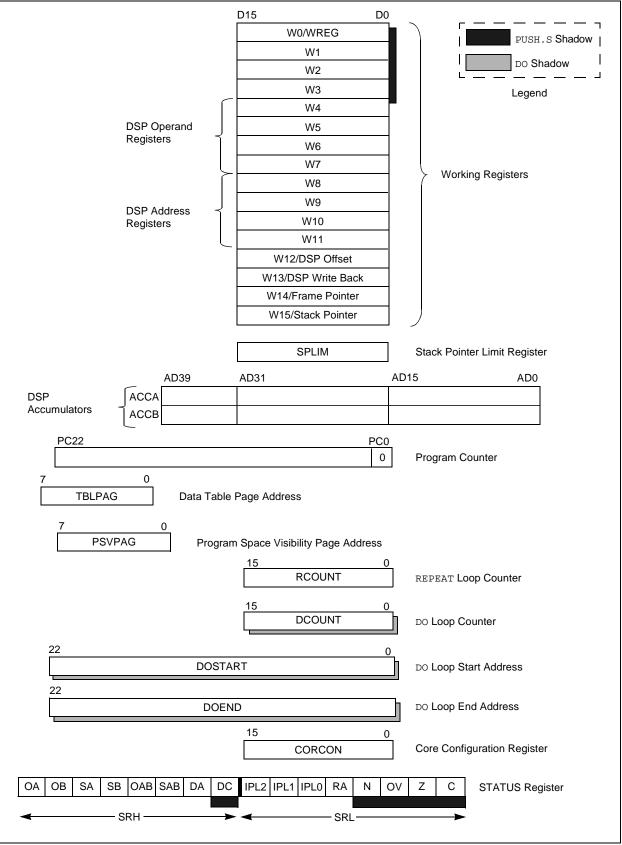
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	15
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc101t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ16(GP/ MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes, or words, anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for lookups from a large table of static data. The application can only access the lsw of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page (TBLPAG) register is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSb of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility (PSVPAG) register is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-42 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA.

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0 PC<22:1>							
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx							
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		1	xxx xxxx	xxxx x	xxxx xxxx xxxx				
Program Space Visibility	User	0 PSVPAG<7: 0 xxxx xxxx		:0>	Data EA<14	:0> (1)			
(Block Remap/Read)				2	xxx xxxx xxxx xxxx				

TABLE 4-42: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0				
bit 15							bit				
	D 444	DAMA	DAMA		D 44/ 4	DAMA	DAMO				
U-0	R/W-1 SPI1EIP2	R/W-0 SPI1EIP1	R/W-0 SPI1EIP0	U-0	R/W-1 T3IP2	R/W-0 T3IP1	R/W-0 T3IP0				
bit 7	OTTEN 2	OFFICIENT	OFFICIENT		10112	1011 1	bit				
							_				
Legend: R = Readable	hit.		b :+		mantad hit raa						
		W = Writable		-	emented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkı	lown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	-	>: UART1 Rec		Priority bits							
		pt is Priority 7	-	-							
	•		3	5							
	•										
	• 001 = Interrupt is Priority 1										
		pt is Friority 1 pt source is dis	abled								
bit 11		ted: Read as '									
bit 10-8	-	: SPI1 Event In		v bits							
		pt is Priority 7									
	•	pt le 1 lienty 1 l	(geet pe	.,							
	•										
	•	nt in Driarity 1									
	001 = Interru	pt is Phonity 1 pt source is dis	abled								
bit 7		ited: Read as '									
bit 6-4	-	>: SPI1 Error I		ty hite							
		pt is Priority 7	•								
	•	pt lo i nonty i	(ingricot priorit	ly interrupty							
	•										
	•										
	001 = Interru	pt is Priority 1 pt source is dis	abled								
bit 3		ited: Read as '									
bit 2-0	-	imer3 Interrupt									
Dit 2-0		pt is Priority 7	-	ty interrupt)							
	•	prist nonty /	(ingriest priorit	ly interrupt)							
	•										
	•										
	001 = Interru	nt in Driarity 1									

