

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc102-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		te)			Rem	appa	able I	Perip	herals	;	~		U						
Device	Pins	Program Flash (Kby	RAM (Kbytes)	Remappable Pins	16-bit Timer ^(1,2)	Input Capture	Output Compare	UART	External Interrupts ⁽³⁾	SPI	Motor Control PWN	PWM Faults	10-Bit, 1.1 Msps AD	RTCC	I ² CTM	Comparators	CTMU	I/O Pins	Packages
dsPIC33FJ32GP101	18	32	2	8	5	3	2	1	3	1	—	—	1 ADC, 6-ch	Y	1	3	Y	13	PDIP, SOIC
	20	32	2	8	5	3	2	1	3	1		—	1 ADC, 6-ch	Y	1	3	Y	15	SSOP
dsPIC33FJ32GP102	28	32	2	16	5	3	2	1	3	1	_	_	1 ADC, 8-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	32	2	16	5	3	2	1	3	1	—	_	1 ADC, 8-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ32GP104	44	32	2	26	5	3	2	1	3	1	_		1 ADC, 14-ch	Y	1	3	Y	35	TQFP, QFN, VTLA
dsPIC33FJ32MC101	20	32	2	10	5	3	2	1	3	1	6-ch	1	1 ADC, 6-ch	Y	1	3	Y	15	PDIP, SOIC, SSOP
dsPIC33FJ32MC102	28	32	2	16	5	3	2	1	3	1	6-ch	2	1 ADC, 8-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	32	2	16	5	3	2	1	3	1	6-ch	2	1 ADC, 8-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ32MC104	44	32	2	26	5	3	2	1	3	1	6-ch	2	1 ADC, 14-ch	Y	1	3	Y	35	TQFP, QFN, VTLA

TABLE 2: dsPIC33FJ32(GP/MC)101/102/104 DEVICE FEATURES

Note 1: Four out of five timers are remappable.

2: Two pairs can be combined to have up to two 32-bit timers.

3: Two out of three interrupts are remappable.

Pin Diagrams (Continued)

Pin Diagrams (Continued)

Pin Nam	ne Pin Type	Buffer Type	PPS	Description				
AVDD	P	Ρ	No	Positive supply for analog modules. This pin must be con AVDD is connected to VDD in the 18-pin dsPIC33FJXXG dsPIC33FJXXMC101 devices. In all other devices, AVDI VDD.	nnected at all times. P101 and 20-pin D is separated from			
AVss	P	Р	No	Ground reference for analog modules. AVss is connected to Vss in the 18-pin dsPIC33FJXXGP101 and 20-pin dsPIC33FJXXMC101 devices. In other devices, AVss is separated from Vss.				
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.				
VCAP	Р	—	No	CPU logic filter capacitor connection.				
Vss	Р	—	No	No Ground reference for logic and I/O pins.				
Legend:	CMOS = 0	CMOS comp	batible	atible input or output Analog = Analog input P = Power				
	ST = Schi	nitt Trigger i	input w	ut with CMOS levels O = Output I = Input				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels O = Output PPS = Peripheral Pin Select

Note 1: An external pull-down resistor is required for the FLTA1 pin in dsPIC33FJXXMC101 (20-pin) devices.

2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.

3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.

4: The PWM Fault pins are enabled during any Reset event. Refer to **Section 15.2** "**PWM Faults**" for more information on the PWM Faults.

5: Not all pins are available on all devices. Refer to the specific device in the "**Pin Diagrams**" section for availability.

6: These pins are available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-3).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices also have two Interrupt Vector Tables (IVTs), located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the Interrupt Vector Tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-3: PROGRAM MEMORY ORGANIZATION

TABLE 4-12: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	—	—	—	-	_	—				I2C1 Rece	ive Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	- I2C1 Transmit Register						OOFF			
I2C1BRG	0204	_	_	_	_	_	_	_	Baud Rate Generator Register						0000			
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_			I2C1 Address Register						0000		
I2C1MSK	020C			—	_	—	_			I2C1 Address Mask Register						0000		

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	—	_				UART1	I Transmit R	egister				xxxx
U1RXREG	0226	_	_	_	_	_	—	_	UART1 Receive Register						0000			
U1BRG	0228							Ba	Baud Rate Generator Prescaler						0000			

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	—	—	—	—	SPIROV	—	—	—	—	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	smit and Re	ceive Buffe	r Register							0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

