

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc102-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	27
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	33
3.0	CPU	37
4.0	Memory Organization	49
5.0	Flash Program Memory	83
6.0	Resets	87
7.0	Interrupt Controller	95
8.0	Oscillator Configuration	. 125
9.0	Power-Saving Features	. 133
10.0	I/O Ports	. 139
11.0	Timer1	. 165
12.0	Timer2/3 and Timer4/5	. 167
13.0	Input Capture	. 175
14.0	Output Compare	. 177
15.0	Motor Control PWM Module	. 181
16.0	Serial Peripheral Interface (SPI)	. 197
17.0	Inter-Integrated Circuit™ (I ² C™)	. 203
18.0	Universal Asynchronous Receiver Transmitter (UART)	. 211
19.0	10-Bit Analog-to-Digital Converter (ADC)	. 217
20.0	Comparator Module	. 231
21.0	Real-Time Clock and Calendar (RTCC)	. 243
22.0	Charge Time Measurement Unit (CTMU)	. 255
23.0	Special Features	. 261
24.0	Instruction Set Summary	. 269
25.0	Development Support	. 277
26.0	Electrical Characteristics	. 281
27.0	High-Temperature Electrical Characteristics	. 339
28.0	Packaging Information	. 343
Appe	ndix A: Revision History	. 373
Index		381
The I	/icrochip Web Site	. 387
Cust	omer Change Notification Service	. 387
Cust	omer Support	. 387
Prod	uct Identification System	. 389

TABLE 4-33: PORTB REGISTER MAP FOR dsPIC33FJ32GP101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB<	<15:14>	—	_		—	-	TRISB<9:7	>		—	TRISB4			TRISE	3<1:0>	C393
PORTB	02CA	RB<1	5:14>	—	_		—		RB<9:7>		_	—	RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC	LATB<	15:14>	—	_		—		LATB<9:7>	•	_	—	LATB4	_	_	LATB	<1:0>	xxxx
ODCB	02CE	ODCB<	<15:14>	_	—	-	_	(ODCB<9:7:	>		_	_					0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33FJ32MC101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8		TRISB	<15:12>		—	—		TRISB<9:7	>	—	—	TRISB4	—	_	TRISE	3<1:0>	F393
PORTB	02CA		RB<1	5:12>		_	_		RB<9:7>		_	_	RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC		LATB<	:15:12>		_	_		LATB<9:7>	>	_	_	LATB4	_	_	LATB	<1:0>	xxxx
ODCB	02CE		ODCB.	<15:12>		_	_		ODCB<9:7	>	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PORTB REGISTER MAP FOR dsPIC33FJ32(GP/MC)102 AND dsPIC33FJ32(GP/MC)104 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8								TRISB<	:15:0>								FFFF
PORTB	02CA		RB<15:0> xxx								xxxx							
LATB	02CC		LATB<15:0> xx:								xxxx							
ODCB	02CE		ODCB<15:5> 0000									0000						

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PORTC REGISTER MAP FOR dsPIC33FJ32(GP/MC)104 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	-	_	_	—	—	—					TRISC	C<9:0>					FFFF
PORTC	02D2	_	_	_	_	_	_					RC<	:9:0>					xxxx
LATC	02D4	_	_	_	_	_	_		LATC<9:0> xx							xxxx		
ODCC	02D6	_	_	_	_	_	_		ODCO	C<9:6>		_	_	_	_	—	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2 IDLE: Wake-up from Idle Flag bit
 - 1 = Device has been in Idle mode
 - 0 = Device has not been in Idle mode
- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is set to '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

6.10.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the Uninitialized W register as an Address Pointer will reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.10.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a Security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an interrupt or trap vector.

6.11 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note:	The status bits in the RCON register
	should be cleared after they are read so
	that the next RCON register value after a
	device Reset will be meaningful.

Table 6-3 provides a summary of Reset flag bit operation.

TABLE 6-3: RESET FLAG BIT OPERATION

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT Time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	_

Note: All Reset flag bits can be set or cleared by user software.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
ROI	DOZE2 ^(2,3)	DOZE1 ^(2,3)	DOZE0 ^(2,3)	DOZEN ^(1,2,3)	FRCDIV2	FRCDIV1	FRCDIV0		
bit 15				1 1			bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	_			—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unk	nown		
bit 15	bit 15 ROI: Recover on Interrupt bit 1 = Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1 0 = Interrupts have no effect on the DOZEN bit								
DIL 14-12	DOZE<2:0>: Processor Clock Reduction Select bits ^(2,3) 111 = $FcY/128$ 110 = $FcY/64$ 101 = $FcY/32$ 100 = $FcY/16$ 011 = $FcY/8$ (default) 010 = $FcY/4$ 001 = $FcY/2$ 000 = $FcY/16$								
bit 11	DOZEN: DOZ 1 = DOZE<2: 0 = Processo	E Mode Enabl 0> bits field sp r clock/periphe	e bit ^(1,2,3) ecifies the rat eral clock ratio	io between the is forced to 1:1	peripheral clock	s and the proc	cessor clocks		
bit 10-8	-8 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits 111 = FRC divide-by-256 110 = FRC divide-by-64 101 = FRC divide-by-32 100 = FRC divide-by-16 011 = FRC divide-by-8 010 = FRC divide-by-4 001 = FRC divide-by-2 000 = FRC divide-by-1 (default)								
bit 7-0	Unimplemen	ted: Read as '	כ'						

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

- **2:** If DOZEN = 1, writes to DOZE<2:0> are ignored.
- 3: If DOZE<2:0> = 000, the DOZEN bit cannot be set by the user; writes are ignored.