	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
—	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0				
bit 15							bit 8				
							D/M/ 4				
U-0	U-0	U-0	R/W-1 T2CKR4	R/W-1 T2CKR3	R/W-1 T2CKR2	R/W-1 T2CKR1	R/W-1 T2CKR0				
bit 7			1201411	1201410	1201112		bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	iown				
			(- 1								
bit 15-13	-	ted: Read as									
bit 12-8		-	r3 External Clo	ck (T3CK) to t	he Correspondi	ng RPn Pin bits	5				
	11111 = Inpu										
	11110 = Res	erved									
	•										
	•										
	11010 = Reserved										
	11001 = Inpu	t tied to RP25									
	•										
	00001 = Inpu										
	00000 = Inpu	t tied to RP0									
bit 7-5	00000 = Inpu Unimplemen	t tied to RP0 ted: Read as									
bit 7-5 bit 4-0	00000 = Inpu Unimplemen	t tied to RP0 ted: Read as		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	3				
	00000 = Inpu Unimplemen T2CKR<4:0>	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to ti	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	3				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	3				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved erved t tied to RP25 tt tied to RP1	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	—			—		—		
bit 15	·	•					bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	—	—	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0		
bit 7	·		•				bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15-5	Unimplemen	ted: Read as '	0'						
bit 4-0	OCFAR<4:0>	: Assign Outpu	ut Capture A (OCFA) to the 0	Corresponding F	RPn Pin bits			
	11111 = Inpu	t tied to Vss							
	11110 = Res	erved							
	•								

REGISTER 10-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

11010 = Reserved 11001 = Input tied to RP25

00001 = Input tied to RP1 00000 = Input tied to RP0

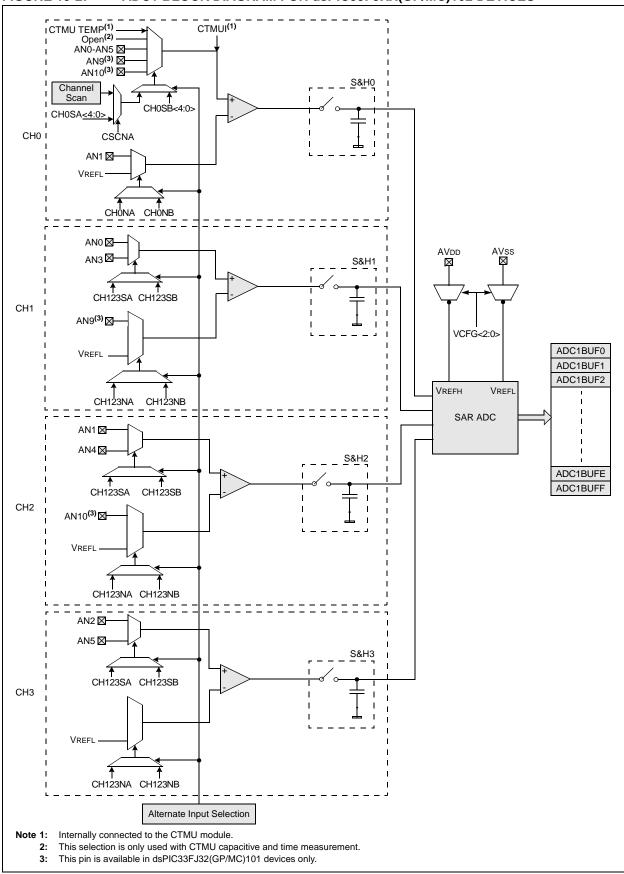
.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽²⁾		TSIDL ⁽¹⁾	—		—	—	_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
_	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	—	—	TCS ⁽²⁾	_				
bit 7							bit				
Legend:	- hit		L:4								
R = Readabl		W = Writable		•	mented bit, rea						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	TON: Timer3	On bit(2)									
	1 = Starts 16-										
	0 = Stops 16-	bit Timer3									
bit 14	Unimplemented: Read as '0'										
bit 13	TSIDL: Timer3 Stop in Idle Mode bit ⁽¹⁾										
		ues timer opera			e mode						
	0 = Continue	s timer operatio	on in Idle mode	9							
bit 12-7	•	ted: Read as '									
bit 6		er3 Gated Time	Accumulation	Enable bit ⁽²⁾							
	When TCS = This bit is ign										
	-										
		<u>When TCS = 0:</u> 1 = Gated time accumulation is enabled									
	0 = Gated tim	ne accumulation	n is disabled								
bit 5-4	TCKPS<1:0>	: Timer3 Input	Clock Prescal	e Select bits ⁽²)						
	11 = 1:256 pr	rescale value									
	10 = 1:64 pre										
	01 = 1:8 pres 00 = 1:1 pres										
bit 3-2	•	ited: Read as '	∩'								
bit 1	•	Clock Source S									
		clock from T3C									
		lock (Fosc/2)									
bit 0	Unimplemen	ted: Read as '	0'								
	/hen 32-bit timer t must be cleared				r2 Control regis	ster (T2CON<3>)	, the TSIDL				
0. 14						· · / /TOOON	0) (1				

