

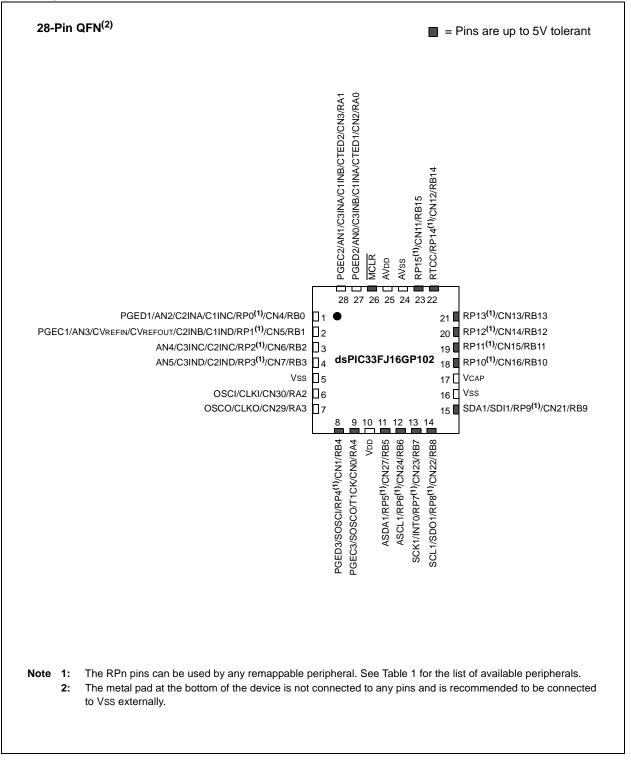
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

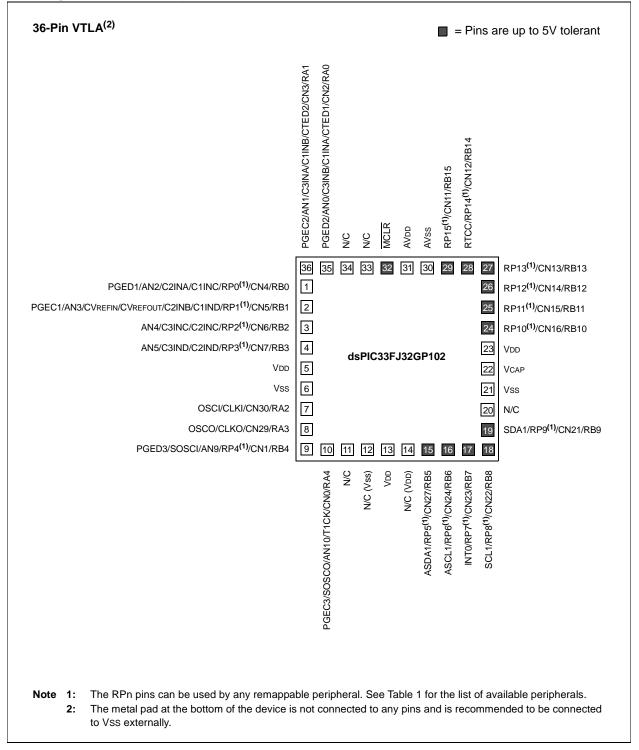
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


-XF

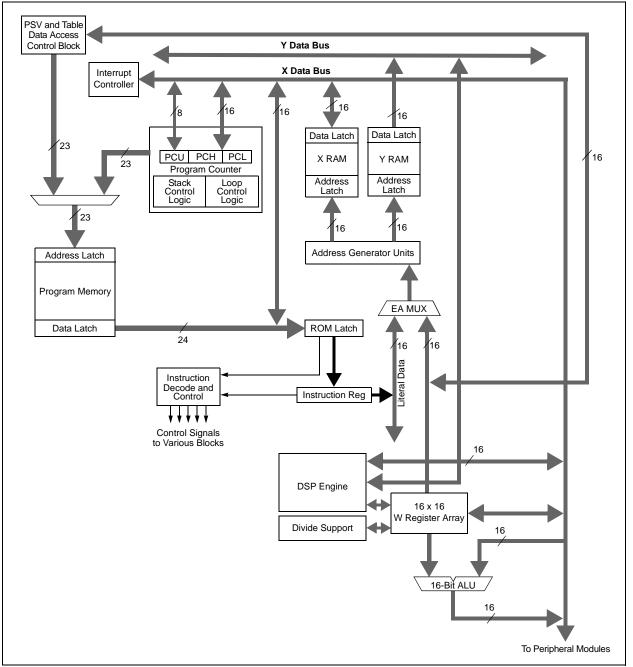
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc102-i-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)