	12-3. 14001	1. IIIILI(4 C									
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL	—	—		_	—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—				
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	bit 15 $ \begin{array}{c} \text{When T32 = 1:} \\ 1 = \text{Starts 32-bit Timer4/5} \\ 0 = \text{Stops 32-bit Timer4/5} \\ \hline \text{When T32 = 0:} \\ 1 = \text{Starts 16-bit Timer4} \\ 0 = \text{Stops 16 bit Timer4} \\ \hline \end{array} $										
bit 14	Unimplemen	Unimplemented: Read as '0'									
bit 13	TSIDL: Timer	4 Stop in Idle N	/lode bit								
	1 = Discontinues	ues module op s module opera	eration when o tion in Idle mo	device enters I ode	dle mode						
bit 12-7	Unimplemen	ted: Read as '	0'								
bit 6	TGATE: Time <u>When TCS =</u> This bit is igno <u>When TCS =</u> 1 = Gated tim 0 = Gated tim	TGATE: Timer4 Gated Time Accumulation Enable bit <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation is enabled 2 - Octant time accumulation is dischlared									
bit 5-4	TCKPS<1:0>	: Timer4 Input	Clock Prescal	e Select bits							
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1										
bit 3	T32: 32-Bit Ti 1 = Timer4 ar 0 = Timer4 ar	mer Mode Selend Timer5 form Timer5 act a	ect bit a single 32-bi s two 16-bit tir	t timer mers							
bit 2	Unimplemen	ted: Read as '	0'								
bit 1	TCS: Timer4	Clock Source S	Select bit								
	1 = External c 0 = Internal cl	clock from pin, lock (FcY)	T4CK (on the	rising edge)							
bit 0	Unimplemen	ted: Read as '	0'								
Note 1: ⊤	his register is ava	ailable in dsPIC	33FJ32(GP/M	IC)10X device	s only.						

REGISTER 12-3: T4CON: TIMER4 CONTROL REGISTER⁽¹⁾

15.0 MOTOR CONTROL PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Motor Control PWM" (DS70187) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16MC10X devices have a 6-channel Pulse-Width Modulation (PWM) module.

The PWM module has the following features:

- Up to 16-bit resolution
- On-the-fly PWM frequency changes
- Edge-Aligned and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation or BLDC
- Special event comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates configurable to be immediate or synchronized to the PWM time base

15.1 PWM1: 6-Channel PWM Module

This module simplifies the task of generating multiple synchronized PWM outputs. The following power and motion control applications are supported by the PWM module:

- 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

This module contains three duty cycle generators, numbered 1 through 3. The module has six PWM output pins, numbered PWM1H1/PWM1L1 through PWM1H3/PWM1L3. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L
bit 15							bit
R/W-	0 U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
FLTBI	<u>м –</u>	_	_	_	FBEN3	FBEN2	FBEN1
bit 7					-		bit
Legena:	labla hit	\// _ \//ritabla	hit		nantad hit raa	l oo 'O'	
R = Read		vv = vviilable	DIL	0 = 0 minipier	arad	1 as U v – Pitio unkn	0.000
-n = value				0 = Bit is cie	areu		IOWI
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	FBOV<3:1>H	I:FBOV<3:1>L	- : Fault Input E	8 PWMx Overri	de Value bits		
	1 = The PWN	1x output pin is	driven active	on an external	Fault input eve	nt	
	0 = The PWN	1x output pin is	driven inactiv	e on an externa	al Fault input ev	vent	
bit 7	FLTBM: Faul	t B Mode bit					
	1 = The Fault	B input pin fur	nctions in the (Cycle-by-Cycle	mode		
	0 = The Fault	B input pin lat	ches all contro	ol pins to the pr	ogrammed stat	es in PxFLTBC	ON<13:8>
bit 6-3	Unimplemen	ted: Read as '	0'				
bit 2	FBEN3: Fault	t Input B Enabl	e bit				
	1 = PWMxH3	/PWMxL3 pin p	pair is controlle	ed by Fault Inp	ut B		
L :1 4		PVVIVIXL3 pin p	Dair is not con	trolled by Fault	Input B		
DIT			e Dit	ad by Fault Inc	+ D		
	1 = PWWXH2 0 = PWMxH2	/PWMxL2 pin p	pair is controlle	trolled by Fault inp	Input B		
bit 0	FBEN1: Fault	t Input B Enabl	e bit				
	1 = PWMxH1	/PWMxL1 pin r	pair is controlle	ed by Fault Inp	ut B		
	0 = PWMxH1	/PWMxL1 pin p	pair is not con	trolled by Fault	Input B		
Note 1:	Comparator output	ts are not inter	nally connecte	d to the PWM	Fault control lo	gic. If using the	comparator
	modules for Fault g	generation, the or FLTB1 input	user must ex pin.	ternally connec	ct the desired c	omparator outp	ut pin to the
2:	Refer to Table 15-	1 for FLTB1 im	, plementation o	details.			
3:	The PxFLTACON r for more informatio	egister is a writ	e-protected re	gister. Refer to	Section 15.3 "	Write-Protecte	d Registers"
4:	During any Reset event, FLTB1 is enabled by default and must be cleared as described in Section 15.2 "PWM Faults"						