					GISTER		
R/SO-0(1)	R/W-0(1)	R/W-0('')	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR					—
bit 15							bit 8
	(1)			(1)	(1)		
U-0	R/W-0(")	U-0	U-0	R/W-0(1)	R/W-0(1)	R/W-0(1)	R/W-0(1)
	ERASE	—	—	NVMOP3(2)	NVMOP2(2)	NVMOP1 ⁽²⁾	NVMOP0(2)
bit 7							bit 0
Legend:		SO - Sotta	ble Only bit				
R – Readable	bit	W = Writab		II – Unimplen	nented hit read	l as '0'	
R = Reauable		4^{\prime} = Witab		0' = 0 in the set	arad	v – Ritic unkr	
-11 = value at r		1 = DIL IS S	el		areu		IOWIT
bit 15	WR: Write Cont 1 = Initiates a F cleared by 0 = Program or	rol bit ⁽¹⁾ Flash memor hardware on rerase opera	ry program or ce operation i tion is comple	erase operations complete ete and inactive	on; the operatio	on is self-timed	and the bit is
bit 14	WREN: Write E 1 = Enables Fla 0 = Inhibits Flas	nable bit ⁽¹⁾ ash program/ sh program/e	/erase operati erase operatio	ons			
bit 13	WRERR: Write 1 = An imprope on any set a 0 = The program	Sequence E r program or attempt of the m or erase o	rror Flag bit ⁽¹⁾ erase sequence WR bit) peration comp	ce attempt or ter	mination has oc	ccurred (bit is se	t automatically
bit 12-7	Unimplemente	d: Read as '	0'				
bit 6	ERASE: Erase/	Program Ena	able bit ⁽¹⁾				
	1 = Performs th0 = Performs th	ne erase ope ne program o	ration specifie	ed by NVMOP<	3:0> on the nex P<3:0> on the	kt WR comman next WR comm	d and
bit 5-4	Unimplemente	d: Read as '	0'				
bit 3-0	NVMOP<3:0>:	NVM Operat	ion Selection	bits ^(1,2)			
	If ERASE = 1: 1111 = No oper 1101 = Erase G 1100 = No oper 0011 = No oper 0000 = No oper 0000 = No oper If ERASE = 0: 1111 = No oper 1001 = No oper 1101 = No oper 1011 = No oper 1001 = No oper 1010 = No oper 0011 = Memory 0010 = No oper 0011 = Memory 0010 = No oper 0001 = No oper 0001 = No oper 0000 = No oper	ration General Segn ration ration ration ration ration ration ration ration ration ration ration ration ration	nent operation am operation				
Note 1: The	ese bits can only b	be reset on a	POR.				
2: All REGISTER 5	other combination	ns of NVMOF Y: NONVOL	<pre>2<3:0> are uni ATILE MEN</pre>	implemented. IORY KEY R	EGISTER		

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

| U-0 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| _ | — | _ | _ | _ | _ | _ | |

© 2011-2014 Microchip Technology Inc.

	-3: INTCC						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	<u>U-0</u>	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkn	own
			•				lowin
bit 15	NSTDIS: Inte	errupt Nestina [Disable bit				
2.1.10	1 = Interrupt	nesting is disal	bled				
	0 = Interrupt	nesting is enat	oled				
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit			
	1 = Trap was	caused by ove	erflow of Accur	nulator A			
	0 = Irap was	not caused by	overflow of A	ccumulator A			
bit 13	OVBERR: AC	cumulator B C	verflow I rap F	lag bit			
	1 = 1 rap was 0 = T rap was	not caused by ove	overflow of Accur	nulator B			
bit 12	COVAFRR: A	Accumulator A	Catastrophic (Overflow Trap F	lag bit		
51112	1 = Trap was	caused by cat	astrophic over	flow of Accumu	lator A		
	0 = Trap was	not caused by	catastrophic of	overflow of Accu	umulator A		
bit 11	COVBERR: /	Accumulator B	Catastrophic (Overflow Trap F	lag bit		
	1 = Trap was	caused by cat	astrophic over	flow of Accumu	lator B		
	0 = Trap was	not caused by	catastrophic o	overflow of Accu	umulator B		
bit 10	OVATE: Accu	umulator A Ove	erflow Trap Ena	able bit			
	1 = Trap over	rtiow of Accum	ulator A				
hit 9		umulator B Ov	erflow Tran En	ahle hit			
bit 0	1 = Trap over	flow of Accum	ulator B				
	0 = Trap is di	sabled					
bit 8	COVTE: Cata	astrophic Over	low Trap Enat	ole bit			
	1 = Trap on c	atastrophic ov	erflow of Accur	mulator A or B i	s enabled		
	0 = Trap is di	sabled	_				
bit 7	SFTACERR:	Shift Accumula	ator Error Statu	us bit			
	1 = Math erro	or trap was cau or trap was not	sed by an inva caused by an	invalid accumulator	r sniπ lator shift		
bit 6	DIV0ERR: Ar	ithmetic Error	Status bit				
	1 = Math erro	or trap was cau	sed by a divid	e-by-zero			
	0 = Math erro	or trap was not	caused by a d	ivide-by-zero			
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	MATHERR: A	Arithmetic Erro	Status bit				
	1 = Math error	or trap has occu	urred				
	v = wattreffc	n dap nas not	occurred				

