

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc102t-e-ml

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33/PIC24 Family Reference Manual" sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSs pins, if present on the device (regardless if ADC module is not used) (see Section 2.2 "Decoupling Capacitors")
- VCAP
 (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 µF (100 nF), 10V-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The
 decoupling capacitors should be placed as close
 to the pins as possible. It is recommended to
 place the capacitors on the same side of the
 board as the device. If space is constricted, the
 capacitor can be placed on another layer on the
 PCB using a via; however, ensure that the trace
 length from the pin to the capacitor is within
 one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μF to 0.001 μF. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μF in parallel with 0.001 μF.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-Bit MCU and DSC Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend.

The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or Integer DSP Multiply (IF)
- · Signed or Unsigned DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

TABLE 4-7:	TIMERS REGISTER MAP FOR dsPIC33FJ16(GP/MC)10X DEVICES
IADEL T'I.	

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	1	TSIDL		_	_	-	_	_	TGATE	TCKPS1	TCKPS0	-	TSYNC	TCS	1	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tim	er3 Holding	Register (fo	r 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	-	TSIDL		_	_	-	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	1	0000
T3CON	0112	TON		TSIDL	_	_	_		_	_	TGATE	TCKPS1	TCKPS0	-	_	TCS	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: TIMERS REGISTER MAP FOR DSPIC33FJ32(GP/MC)10X DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	-	TSIDL		_	_	_	_	_	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	-	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tim	er3 Holding	Register (fo	r 32-bit timei	operations	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	-		_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	-		_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						٦	Timer5 Holdii	ng Register	(for 32-bit or	perations on	ly)						xxxx
TMR5	0118								Timer5	Register								0000
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104	
NOTES:	

8.3 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices have a safeguard lock built into the switch process.

Note:

Primary Oscillator mode has three different submodes (MS, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.3.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 23.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

8.3.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSCx control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSCx status bits with the new value of the NOSCx control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK and CF (OSCCON<5,3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to "Oscillator (Part VI)" (DS70644) in the "dsPIC33/PIC24 Family Reference Manual" for details.

8.4 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a Warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104	
NOTES:	

REGISTER 10-11: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP0R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits

(see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits

(see Table 10-2 for peripheral function numbers)

REGISTER 10-12: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP3R<4:0> ⁽¹⁾		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP2R<4:0> ⁽¹⁾		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits⁽¹⁾

(see Table 10-2 for peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP2R<4:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits⁽¹⁾

(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not available in dsPIC33FJXX(GP/MC)101 devices.

Note:

12.0 TIMER2/3 AND TIMER4/5

Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2/3 and Timer4/5 have three 2-bit timers that can also be configured as two independent 16-bit timers with selectable operating modes.

Note 1: Timer4 and Timer5 are available in dsPIC33FJ32(GP/MC10X) devices only.

As a 32-bit timer, Timer2/3 and Timer4/5 permit operation in three modes:

- Two independent 16-bit timers (e.g., Timer2 and Timer3 or Timer4 and Timer5) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer (Timer2/3 and Timer4/5)
- Single 32-bit synchronous counter (Timer2/3 and Timer4/5)

Timer2/3 and Timer4/5 also support:

- Timer gate operation
- Selectable prescaler settings
- Timer operation during Idle and Sleep modes
- Interrupt on a 32-bit Period register match
- Time base for input capture and output compare modules (Timer2 and Timer3 only)
- ADC1 event trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers (see Register 12-1 through Register 12-4).

For 32-bit timer/counter operation, Timer2/4 is the least significant word (lsw) and Timer3/5 is the most significant word (msw) of the 32-bit timers.

For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are used for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

12.1 32-Bit Operation

To configure Timer2/3 and Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3/PR5 contains the msw of the value, while PR2/PR4 contains the least significant word (lsw).
- If interrupts are required, set the Timer3 (or Timer5) Interrupt Enable bit, T3IE (or T5IE). Use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. While Timer2/Timer4 controls the timer, the interrupt appears as a Timer3/Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the msw of the count, while TMR2 or TMR4 contains the lsw.

