

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	15
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc101t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

																1		
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 D	Data Buffer	0							xxxx
ADC1BUF1	0302								ADC1 D	Data Buffer	1							xxxx
ADC1BUF2	0304								ADC1 D	Data Buffer	2							xxxx
ADC1BUF3	0306								ADC1 D	Data Buffer	3							xxxx
ADC1BUF4	0308								ADC1 D	Data Buffer	4							xxxx
ADC1BUF5	030A								ADC1 D	Data Buffer	5							xxxx
ADC1BUF6	030C								ADC1 D	Data Buffer	6							xxxx
ADC1BUF7	030E								ADC1 D	Data Buffer	7							xxxx
ADC1BUF8	0310								ADC1 D	Data Buffer	8							xxxx
ADC1BUF9	0312								ADC1 D	Data Buffer	9							xxxx
ADC1BUFA	0314								ADC1 D	ata Buffer	10							xxxx
ADC1BUFB	0316								ADC1 D	ata Buffer	11							xxxx
ADC1BUFC	0318								ADC1 D	ata Buffer	12							xxxx
ADC1BUFD	031A								ADC1 D	ata Buffer	13							xxxx
ADC1BUFE	031C								ADC1 D	ata Buffer	14							xxxx
ADC1BUFF	031E								ADC1 D	ata Buffer	15							xxxx
AD1CON1	0320	ADON	_	ADSIDL	_	_	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	_	_	CSCNA	CHPS1	CHPS0	BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326		_	—	_	_	CH123NB1	CH123NB0	CH123SB	_	—	_	_	_	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB	—	—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	—		CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	_	—	—	—		PCFG<	10:9> ⁽¹⁾	—	_	—		—		PCF	G<3:0>		0000
AD1CSSL	0330	_	—	—	—		CSS<1	0:9> ⁽¹⁾	—	_	—		—		CSS	S<3:0>		0000

TABLE 4-15: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)101 DEVICES

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)101/102 devices only.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

TABLE 4-	ABLE 4-16: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES																	
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Data	Buffer 0								xxxx
ADC1BUF1	0302								ADC1 Data	Buffer 1								xxxx
ADC1BUF2	0304								ADC1 Data	Buffer 2								xxxx
ADC1BUF3	0306								ADC1 Data	Buffer 3								xxxx
ADC1BUF4	0308								ADC1 Data	Buffer 4								xxxx
ADC1BUF5	030A								ADC1 Data	Buffer 5								xxxx
ADC1BUF6	030C								ADC1 Data	Buffer 6								xxxx
ADC1BUF7	030E														xxxx			
ADC1BUF8	0310		ADC1 Data Buffer 8 xxx												xxxx			
ADC1BUF9	0312								ADC1 Data	Buffer 9								xxxx
ADC1BUFA	0314							A	ADC1 Data E	Buffer 10								xxxx
ADC1BUFB	0316							ŀ	ADC1 Data B	Buffer 11								xxxx
ADC1BUFC	0318							ŀ	ADC1 Data E	Buffer 12								xxxx
ADC1BUFD	031A							ŀ	ADC1 Data E	Buffer 13								xxxx
ADC1BUFE	031C							A	ADC1 Data E	Buffer 14								xxxx
ADC1BUFF	031E							A	ADC1 Data E	Buffer 15								xxxx
AD1CON1	0320	ADON	_	ADSIDL	_	—	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	_	—	CSCNA	CHPS1	CHPS0	BUFS		SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	ADRC — — SAMC4 SAMC3 SAMC2 SAMC1 SAMC0 ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0 000											0000				
AD1CHS123	0326	—	_	_	_	—	CH123NB1	CH123NB0	CH123SB	_			_	_	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA			CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	—	<u> PCFG<10:9>(1)</u> <u> PCFG<5:0></u> 0000															
AD1CSSL	0330	—	_	—	—	_	CSS<1	0:9> ⁽¹⁾	—	_	—			С	SS<5:0>			0000

TABLE 4-16: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)101/102 devices only.