INTOONA, INTERDURT CONTROL DECISTER A

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15	•		-			-	bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE
bit 7							bit 0
l egend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as	'0'				
bit 13	AD1IE: ADC	1 Conversion (Complete Inter	rupt Enable bit	t		
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 12	U1TXIE: UAF	RT1 Transmitte	er Interrupt Ena	able bit			
	1 = Interrupt	request is ena	bled				
hit 11		DT1 Deceiver	enableu Intorrunt Enabl	o hit			
	1 – Interrunt	request is ena	hled	ebit			
	0 = Interrupt	request is ena	enabled				
bit 10	SPI1IE: SPI1	Event Interru	ot Enable bit				
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 9	SPI1EIE: SPI	11 Error Interru	pt Enable bit				
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 8	T3IE: Timer3	Interrupt Enal	ole bit				
	$\perp = Interrupt$	request is ena	DIEO enabled				
bit 7	T2IF · Timer2	Interrunt Engl	ole hit				
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 6	OC2IE: Outp	ut Compare C	hannel 2 Interr	upt Enable bit			
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 5	IC2IE: Input (Capture Chanr	nel 2 Interrupt	Enable bit			
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 4	Unimplemen	ited: Read as	°0'				
bit 3	111E: Limer1	Interrupt Enal	ble bit				
	$\perp = Interrupt$	request is ena	olea enabled				
hit 2		ut Compare C	hannel 1 Interr	unt Enable bit			
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 1	IC1IE: Input (Capture Chanr	nel 1 Interrupt	Enable bit			
	1 = Interrupt	request is ena	bled .				
	0 = Interrupt	request is not	enabled				
bit 0	INTOIE: Exter	rnal Interrupt (Enable bit				
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T1IP<2:0>: ⊺	imer1 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	OC1IP<2:0>:	Output Compa	are Channel 1	Interrupt Prior	rity bits		
	111 = Interru	pt is Priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	IC1IP<2:0>:	nput Capture (Channel 1 Inte	errupt Priority b	bits		
	111 = Interru	pt is Priority 7 (nignest priori	ty interrupt)			
	•						
	•						
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	INT0IP<2:0>:	External Inter	rupt 0 Priority	bits			
	111 = Interru	ot is Priority 7 (highest priori	ty interrupt)			
	111 = Interru •	pt is Priority 7 (highest priori	ty interrupt)			
	111 = Interrup	pt is Priority 7 (highest priori	ty interrupt)			
	111 = Interrup • • • • •	pt is Priority 7 (ot is Priority 1	highest priori	ty interrupt)			

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	IC2IP2	IC2IP1	IC2IP0	—		<u> </u>	<u> </u>
bit 7							bit 0
r							
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-12	T2IP<2:0>: ⊺	Timer2 Interrupt	Priority bits	• • • •			
	111 = Interru	ipt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	ipt is Priority 1 ipt source is dis	abled				
bit 11	Unimplemer	nted: Read as '	0'				
bit 10-8	OC2IP<2:0>	: Output Compa	are Channel 2	Interrupt Prio	rity bits		
	111 = Interru	ıpt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-4	IC2IP<2:0>:	Input Capture C	Channel 2 Inte	rrupt Priority I	oits		
	111 = Interru	ıpt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	ipt source is dis	abled				
bit 3-0	Unimplemer	nted: Read as '	0'				

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. Devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices have two special powersaving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device will wake-up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE; Put the device into SLEEP modePWRSAV #IDLE_MODE; Put the device into IDLE mode

NOTES:

10.4 Peripheral Pin Select (PPS)

Peripheral Pin Select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

10.4.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 16 pins. The number of available pins depends on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

10.4.2.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-10). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—			RP1R<4:0>			
bit 15	·						bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	RP0R<4:0>					
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-13	Unimplemen	ted: Read as 'd)'					
bit 12-8	RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits							
	(see Table 10)-2 for periphera	al function nu	imbers)				

REGISTER 10-11: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

bit 4-0	RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits
	(see Table 10-2 for peripheral function numbers)

Unimplemented: Read as '0'

REGISTER 10-12: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP3R<4:0> ⁽¹⁾					
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	_	RP2R<4:0> ⁽¹⁾					