3.3 Special MCU Features

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 CPU CORE BLOCK DIAGRAM

TABLE 4-21: COMPARATOR REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0650	CMSIDL	_	_	_	_	C3EVT	C2EVT	C1EVT	_	—	—	—	—	C3OUT	C2OUT	C1OUT	0000
CVRCON	0652	—	_	_	_	_	VREFSEL	BGSEL1	BGSEL0	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0654	CON	COE	CPOL		-	-	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM1MSKSRC	0656	_	—	-	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM1MSKCON	0658	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	065A	-	—			-	-	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM2CON	065C	CON	COE	CPOL		-	-	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2MSKSRC	065E	-	—			SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM2MSKCON	0660	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0662	-	—			-	-	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM3CON	0664	CON	COE	CPOL		-	-	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3MSKSRC	0666	-	—			SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM3MSKCON	0668	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	066A	_	—	—	—	_	—	_	_	-	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	—	—		I	NT1R<4:0>			—	—	—	_	—	—	—	_	1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	_	_		I	NT2R<4:0>			001F
RPINR3	0686	_	_	_		Т	3CKR<4:0>			_	_	_		Т	2CKR<4:0>	•		1F1F
RPINR4	0688	—	_	_		Τŧ	5CKR<4:0>(1)		_	_	_		T4	CKR<4:0>	1)		1F1F
RPINR7	068E	—	_	_			IC2R<4:0>			_	_	—			IC1R<4:0>			1F1F
RPINR8	0690	—	_	_	_	_	—	—	_	_	_	—			IC3R<4:0>			001F
RPINR11	0696	—	_	_	_	_	_	—	_	_	_	—		C	CFAR<4:0	>		001F
RPINR18	06A4	—	_	_		U	1CTSR<4:0>			_	_	—		U	1RXR<4:0:	>		1F1F
RPINR20	06A8	—	_	_		S	CK1R<4:0> ⁽¹)		_	_	—		SI	DI1R<4:0>(1)		1F1F
RPINR21	06AA	_	_	_	—	_	—	_	_	_	—	_		;	SS1R<4:0>			001F

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

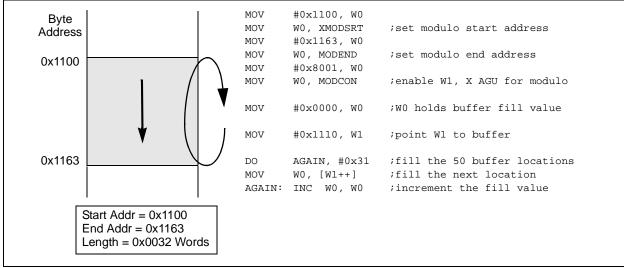
In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the circular buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.4.2 W ADDRESS REGISTER SELECTION

- The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing.
- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

5.2 RTSP Operation

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions); and to program one word. Table 26-12 shows typical erase and programming times. The 8-row erase pages are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the operation is finished.

The programming time depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3). Use the following formula to calculate the minimum and maximum values for the Word write time and page erase time (see Parameters D138a and D138b, and Parameters D137a and D137b in Table 26-12, respectively).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 8-3) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

 $T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 + 0.02) \times (1 - 0.00375)} = 47.4 \mu s$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 - 0.02) \times (1 - 0.00375)} = 49.3 \mu s$$

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one word (24 bits) of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Note:	Performing a page erase operation on the								
	last page of program memory will clear the								
	Flash Configuration Words, thereby								
	enabling code protection as a result.								
	Therefore, users should avoid performing								
	page erase operations on the last page of								
	program memory.								

Refer to **"Flash Programming"** (DS70191) in the *"dsPIC33/PIC24 Family Reference Manual"* for details and codes examples on programming using RTSP.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