DS70000652F-page 66

TABLE 4-18: CTMU REGISTER MAP

F	ile Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C	FMUCON1	033A	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	_		-	_	-	_	_	0000
C	FMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0			0000
C	FMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	—	—	-		_			_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window based on ALRMPTR<1:0> xxxx										xxxx					
ALCFGRPT	0622	ALRMEN	I CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 0000															
RTCVAL	0624		RTCC Value Register Window based on RTCPTR<1:0> xxx										xxxx					
RCFGCAL	0626	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000

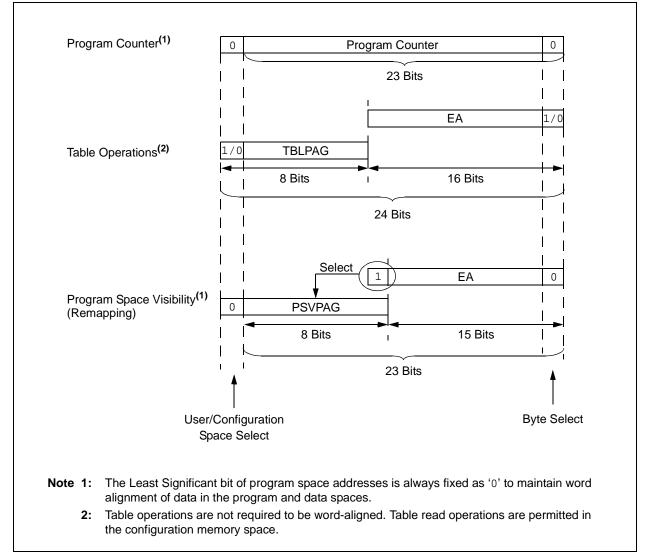

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

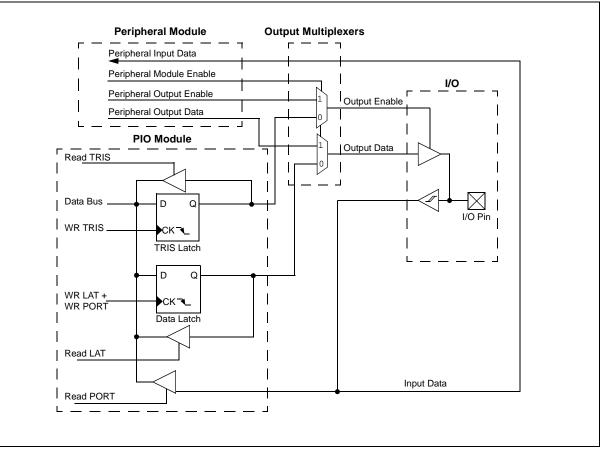
TABLE 4-20: PAD CONFIGURATION REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	_				_	_	_	-	_		_				RTSECSEL	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2 ⁽¹⁾	T5IP1 ⁽¹⁾	T5IP0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	INT2IP<2:0>:	External Inter	rupt 2 Priority	bits			
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru						
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	T5IP<2:0>: ⊺	ïmer5 Interrupt	Priority bits ⁽¹)			
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
	h h :						

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7


Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	CF: Clock Fail Detect bit (read/clear by application)
	1 = FSCM has detected a clock failure0 = FSCM has not detected a clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enables secondary oscillator0 = Disables secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit

- 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
- 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to "Oscillator (Part VI)" (DS70644) in the "dsPIC33/PIC24 Family Reference Manual" for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

			_				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-5	Unimplemer	nted: Read as '	0'				
bit 4-0	SS1R<4:0>:	Assign SPI1 S	lave Select In	put (SS1IN) to	the Correspond	ing RPn Pin bit	S
		ut tied to Vss					
	11110 = Res	served					
	:						
	11010 = Res						
	11001 = Inp	ut tied to RP25					
		ut tied to RP1					
	00000 = Inpr	ut tied to RP0					

REGISTER 10-10: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾		TSIDL ⁽¹⁾	—		—	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	—	—	TCS ⁽²⁾	_
bit 7							bit
Legend:	- hit		L:4				
R = Readabl		W = Writable		•	mented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	TON: Timer3	On bit(2)					
	1 = Starts 16-						
	0 = Stops 16-	bit Timer3					
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	TSIDL: Timer	r3 Stop in Idle N	/lode bit ⁽¹⁾				
		ues timer opera			e mode		
	0 = Continue	s timer operatio	on in Idle mode	9			
bit 12-7	•	ted: Read as '					
bit 6		er3 Gated Time	Accumulation	Enable bit ⁽²⁾			
	When TCS = This bit is ign						
	When TCS =						
		<u>o.</u> ne accumulation	n is enabled				
	0 = Gated tim	ne accumulation	n is disabled				
bit 5-4	TCKPS<1:0>	: Timer3 Input	Clock Prescal	e Select bits ⁽²)		
	11 = 1:256 pr	rescale value					
	10 = 1:64 pre						
	01 = 1:8 pres 00 = 1:1 pres						
bit 3-2	•	ited: Read as '	∩'				
bit 1	•	Clock Source S					
		clock from T3C					
		lock (Fosc/2)					
bit 0	Unimplemen	ted: Read as '	0'				
	/hen 32-bit timer t must be cleared				r2 Control regis	ster (T2CON<3>)	, the TSIDL
0						· · / /TOOON	0) (1