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP3R<4:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP2R<4:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not available in dsPIC33FJXX(GP/MC)101 devices.

bit 7-5

bit 7

bit 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	—			RP5R<4:0> ⁽¹)	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP4R<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 10-13: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP4R<4:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not available in dsPIC33FJ(16/32)(GP/MC)101 devices.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	—			RP6R<4:0>(1)	
bit 7	•						bit 0
Legend:							
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	
		. 21110 001					

REGISTER 10-14: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not available in dsPIC33FJ(16/32)(GP/MC)101 devices.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L	
bit 15							bit 8	
R/W-0	0-U 0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	
FLTB	— N		—	—	FBEN3	FBEN2	FBEN1	
bit 7							bit 0	
Legend:			L:4	II IInimulau		L == (0)		
R = Read		VV = VVritable	DIT	U = Unimpler	nented bit, read	ias U		
-n = value	e at POR	$1^{\circ} = Bit is set$		$0^{\circ} = Bit is cle$	ared	X = Bit is unkn	iown	
bit 15 11	Unimplomon	tod: Pood os '	o'					
bit 13-8	EBOV-3-1-H		∪ • Fault Input B		ida Valua hite			
DIL 13-0	1 - The PWM	I.FBOV<3.I>L	driven active	on an external	Equit input eve	nt		
	0 = The PWN	Ix output pin is	driven inactiv	e on an extern	al Fault input eve	/ent		
bit 7	FLTBM: Fault	t B Mode bit						
	1 = The Fault	B input pin fur	octions in the C	Cycle-by-Cycle	mode			
	0 = The Fault	B input pin lat	ches all contro	ol pins to the pr	rogrammed stat	es in PxFLTBC	ON<13:8>	
bit 6-3	Unimplemen	ted: Read as '	0'					
bit 2	FBEN3: Fault	t Input B Enabl	e bit					
	1 = PWMxH3	/PWMxL3 pin p	pair is controlle	ed by Fault Inp	out B			
hit 1		/PVVIVIXL3 pin p	o hit	trolled by Fault	Input B			
DILI		/DMMvL2 pip r	e Dil Dair is controlly	od by Equition	ut P			
	1 = PWMXH2 0 = PWMXH2	/PWMxL2 pin p	pair is not cont	trolled by Fault	Input B			
bit 0	FBEN1: Fault	t Input B Enabl	e bit	,	•			
	1 = PWMxH1	/PWMxL1 pin p	pair is controlle	ed by Fault Inp	out B			
	0 = PWMxH1	/PWMxL1 pin p	pair is not cont	trolled by Fault	Input B			
Note 1:	Comparator output	ts are not interi	nally connecte	d to the PWM	Fault control lo	aic. If usina the	comparator	
	modules for Fault	generation, the	user must ex	ternally connect	ct the desired c	omparator output	ut pin to the	
	dedicated FLTA1 o	or FLTB1 input	pin.					
2:	Refer to Table 15-	1 for FLTB1 im	plementation of	details.				
3:	The PxFLTACON r	egister is a writ	e-protected re	gister. Refer to	Section 15.3 "	Write-Protecte	d Registers"	
4.	During any Reset	event FITR1 i	s enabled by c	efault and mu	st be cleared as	described in S	ection 15 2	
ч.	"PWM Faults".							

REGISTER 15-10: PxFLTBCON: PWMx FAULT B CONTROL REGISTER^(1,2,3,4)

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of four pins:

- SDIx (serial data input)
- SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select).

In Master mode operation, SCKx is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPIx MODULE BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	<u> </u>	<u> </u>	—
bit 15							bit 8
r							
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7 bit 6-4	Unimplemented: Read as '0' CFSEL<2:0>: Comparator Filter Input Clock Select bits 111 = Reserved 110 = Reserved 101 = Timer3 100 = Timer2 011 = Reserved 010 = PWM Special Event Trigger 001 = Fosc						
bit 3	CFLTREN: Comparator Filter Enable bit 1 = Digital filter is enabled 0 = Digital filter is disabled						
bit 2-0	<pre>1 = Digital filter is enabled 0 = Digital filter is disabled CFDIV<2:0>: Comparator Filter Clock Divide Select bits 111 = Clock Divide 1:128 110 = Clock Divide 1:64 101 = Clock Divide 1:32 100 = Clock Divide 1:16 011 = Clock Divide 1:18 010 = Clock Divide 1:4 001 = Clock Divide 1:2</pre>						

REGISTER 20-5: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		44		
Number of Pins per Side	ND		12		
Number of Pins per Side	NE		10		
Pitch	е	0.50 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	4.40	4.55	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.40	4.55	4.70	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157C Sheet 2 of 2