12.2 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

sPIC33FJ16(GP/I	WC)101/102	2 AND OSPIC	33FJ32(GP/IVIC	5)101/10 <i>2/</i> 104
OTES:				

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1

U-0	U-0 U-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_			DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽²⁾	EN ⁽²⁾ CKP MSTEN		SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	E0 ⁽³⁾ PPRE1 ⁽³⁾ PPRE0 ⁽³				
bit 7							bit 0			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12 DISSCK: Disable SCKx pin bit (SPI Master modes only)

1 = Internal SPI clock is disabled, pin functions as I/O

0 = Internal SPI clock is enabled

bit 11 DISSDO: Disable SDOx pin bit

1 = SDOx pin is not used by the module; pin functions as I/O

0 = SDOx pin is controlled by the module

bit 10 MODE16: Word/Byte Communication Select bit

1 = Communication is word-wide (16 bits)

0 = Communication is byte-wide (8 bits)

bit 9 SMP: SPIx Data Input Sample Phase bit

Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

Slave mode

SMP must be cleared when SPIx is used in Slave mode.

bit 8 **CKE:** Clock Edge Select bit⁽¹⁾

1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6)

0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)

bit 7 SSEN: SPIx Slave Select Enable bit (Slave mode)(2)

 $1 = \overline{SSx}$ pin is used for Slave mode

 $0 = \overline{SSx}$ pin is not used by the module, pin is controlled by port function

bit 6 **CKP:** Clock Polarity Select bit

1 = Idle state for clock is a high level; active state is a low level

0 = Idle state for clock is a low level; active state is a high level

bit 5 MSTEN: Master Mode Enable bit

1 = Master mode

0 = Slave mode

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).

2: This bit must be cleared when FRMEN = 1.

3: Do not set both primary and secondary prescalers to a value of 1:1.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

```
bit 4-2

SPRE<2:0>: Secondary Prescale bits (Master mode)<sup>(3)</sup>

111 = Secondary prescale 1:1

110 = Secondary prescale 2:1

.

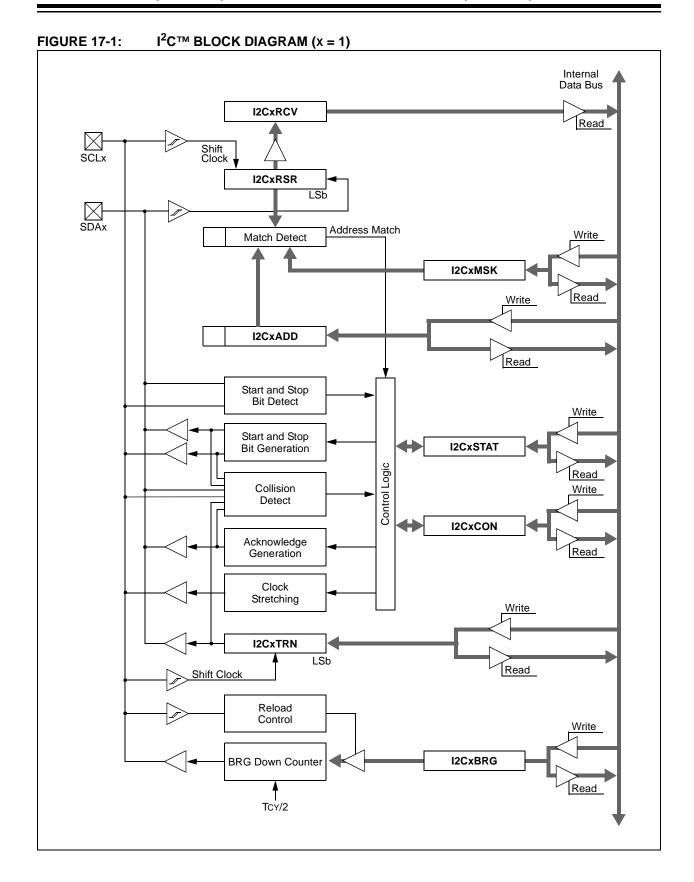
000 = Secondary prescale 8:1

bit 1-0

PPRE<1:0>: Primary Prescale bits (Master mode)<sup>(3)</sup>

11 = Primary prescale 1:1

10 = Primary prescale 4:1


01 = Primary prescale 4:1

01 = Primary prescale 16:1

00 = Primary prescale 64:1

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes
```

- (FRMEN = 1).2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both primary and secondary prescalers to a value of 1:1.