REGISTER 12-2: T3CON: TIMER3 CONTROL REGISTER

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer2 Control register (T2CON<3>), these bits have no effect.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			SEVO	PS<3:0>	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	_	—	IUE	OSYNC	UDIS
bit 7	·						bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-12	Unimplemen	ted: Read as ')'				
bit 11-8	SEVOPS<3:0	0>: PWMx Spec	ial Event Tri	gger Output Pos	stscale Select	oits	
	1111 = 1:16	postscale					
	•						
	•						
	• 0001 = 1:2 p	netecale					
	0000 = 1.2 p						
bit 7-3	•	ted: Read as 'd)'				
bit 2	IUE: Immedia	ate Update Enal	ole bit				
		to the active Px		are immediate			
	0 = Updates	to the active Px	DC registers	are synchroniz	ed to the PWN	lx time base	
bit 1	OSYNC: Out	put Override Sy	nchronizatio	n bit			
						he PWMx time b	ase
	•			register occur o	on the next TCN	/ boundary	
bit 0		Update Disable		5 <i>4</i>			
				Buffer registers Buffer registers			
	0 – Opuales			Duilei registers			

REGISTER 15-6: PWMxCON2: PWMx CONTROL REGISTER 2

	0 2. 0 0.017				OIOTEIX					
R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1			
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0			
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA			
bit 7							bit C			
Legend:		C = Clearable b	oit	HC = Hardwa	are Clearable bi	t				
R = Readable	bit	W = Writable bi	t	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15,13	11 = Reserve 10 = Interrup transmit	D>: UARTx Trans ed; do not use t when a charact buffer becomes t when the last ch pleted	ter is transferre empty	ed to the Transr	mit Shift Registe	. ,				

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

00 = Interrupt when a character is transferred to the	Transmit Shift Register (this implies there is at least
one character open in the transmit buffer)	

bit 14	UTXINV: UARTx Transmit Polarity Inversion bit
	If IREN = 0:
	1 = UxTX Idle state is '0'
	0 = UxTX Idle state is '1'
	<u>If IREN = 1:</u>
	1 = IrDA encoded, UxTX Idle state is '1'
	0 = IrDA encoded, UxTX Idle state is '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽¹⁾
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)
	10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
	0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive
	buffer; receive buffer has one or more characters
Note 1	Pater to "ILAPT" (DS70199) in the "doDIC22/DIC24 Family Pateroneo Manual" for information on apphing

Note 1: Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for transmit operation.

19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

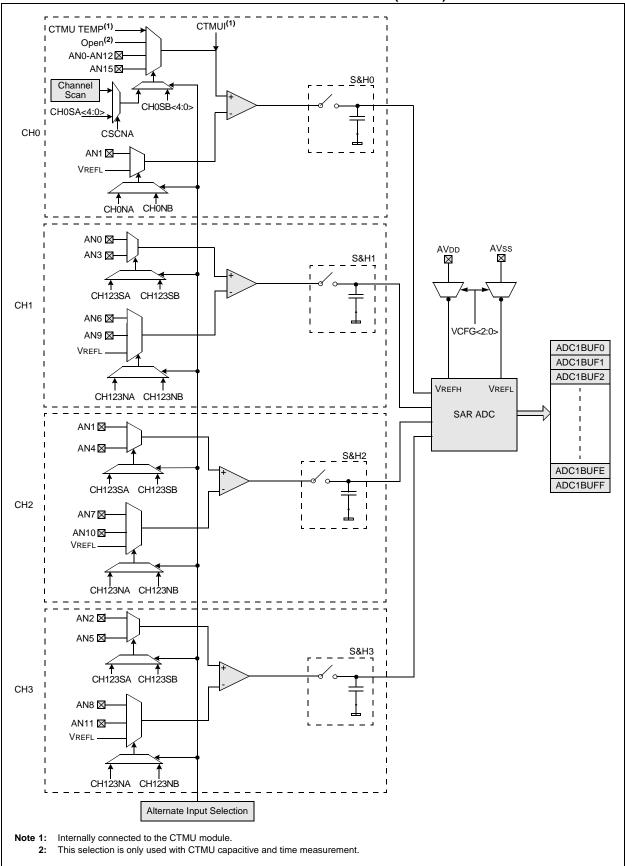
- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices have up to 14 ADC module input channels.