REGISTER 12-2: T3CON: TIMER3 CONTROL REGISTER

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer2 Control register (T2CON<3>), these bits have no effect.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SEVTDIR ⁽¹⁾		SEVTCMP<14:8> ⁽²⁾								
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			SEVTC	MP<7:0> ⁽²⁾						
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable b	it	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown			


REGISTER 15-4: PxSECMP: PWMx SPECIAL EVENT COMPARE REGISTER

0 = A Special Event Trigger will occur when the PWMx time base is counting up

bit 14-0 SEVTCMP<14:0>: Special Event Compare Value bits⁽²⁾

Note 1: SEVTDIR is compared with PTDIR (PxTMR<15>) to generate the Special Event Trigger.

2: PxSECMP<14:0> is compared with PxTMR<14:0> to generate the Special Event Trigger.

REGISTER	20-2: CMxC	ON: COMPA	RATOR x CO	ONTROL REG	GISTER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	_	_	_	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0	0-0	CREF			CCH1	CCH0
bit 7	LVIOLO		GIVEI			Com	bit C
Legend:							
R = Readable		W = Writable		-	nented bit, rea		
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	CON: Compa	arator x Enable	bit				
	=	tor x is enable					
		tor x is disable					
bit 14	COE: Compa	arator x Output	Enable bit				
		tor output is pr tor output is in	esent on the C ternal only	xOUT pin			
bit 13	CPOL: Comp	parator x Outpu	it Polarity Sele	ct bit			
		tor x output is tor x output is					
bit 12-10	Unimplemen	ted: Read as	0'				
bit 9	CEVT: Comp	arator x Event	bit				
	interrupts	ator x event ac s until the bit is ator x event did	cleared	POL<1:0> set	ings occurred	; disables future	e triggers and
bit 8	COUT: Comp	parator x Outpu	ıt bit				
	1 = VIN+ > VI		ted polarity):				
	0 = VIN+ < VI						
	$\frac{\text{When CPOL}}{1 = \text{VIN+} < \text{VI}}$	= 1 (inverted p	olarity):				
	0 = VIN + > VI						
bit 7-6	EVPOL<1:0>	. Trigger/Ever	t/Interrupt Pola	arity Select bits			
	10 = Trigger/		is generated			ator output (whil tion of the pol	
	If $CPOL = 1$ ((inverted polari		1421.14			
	•	(non-inverted p	•	արտ.			
			comparator ou	ıtput.			
		event/interrupt/ ator output (wh		only on low-	to-high transi	tion of the pol	arity selected
		(inverted polari ransition of the	t <u>y):</u> comparator οι	itput.			
	-	(non-inverted p	-				
	Low-to-high t	ransition of the	comparator o	-			
	00 = Trigger/	event/interrupt	generation is o	disabled			
		ted: Read as					