D / M A	D 444 A	D.4.4. 0	DAMA	DALLA	DALLA	DAMA	D 44/ 6
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bi
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR		<u> </u>	MATHERR	ADDRERR	STKERR	OSCFAIL	
bit 7	BIVOLINI			ABBRERR	OTTLETT	00017112	bi
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
6:4 <i>7</i>		www.unt.Nie.otie.ev.F	Niachla hit				
bit 15		rrupt Nesting E nesting is disat					
		nesting is cloat					
bit 14	-	cumulator A O		lag bit			
	1 = Trap was	caused by ove	erflow of Accur	nulator A			
	0 = Trap was	not caused by	overflow of Ad	ccumulator A			
bit 13		cumulator B O	-	-			
		caused by ove not caused by					
bit 12	-	-		Dverflow Trap F	lag hit		
			•	flow of Accumu	•		
	•	•	•	overflow of Accu			
bit 11	COVBERR: A	Accumulator B	Catastrophic C	Overflow Trap F	lag bit		
				flow of Accumu			
	-	-	-	overflow of Accu	umulator B		
bit 10		Imulator A Ove		able bit			
	⊥ = Trap over 0 = Trap is di	flow of Accum	ulator A				
bit 9		umulator B Ove	erflow Trap En	able bit			
		flow of Accum					
	0 = Trap is di	sabled					
bit 8	COVTE: Cata	astrophic Overf	low Trap Enab	ole bit			
			erflow of Accur	mulator A or B i	s enabled		
hit 7	0 = Trap is dis	sabled Shift Accumula	tor Error State	ia hit			
bit 7				llid accumulator	chift		
				invalid accumul			
bit 6		ithmetic Error :	-				
		or trap was cau	-	-			
		r trap was not	-	ivide-by-zero			
bit 5	•	ted: Read as '					
bit 4	MATHERR: A	Arithmetic Error	Status bit				
	1 14-41	or trap has occu	una al				

INTOONA, INTERDURT CONTROL DECISTER A

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—		_	—		—						
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—	CTMUIP2	CTMUIP1	CTMUIP0	—	_	—	_				
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 15-7	Unimplemen	ted: Read as '	0'								
bit 6-4	CTMUIP<2:0	>: CTMU Interr	upt Priority bi	ts							
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	•										
		pt is Priority 1 pt source is dis	abled								
bit 3-0	Unimplemen	ted: Read as '	0'								

REGISTER 7-27: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ^(2,3)	DOZE1 ^(2,3)	DOZE0 ^(2,3)	DOZEN ^(1,2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_		—			—
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpleme	ented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	nown
bit 15	1 = Interrupts 0 = Interrupts	s have no effec	DOZEN bit and to the		clock/periphera	al clock ratio is	set to 1:1
bit 14-12	DOZE<2:0>:	Processor Cloo	ck Reduction S	Select bits ^(2,3)			
	111 = FCY/12	-					
	110 = FCY/64 101 = FCY/32						
	101 = FCY/16						
	011 = FCY/8 (default)					
	010 = FCY/4						
	001 = FCY/2 000 = FCY/1						
bit 11		E Mode Enabl	e bit ^(1,2,3)				
				io between the p	eripheral clock	s and the proc	essor clock
	0 = Processo	or clock/periphe	eral clock ratio	is forced to 1:1			
bit 10-8			RC Oscillator	Postscaler bits			
	111 = FRC di						
	110 = FRC di 101 = FRC di						
	100 = FRC di	•					
	011 = FRC di	•					
	010 = FRC di						
	001 = FRC di	vide-by-2 vide-by-1 (defa					
		•					
bit 7-0	Unimplomon	ted: Read as '	o'				

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

- **2:** If DOZEN = 1, writes to DOZE<2:0> are ignored.
- 3: If DOZE<2:0> = 000, the DOZEN bit cannot be set by the user; writes are ignored.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

15.4 PWM Control Registers

R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 PTEN PTSIDL bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTOPS3 PTOPS2 PTOPS1 PTOPS0 PTCKPS1 PTCKPS0 PTMOD1 PTMOD0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PTEN: PWMx Time Base Timer Enable bit 1 = PWMx time base is on 0 = PWMx time base is off bit 14 Unimplemented: Read as '0' bit 13 PTSIDL: PWMx Time Base Stop in Idle Mode bit 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode bit 12-8 Unimplemented: Read as '0' bit 7-4 PTOPS<3:0>: PWMx Time Base Output Postscale Select bits 1111 = 1:16 postscale 0001 = 1:2 postscale 0000 = 1:1 postscale bit 3-2 PTCKPS<1:0>: PWMx Time Base Input Clock Prescale Select bits 11 = PWMx time base input clock period is 64 Tcy (1:64 prescale) 10 = PWMx time base input clock period is 16 Tcy (1:16 prescale) 01 = PWMx time base input clock period is 4 Tcy (1:4 prescale) 00 = PWMx time base input clock period is TCY (1:1 prescale) bit 1-0 PTMOD<1:0>: PWMx Time Base Mode Select bits 11 = PWMx time base operates in a Continuous Up/Down Count mode with interrupts for double **PWM updates** 10 = PWMx time base operates in a Continuous Up/Down Count mode 01 = PWMx time base operates in Single Pulse mode

REGISTER 15-1: PxTCON: PWMx TIME BASE CONTROL REGISTER

00 = PWMx time base operates in a Free-Running mode

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated CircuitTM (I^2C^{TM}) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addresses
- I²C Master mode supports 7-bit and 10-bit addresses
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-Bit and 10-Bit Addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-Bit Addressing
- I²C slave operation with 10-Bit Addressing
- I²C master operation with 7-Bit or 10-Bit Addressing

For details about the communication sequence in each of these modes, refer to the Microchip web site (www.microchip.com) for the latest *"dsPIC33/PIC24 Family Reference Manual"* sections.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CxSTAT are read/write.