19.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 14 analog input pins
- Four Sample-and-Hold (S&H) circuits for simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes
- 16-word conversion result buffer


Depending on the particular device pinout, the ADC can have up to 14 analog input pins.

Block diagrams of the ADC module are shown in Figure 19-1 through Figure 19-3.

19.2 ADC Initialization

To configure the ADC module:

- 1. Select port pins as analog inputs (AD1PCFGL<15:0>).
- Select the analog conversion clock to match the desired data rate with the processor clock (ADxCON3<7:0>).
- 3. Determine how many Sample-and-Hold channels will be used (ADxCON2<9:8>).
- Select the appropriate sample and conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>).
- 5. Select the way conversion results are presented in the buffer (ADxCON1<9:8>).
- 6. Turn on the ADC module (ADxCON1<15>).
- 7. Configure the ADC interrupt (if required):
 - a) Clear the ADxIF bit.
 - b) Select the ADC interrupt priority.

	REGI	STER		X WASK GA	ATING CONTI	ROL	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN
bit 7	1	1					bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	1 = The mas 0 = The mas	king (blanking)	function will pr function will pr	event any asse	erted ('0') compa erted ('1') compa		
bit 14	-	nted: Read as		L :4			
bit 13	1 = MCI is c	Gate C Input In connected to OF not connected to	R gate	DIT			
bit 12	OCNEN: OR Gate C Input Inverted Enable bit						
		MCI is connec MCI is not con					
bit 11	OBEN: OR	Gate B Input In	verted Enable	bit			
		onnected to OF ot connected to					
bit 10		R Gate B Input					
		MBI is connect MBI is not con					
bit 9	OAEN: OR	Gate A Input Er	nable bit				
		onnected to OF ot connected to					
bit 8	OANEN: OF	R Gate A Input	Inverted Enabl	e bit			
		MAI is connect MAI is not con	•				
bit 7	1 = Inverted	ative AND Gate ANDI is conne ANDI is not co	cted to OR gat	te			
bit 6	1 = ANDI is	tive AND Gate connected to C not connected	R gate				
bit 5	1 = MCI is c	O Gate A1 C Inp connected to AN		able bit			
		of connected 1-					
bit 4		ot connected to	-	nabla kit			

DECISTED 20-4. CMVMSKCON- COMPADATOR V MASK GATING CONTROL

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		= 0)	ed automatica	lly after an ala	rm event wher	never ARPT<7:(0> = 0x00 and
bit 14		me Enable bit					
DIL 14	1 = Chime is	s enabled; ARP disabled; ARP				00 to 0xFF	
bit 13-10		>: Alarm Mask					
	0011 = Ever 0100 = Ever 0101 = Ever 0110 = Onco 0111 = Onco 1000 = Onco 1001 = Onco 101x = Rese 11xx = Rese	y 10 minutes y hour e a day e a week e a month e a year (excep erved – do not u erved – do not u	ise	red for Februa	ıry 29th, once e	every 4 years)	
hi+ 0 0	ALRMPTR<	1.05. Alarm Val					
bit 9-8			-	indow Pointer			
DIL 9-0	Points to the	corresponding / R<1:0> value d 5:8>: /IN VD /NTH emented / <u>:0>:</u> SEC IR DAY	Alarm Value reg	gisters when re	ading ALRMVA	ALH and ALRM\ ALH until it reac	
	Points to the the ALRMPT ALRMVAL<1 00 = ALRMM 01 = ALRMM 10 = ALRMM 11 = Unimple ALRMVAL<7 00 = ALRMS 01 = ALRME 10 = ALRME 11 = Unimple	corresponding / R<1:0> value d 5:8>: /IN VD /NTH emented / <u>:0>:</u> SEC IR DAY	Alarm Value regerements on e	gisters when re every read or w	ading ALRMVA		
	Points to the the ALRMPT ALRMVAL<1 00 = ALRMM 01 = ALRMV 10 = ALRMM 11 = Unimple ALRMVAL<7 00 = ALRME 10 = ALRME 11 = Unimple ARPT<7:0>:	corresponding / R<1:0> value d 5:8>: /IN VD /NTH emented /:0>: SEC IR DAY emented	Alarm Value regerements on e	gisters when re every read or w bits	ading ALRMVA		
	Points to the the ALRMPT ALRMVAL<1 00 = ALRMM 01 = ALRMV 10 = ALRMM 11 = Unimple ALRMVAL<7 00 = ALRME 10 = ALRME 11 = Unimple ARPT<7:0>:	corresponding / R<1:0> value d 5:8>: /IIN VD /INTH emented /:0>: SEC IR DAY emented Alarm Repeat	Alarm Value regerements on e	gisters when re every read or w bits	ading ALRMVA		
bit 7-0	Points to the the ALRMPT ALRMVAL<1 00 = ALRMM 01 = ALRMV 10 = ALRMM 11 = Unimple ALRMVAL<7 00 = ALRME 10 = ALRME 11 = Unimple ARPT<7:0>:	corresponding / R<1:0> value d 5:8>: /IIN VD /INTH emented /:0>: SEC IR DAY emented Alarm Repeat	Alarm Value regerements on e	gisters when re every read or w bits	ading ALRMVA		