19.5 ADC Control Registers

REGISTER 19-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON	_	ADSIDL	_	_	_	FORM1	FORM0
bit 15		bit 8					

R/W-0	R/W-0 R/W-0 U-0		R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS	
SSRC2	RC2 SSRC1 SSRC0 — SIM		SIMSAM	ASAM	SAMP	DONE	
bit 7							bit 0

Legend:	C = Clearable bit	HS = Hardware Settable bit	HC = Hardware Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 ADON: ADC1 Operating Mode bit

1 = ADC1 module is operating

0 = ADC1 is off

bit 14 Unimplemented: Read as '0'

bit 13 ADSIDL: ADC1 Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12-10 Unimplemented: Read as '0'

bit 9-8 FORM<1:0>: Data Output Format bits

11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .Not.d<9>)

10 = Fractional (Dout = dddd dddd dd00 0000)

01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NoT.d<9>)

00 = Integer (Dout = 0000 00dd dddd dddd)

bit 7-5 SSRC<2:0>: Sample Clock Source Select bits

111 = Internal counter ends sampling and starts conversion (auto-convert)

110 = CTMU

101 = Reserved

100 = Reserved

011 = Motor control PWM interval ends sampling and starts conversion (1)

010 = GP Timer3 compare ends sampling and starts conversion

001 = Active transition on INTO pin ends sampling and starts conversion

000 = Clearing SAMP bit ends sampling and starts conversion

bit 4 **Unimplemented:** Read as '0'

bit 3 SIMSAM: Simultaneous Sample Select bit (applicable only when CHPS<1:0> = 01 or 1x)

1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x) or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)

0 = Samples multiple channels individually in sequence

bit 2 ASAM: ADC1 Sample Auto-Start bit

1 = Sampling begins immediately after last conversion; SAMP bit is auto-set

0 = Sampling begins when the SAMP bit is set

Note 1: This feature is available in dsPIC33FJ(16/32)MC10X devices only.

REGISTER 20-5: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_				_		_	_
bit 15							bit 8

U-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	- CFSEL2 CFSEL1		CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-4 CFSEL<2:0>: Comparator Filter Input Clock Select bits

111 = Reserved

110 = Reserved

101 = Timer3

100 = Timer2

011 = Reserved

010 = PWM Special Event Trigger

001 = Fosc

000 = FCY

bit 3 CFLTREN: Comparator Filter Enable bit

1 = Digital filter is enabled

0 = Digital filter is disabled

bit 2-0 CFDIV<2:0>: Comparator Filter Clock Divide Select bits

111 = Clock Divide 1:128

110 = Clock Divide 1:64

101 = Clock Divide 1:32

100 = Clock Divide 1:16

011 = Clock Divide 1:8

010 = Clock Divide 1:4

001 = Clock Divide 1:2

000 = Clock Divide 1:1

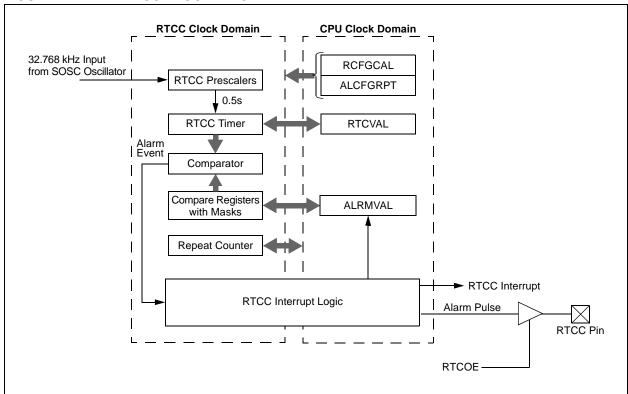
21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Real-Time Clock and Calendar (RTCC)" (DS70310) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices, and its operation.

Some of the key features of the RTCC module are:


- · Time: hours, minutes and seconds
- · 24-hour format (military time)
- Calendar: weekday, date, month and year
- · Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- · BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: external 32.768 kHz clock crystal
- · Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 21-1: RTCC BLOCK DIAGRAM

REGISTER 21-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ALRMEN	RMEN CHIME AMASK3		AMASK2	AMASK1	AMASK0	ALRMPTR1 ALRMPTR0			
bit 15							bit 8		

R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT7 ARPT6 ARPT5		ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ALRMEN: Alarm Enable bit

1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x00 and CHIME = 0)

0 = Alarm is disabled

bit 14 CHIME: Chime Enable bit

1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF

0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00

bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits

0000 = Every half second

0001 = Every second

0010 = Every 10 seconds

0011 = Every minute

0100 = Every 10 minutes

0101 = Every hour

0110 = Once a day

0111 = Once a week

1000 = Once a month

1001 = Once a year (except when configured for February 29th, once every 4 years)

101x = Reserved - do not use

11xx = Reserved - do not use

bit 9-8 **ALRMPTR<1:0>:** Alarm Value Register Window Pointer bits

Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers; the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'.