REGISTER 15-10: PxFLTBCON: PWMx FAULT B CONTROL REGISTER^(1,2,3,4)

REGISTER 21-6: RTCVAL (WHEN RTCPTR<1:0> = 01): RTCC WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0	,
-------------------------------------	---

- bit 10-8 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
- bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

24.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ16(GP/ MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com).

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 24-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Typical ⁽¹⁾	Мах	Units Conditions					
Operating Cur	rent (IDD) ⁽²⁾ –	dsPIC33FJ3	I32(GP/MC)10X Devices					
DC20d	1	2	mA	-40°C				
DC20a	1	2	mA	+25°C	2.2\/	LPRC		
DC20b	1.1	2	mA	+85°C	3.3 V	(32.768 kHz) ⁽³⁾		
DC20c	1.3	2	mA	+125°C				
DC21d	1.7	3	mA	-40°C				
DC21a	2.3	3	mA	+25°C	2.21/	4 MIDC(3)		
DC21b	2.3	3	mA	+85°C	3.3V	T MIPS **		
DC21c	2.4	3	mA	+125°C				
DC22d	7	8.5	mA	-40°C				
DC22a	7	8.5	mA	+25°C	2.21/	4 MIDC(3)		
DC22b	7	8.5	mA	+85°C	3.37	4 10117-517		
DC22c	7	8.5	mA	+125°C				
DC23d	13.2	17	mA	-40°C				
DC23a	13.2	17	mA	+25°C	2 2\/	10 MIDS(3)		
DC23b	13.2	17	mA	+85°C	3.37			
DC23c	13.2	17	mA	+125°C				
DC24d	17	22	mA	-40°C				
DC24a	17	22	mA	+25°C	2 2)/			
DC24b	17	22	mA	+85°C	3.3V	16 MIPS		
DC24c	17	22	mA	+125°C				

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU executing while(1) statement
- 3: These parameters are characterized, but not tested in manufacturing.

FIGURE 26-22: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

TABLE 26-40:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

АС СНА		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	_	—	9	MHz	-40°C to +125°C, see Note 3
SP20	TscF	SCKx Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	_		ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to $3.6V^{(6)}$ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions							
	Device Supply									
AD01	AVdd	Module VDD Supply ^(2,4)	Greater of: VDD – 0.3 or 2.9	—	Lesser of: VDD + 0.3 or 3.6	V				
AD02	AVss	Module Vss Supply ^(2,5)	Vss - 0.3		Vss + 0.3	V				
AD09	IAD	Operating Current	—	7.0	9.0	mA	See Note 1			
			Anal	og Input						
AD12	Vinh	Input Voltage Range _{VINH} (2)	VINL	-	AVdd	V	This voltage reflects S&H Channels 0, 1, 2 and 3 (CH0-CH3), positive input			
AD13	VINL	Input Voltage Range _{VINL} (2)	AVss		AVss + 1V	V	This voltage reflects S&H Channels 0, 1, 2 and 3 (CH0-CH3), negative input			
AD17	Rin	Recommended Impedance of Analog Voltage Source ⁽³⁾	—	_	200	Ω				

TABLE 26-47: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

3: These parameters are assured by design, but are not characterized or tested in manufacturing.

4: This pin may not be available on all devices; in which case, this pin will be connected to VDD internally. See the "**Pin Diagrams**" section for availability.

5: This pin may not be available on all devices; in which case, this pin will be connected to Vss internally. See the "**Pin Diagrams**" section for availability.

6: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

FIGURE 26-31: ADC CONVERSION TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000

28.1 Package Marking Information (Continued)

Revision E (September 2012)

This revision includes updates to the values in **Section 26.0** "**Electrical Characteristics**" and updated packaging diagrams in **Section 28.0** "**Packaging Information**". There are minor text edits throughout the document.

Revision F (January 2014)

This revision adds the High-Temperature Electrical Characteristics chapter and updated packaging diagrams in **Section 28.0** "**Packaging Information**". There are minor text edits throughout the document.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support