REGISTER 21-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 3.0V^{(3)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD $< 3.0V^{(3)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sourced and sunk by any I/O pin excluding OSCO	15 mA
Maximum output current sourced and sunk by OSCO	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of the device maximum power dissipation (see Table 26-2).
- 3: See the "Pin Diagrams" section for 5V tolerant pins.

TABLE 26-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_	—	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	_	_		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	_		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—		50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

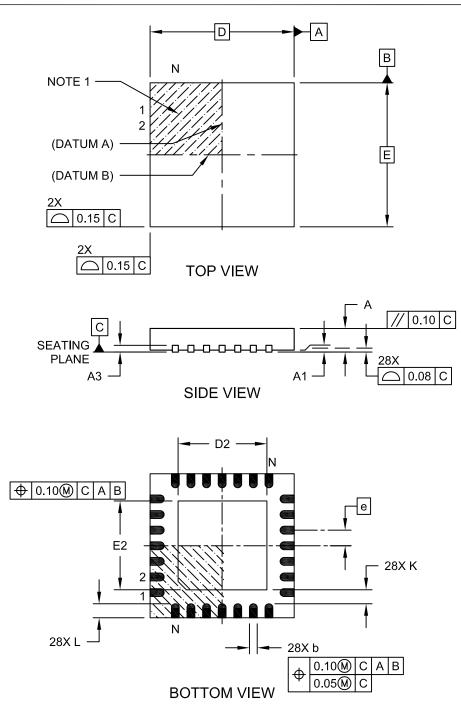
27.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 26.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes: High temperature. For example, Parameter DC10 in **Section 26.0** "Electrical Characteristics" is the Industrial and Extended temperature equivalent of HDC10.

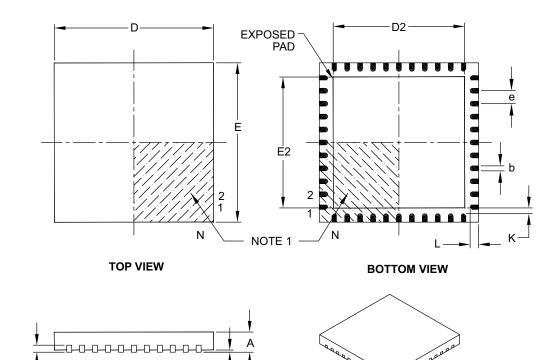
Absolute maximum ratings for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.


Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽³⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(4)}$	0.3V to 5.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	4 mA
Maximum current sourced/sunk by any 8x I/O pin	8 mA
Maximum current sunk by all ports combined	80 mA
Maximum current sourced by all ports combined ⁽²⁾	80 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - **2:** Maximum allowable current is a function of device maximum power dissipation (see Table 27-2).
 - 3: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 4: Refer to the "Pin Diagrams" section for 5V tolerant pins.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6	
	MIN	NOM	MAX		
Number of Pins N		44			
Pitch	е	0.65 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.00 0.02 0		
Contact Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30	6.30 6.45 6.80		
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width		0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad K		0.20	_	-	

A1

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

A3

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B