ALRMVAL<15:8>:

00 = ALRMMIN

01 = ALRMWD

10 = ALRMMNTH

11 = Unimplemented

ALRMVAL<7:0>:

00 = ALRMSEC

01 = ALRMHR

10 = ALRMDAY

11 = Unimplemented

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits

11111111 = Alarm will repeat 255 more times

•

•

00000000 = Alarm will not repeat

The counter decrements on any alarm event. The counter is prevented from rolling over from 0x00 to 0xFF unless CHIME = 1.

The Configuration Shadow register map is shown in Table 23-1.

TABLE 23-1: CONFIGURATION SHADOW REGISTER MAP

File Name	Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FGS	F80004	_	_	_	_	_	_	GCP	GWRP
FOSCSEL	F80006	IESO	PWMLOCK ⁽¹⁾	_	WDTWIN1	WDTWIN0	FNOSC2	FNOSC1	FNOSC0
FOSC	F80008	FCKSM1	FCKSM0	IOL1WAY	_	_	OSCIOFNC	POSCMD1	POSCMD0
FWDT	F8000A	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0
FPOR	F8000C	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	ALTI2C1	_		_	_
FICD	F8000E	Reserved ⁽²⁾	_	Reserved ⁽³⁾	Reserved ⁽³⁾	_	_	ICS1	ICS0

Legend: — = unimplemented, read as '1'.

Note 1: These bits are available in dsPIC33FJ(16/32)MC10X devices only.

2: This bit is reserved for use by development tools.

3: These bits are reserved, program as '0'.

The Configuration Flash Word maps are shown in Table 23-2 and Table 23-3.

TABLE 23-2: CONFIGURATION FLASH WORDS FOR dsPIC33FJ16(GP/MC)10X DEVICES⁽¹⁾

File Name	Addr.	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2	002BFC	_	IESO	PWMLOCK ⁽²⁾	PWMPIN ⁽²⁾	WDTWIN1	WDTWIN0	FNOSC2	FNOSC1	FNOSC0	FCKSM1	FCKSM0	OSCIOFNC(5)	IOL1WAY	LPOL ⁽²⁾	ALTI2C1	POSCMD1	POSCMD0
CONFIG1	002BFE	_	Reserved ⁽³⁾	Reserved ⁽³⁾	GCP	GWRP	Reserved ⁽⁴⁾	HPOL ⁽²⁾	ICS1	ICS0	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0

dsPlC33FJ16(GP/MC)101/102 AND dsPlC33FJ32(GP/MC)101/102/104

Legend: — = unimplemented, read as '1'.

Note 1: During a Power-on Reset (POR), the contents of these Flash locations are transferred to the Configuration Shadow registers.

2: These bits are reserved in dsPIC33FJ16GP10X devices and read as '1'.

3: These bits are reserved, program as '0'.

4: This bit is reserved for use by development tools and must be programmed as '1'.

5: This bit is programmed to '0' during final tests in the factory.

TABLE 23-3: CONFIGURATION FLASH WORDS FOR dsPIC33FJ32(GP/MC)10X DEVICES⁽¹⁾

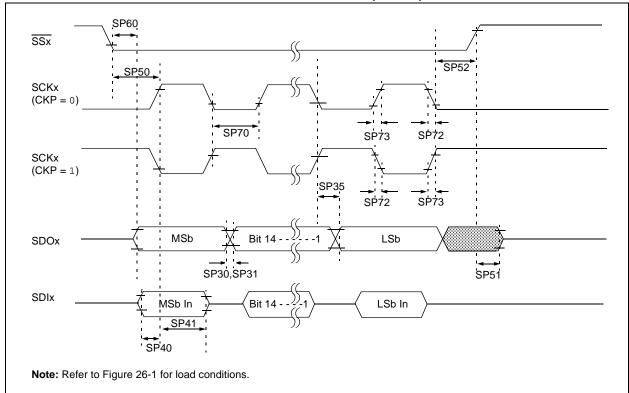
File Name	Addr.	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2	0057FC	-	IESO	PWMLOCK ⁽²⁾	PWMPIN ⁽²⁾	WDTWIN1	WDTWIN0	FNOSC2	FNOSC1	FNOSC0	FCKSM1	FCKSM0	OSCIOFNC(5)	IOL1WAY	LPOL ⁽²⁾	ALTI2C1	POSCMD1	POSCMD0
CONFIG1	0057FE	-	Reserved ⁽³⁾	Reserved ⁽³⁾	GCP	GWRP	Reserved ⁽⁴⁾	HPOL ⁽²⁾	ICS1	ICS0	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0

Legend: — = unimplemented, read as '1'.