CISTED 20 2 CMACONI COMPADATOD A CONTROL DECISTED

21.2 RTCC Control Registers

REGISTER 21-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0			
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0			
bit 7							bit 0			
Legend:										
R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$										
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
		(2)								
bit 15		C Enable bit ⁽²⁾								
	1 = RTCC module is enabled 0 = RTCC module is disabled									
bit 14	0 = RICC module is disabled Unimplemented: Read as '0'									
bit 13	RTCWREN: RTCC Value Registers Write Enable bit									
bit 15	1 = RTCVALH and RTCVALL registers can be written to by the user									
	0 = RTCVALH and RTCVALL registers are locked out from being written to by the user									
bit 12	RTCSYNC: RTCC Value Registers Read Synchronization bit									
				•	•	eading, due to a				
				register is read	twice and the	results are the s	same data, the			
		be assumed to		registers can b	e read without	concern over a	rollover ripple			
bit 11		lalf-Second Sta		regiotore carro						
		half period of a								
		period of a sec								
bit 10	RTCOE: RTC	COutput Enab	ole bit							
		utput is enabled								
		utput is disabled								
bit 9-8)>: RTCC Value	0							
				U U	0	ALH and RTCV				
	RTCVAL<15:						53 00.			
	00 = MINUTE									
	01 = WEEKD	AY								
	10 = MONTH	l								
	11 = Reserve	ed								
		<u>_</u> .								
	RTCVAL<7:0									
	00 = SECON	DS								
		DS								

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

23.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/ MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programming (DS70207) and and Diagnostics" "Device Configuration" (DS70194) in the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

23.1 Configuration Bits

The Configuration Shadow register bits can be configured (read as '0') or left unprogrammed (read as '1') to select various device configurations. These read-only bits are mapped starting at program memory location, 0xF80000. A detailed explanation of the various bit functions is provided in Table 23-4.

Note that address, 0xF80000, is beyond the user program memory space and belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using Table Reads.

dsPIC33FJ16(GP/MC)101/102 In and dsPIC33FJ32(GP/MC)101/102/104 devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the two words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 23-2. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

25.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

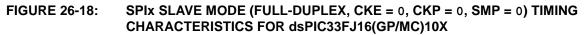
With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

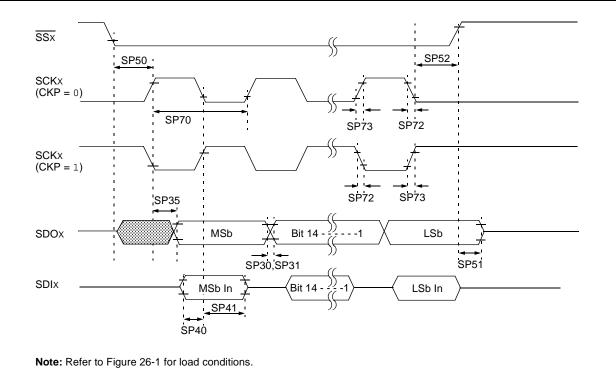
Feature-Rich Editor:

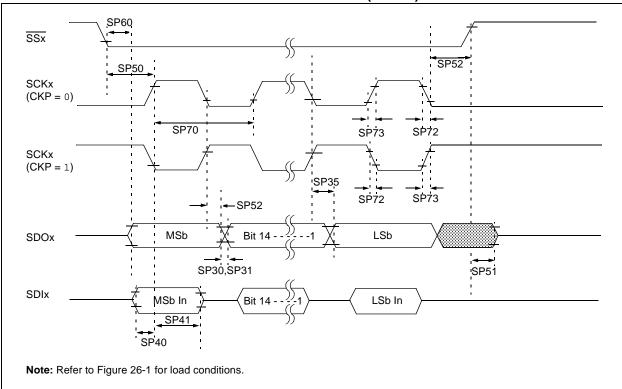
- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker




AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽²⁾		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Tim	е	_	10	25	ns	
DO32	TIOF	Port Output Fall Time	9	—	10	25	ns	
DI35	TINP	INTx Pin High or Low Time (input)		25	—		ns	
DI40	Trbp	CNx High or Low Tim	ne (input)	2	_		TCY	


TABLE 26-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

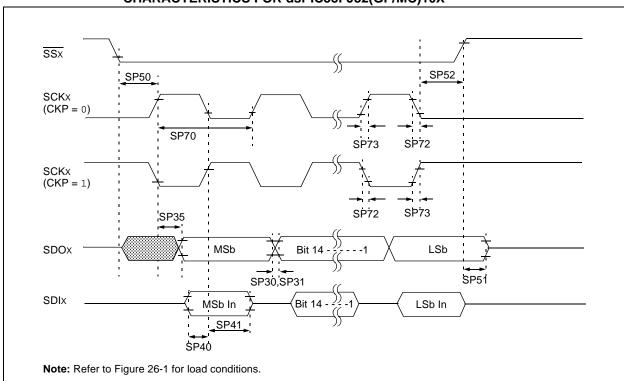

2: These parameters are characterized, but are not tested in manufacturing.

FIGURE 26-24: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

FIGURE 26-26: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

TABLE 26-50: COMPARATOR TIMING SPECIFICATIONS

AC CHARACTERISTICS			(unless	otherv	-	,		
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
300	TRESP	Response Time ^(1,2)	_	150	400	ns		
301	TMC20V	Comparator Mode Change to Output Valid ⁽¹⁾	—		10	μS		
302	Ton2ov	Comparator Enabled to Output Valid ⁽¹⁾	—		10	μs		

Note 1: Parameters are characterized but not tested.

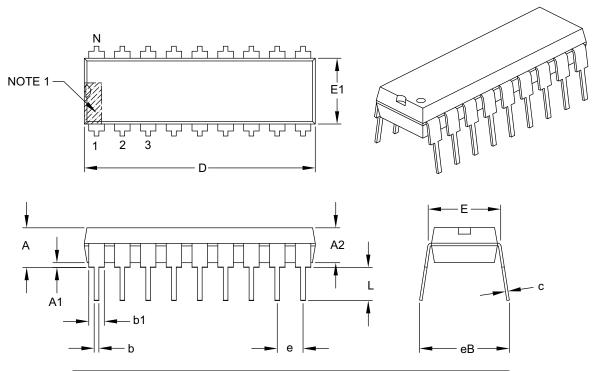
2: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 26-51: COMPARATOR MODULE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
D300	VIOFF	Input Offset Voltage ⁽¹⁾	-20	±10	20	mV		
D301	VICM	Input Common-Mode Voltage ⁽¹⁾	0	_	AVDD – 1.5V	V		
D302	CMRR	Common-Mode Rejection Ratio ⁽¹⁾	-54	—	—	dB		
D305	IVREF	Internal Voltage Reference ⁽¹⁾	1.116	1.24	1.364	V		

Note 1: Parameters are characterized but not tested.

TABLE 26-52: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
VR310	TSET	Settling Time ⁽¹⁾	—	—	10	μS		

Note 1: Settling time measured while CVRR = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

28.2 Package Details

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES				
Dimensio	on Limits	MIN	NOM	MAX				
Number of Pins	Ν	18						
Pitch	е	.100 BSC						
Top to Seating Plane	Α			.210				
Molded Package Thickness	A2	.115	.130	.195				
Base to Seating Plane	A1	.015	-	-				
Shoulder to Shoulder Width	E	.300	.310	.325				
Molded Package Width	E1	.240	.250	.280				
Overall Length	D	.880	.900	.920				
Tip to Seating Plane	L	.115	.130	.150				
Lead Thickness	с	.008	.010	.014				
Upper Lead Width	b1	.045	.060	.070				
Lower Lead Width	b	.014	.018	.022				
Overall Row Spacing §	eB	_	-	.430				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B