- I2CxRSR is the shift register used for shifting data
- I2CxRCV is the receive buffer and the register to which data bytes are written or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- · I2CxADD register holds the slave address
- ADD10 status bit indicates 10-Bit Addressing mode
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is available for 16x BRG mode (BRGH = 0) only.

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70635) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four edge input trigger sources
- · Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · Precise time measurement resolution of 200 ps
- Accurate current source suitable for capacitive measurement
- On-chip temperature measurement using a built-in diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

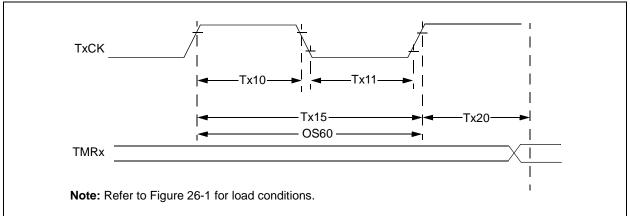
The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module, the edge delay generation, sequencing of edges, and controls the current source and the output trigger. CTMUCON2 controls the edge source selection, edge source polarity selection and edge sampling mode. The CTMUICON register controls the selection and trim of the current source.

Figure 22-1 shows the CTMU block diagram.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

DC CHARACI	TERISTICS		(unless oth	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions					
Operating Cur	rent (IDD) ⁽²⁾ –	dsPIC33FJ	32(GP/MC)10X	Devices					
DC20d	1	2	mA	-40°C					
DC20a	1	2	mA	+25°C	- 3.3V	LPRC			
DC20b	1.1	2	mA	+85°C	3.3V	(32.768 kHz) ⁽³⁾			
DC20c	1.3	2	mA	+125°C					
DC21d	1.7	3	mA	-40°C					
DC21a	2.3	3	mA	+25°C	2.21/	1 MIPS ⁽³⁾			
DC21b	2.3	3	mA	+85°C	3.3V	1 MIPS(*)			
DC21c	2.4	3	mA	+125°C					
DC22d	7	8.5	mA	-40°C					
DC22a	7	8.5	mA	+25°C	- 3.3V	4 MIPS ⁽³⁾			
DC22b	7	8.5	mA	+85°C	3.3V	4 10119517			
DC22c	7	8.5	mA	+125°C					
DC23d	13.2	17	mA	-40°C					
DC23a	13.2	17	mA	+25°C		10 MIPS ⁽³⁾			
DC23b	13.2	17	mA	+85°C	3.3V	10 MIPS(*)			
DC23c	13.2	17	mA	+125°C]				
DC24d	17	22	mA	-40°C					
DC24a	17	22	mA	+25°C	2.21/				
DC24b	17	22	mA	+85°C	- 3.3V	16 MIPS			
DC24c	17	22	mA	+125°C	1				

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)


Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU executing while(1) statement
- 3: These parameters are characterized, but not tested in manufacturing.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

FIGURE 26-5: TIMER1/2/3 EXTERNAL CLOCK TIMING CHARACTERISTICS

Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial -40°C \leq TA \leq +125°C for Extended Param Characteristic⁽²⁾ Symbol Min Max Units Conditions Тур No. TA10 ТтхН T1CK High Synchronous Greater of: Must also meet ns Time mode 20 or Parameter TA15, (TCY + 20)/N N = prescale value (1, 8, 64, 256) Asynchronous 35 ns _ ____ TA11 T1CK Low Must also meet TTXL Synchronous Greater of: ns Time mode 20 ns or Parameter TA15, (TCY + 20)/N N = prescale value (1, 8, 64, 256) Asynchronous 10 ns TA15 ΤτχΡ T1CK Input Synchronous Greater of: N = prescale value ns Period mode 40 or (1, 8, 64, 256) (2 TCY + 40)/N **OS60** Ft1 SOSC1/T1CK Oscillator DC 50 kHz ____ Input Frequency Range (oscillator enabled by setting the TCS (T1CON<1>) bit) TA20 TCKEXTMRL Delay from External T1CK 0.75 Tcy + 40 1.75 Tcy + 40 ns Clock Edge to Timer Increment

TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

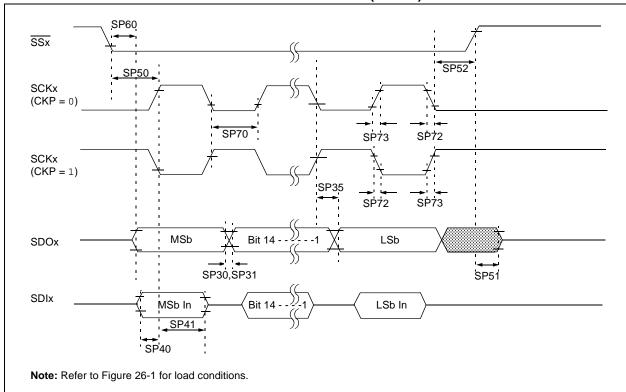


FIGURE 26-23: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

TABLE 26-43:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

AC CH	ARACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscP	Maximum SCKx Input Frequency	—	-	15	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—	_	—w	ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns			
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 4		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	-	_	ns	See Note 4		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

27.1 High-Temperature DC Characteristics

TABLE 27-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temperature Range	Max MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104
HDC5	VBOR – 3.6V ⁽¹⁾	-40°C to +150°C	5

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., may have degraded performances below VDDMIN.

TABLE 27-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 27-3: DC CHARACTERISTICS: OPERATING CURRENT (IDD))

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Parameter No.	Typical	Мах	Units		Conditions		
Operating Current (IDD) – dsPIC33FJ16(GP/MC)10X Devices							
DC20e	1.3	1.7	mA	3.3V	LPRC (32.768 kHz)		
DC22e	7.0	8.5	mA	3.3V	5 MIPS		

DC Characteristics	 282
Brown-out Reset (BOR)	
Doze Current (IDOZE)	
High Temperature	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Thermal Operating Conditions	
Thermal Packaging	
Development Support	
Assembler	
MPASM Assembler	 278
C Compilers	
MPLAB XC	 278
Demonstration/Development Boards	 280
Evaluation and Starter Kits	
MPLAB Assembler, Linker, Librarian	
MPLAB ICD 3 In-Circuit Debugger System	 279
MPLAB PM3 Device Programmer	 279
MPLAB REAL ICE In-Circuit Emulator System	
MPLAB X Integrated Development	
Environment Software	 277
MPLINK Object Linker/MPLIB Object Librarian	 278
PICkit 3 In-Circuit Debugger/Programmer	 279
Software Simulator (MPLAB X SIM)	 279
Third-Party Development Tools	
Doze Mode	 134
dsPIC33FJ16(GP/MC)101/102	
Device Features	 2
dsPIC33FJ32(GP/MC)101/102/104	
Device Features	 3
F	
-	
Electrical Characteristics	 281

126

F

Flash Program Memory	
Control Registers	
Operations	
Programming Algorithm	
RTSP Operation	
Table Instructions	

G

Getting Started with 16-Bit DSCs	
Analog and Digital Pins Configuration	
During ICSP	36
Connection Requirements	33
Decoupling Capacitors	33
External Oscillator Pins	35
ICSP Pins	35
Master Clear (MCLR) Pin	34
Oscillator Value Conditions on Start-up	36
Unused I/Os	36

Н

High-Temperature Electrical Characteristics
VO Dorto 120
I/O Ports
Configuring Analog Port Pins
Open-Drain Configuration
Parallel I/O (PIO)
Write/Read Timing 141
l ² C
Control Registers
Operating Modes
Registers
In-Circuit Debugger268
In-Circuit Serial Programming (ICSP)
Input Capture 175
Control Register 176
Input Change Notification (ICN)141
Instruction Addressing Modes73
File Register Instructions 73
Fundamental Modes Supported74
MAC Instructions74
MCU Instructions73
Move and Accumulator Instructions74
Other Instructions74
Instruction Set
Summary
Overview
Symbols Used in Opcode Descriptions
Instruction-Based Power-Saving Modes
Idle
Sleep
Internet Address
Interrupt Controller
Interrupt Registers
IECx
IFSx
INTCON1
INTCON2
INTTREG
IPCx
Interrupt Setup Procedures
Initialization
Interrupt Disable
Interrupt Disable
Trap Service Routine (TSR)
Interrupt Vectors
Reset Sequence
Interrupt Vector Table (IVT)
Interrupts Coincident with Power Save Instructions 134
L
LPRC Oscillator
Use with WDT267
Μ
Memory Organization
Microchip Internet Web Site

Momory organization	
Microchip Internet Web Site	387
Modulo Addressing	75
Applicability	
Operation Example	
Start and End Address	75
W Address Register Selection	75

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13