Note 1: During a Power-on Reset (POR), the contents of these Flash locations are transferred to the Configuration Shadow registers.

2: These bits are reserved in dsPIC33FJ32GP10X devices and read as '1'.

3: These bits are reserved, program as '0'.


4: This bit is reserved for use by development tools and must be programmed as '1'.

5: This bit is programmed to '0' during final tests in the factory.

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description		
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}		
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}		
Wn	One of 16 Working registers ∈ {W0W15}		
Wnd	One of 16 destination Working registers ∈ {W0W15}		
Wns	One of 16 source Working registers ∈ {W0W15}		
WREG	W0 (Working register used in file register instructions)		
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }		
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }		
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}		
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}		
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}		
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}		

FIGURE 26-23: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

Resets	87	I2Cx Bus Start/Stop Bits (Master Mode)	328
BOR (Brown-out Reset)	87	I2Cx Bus Start/Stop Bits (Slave Mode)	330
BOR and Power-up Timer (PWRT)	92	Input Capture x (ICx)	301
CM (Configuration Mismatch Reset)	87	Motor Control PWMx	303
Configuration Mismatch (CM)	93	Motor Control PWMx Fault	303
External (EXTR)		OCx/PWMx	
Illegal Condition	93	Output Compare x (OCx)	302
Illegal Opcode	93	Output Compare x Operation	178
Security93,		Reset, Watchdog Timer, Oscillator Start-up Timer	
Uninitialized W Register93,	94	and Power-up Timer	298
IOPUWR (Illegal Condition Reset)	87	SPIx Master Mode (Full-Duplex, CKE = 0 , CKP = x ,	
Illegal Opcode		SMP = 1) for dsPIC33FJ16(GP/MC)10X	307
Security	87	SPIx Master Mode (Full-Duplex, CKE = 0 , CKP = x ,	
Uninitialized W Register	87	SMP = 1) for dsPIC33FJ32(GP/MC)10X	319
MCLR (Master Clear Pin)		SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x ,	
Oscillator Delays	90	SMP = 1) for dsPIC33FJ16(GP/MC)10X	306
POR (Power-on Reset)	87	SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x ,	
Power-on Reset (POR)	92	SMP = 1) for dsPIC33FJ32(GP/MC)10X	318
Software RESET Instruction (SWR)	93	SPIx Master Transmit Mode (Half-Duplex, CKE = 0)	
SWR (RESET Instruction)	87	for dsPIC33FJ16(GP/MC)10X	304
System		SPIx Master Transmit Mode (Half-Duplex, CKE = 0)	
Cold Reset	90	for dsPIC33FJ32(GP/MC)10X	316
Warm Reset	90	SPIx Master Transmit Mode (Half-Duplex, CKE = 1)	
Trap Conflict	93	for dsPIC33FJ16(GP/MC)10X	305
TRAPR (Trap Conflict Reset)	87	SPIx Master Transmit Mode (Half-Duplex, CKE = 1)	
Watchdog Timer Time-out (WDTO)	93	for dsPIC33FJ32(GP/MC)10X	317
WDTO (Watchdog Timer Reset)	87	SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,	
Revision History 3		SMP = 0) for $dsPIC33FJ16(GP/MC)10X$	314
RTCC		SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,	
Control Registers2	245	SMP = 0) for $dsPIC33FJ32(GP/MC)10X$	326
Module Registers2	244	SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,	
Register Mapping2		SMP = 0) for $dsPIC33FJ16(GP/MC)10X$	312
•		SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,	
S		SMP = 0) for $dsPIC33FJ32(GP/MC)10X$	324
Serial Peripheral Interface (SPI)1	97	SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,	
Control Registers1	99	SMP = 0) for $dsPIC33FJ16(GP/MC)10X$	308
Helpful Tips1	98	SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,	
Resources1	98	SMP = 0) for $dsPIC33FJ32(GP/MC)10X$	320
Software Stack Pointer, Frame Pointer		SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,	
CALL Stack Frame	73	SMP = 0) for $dsPIC33FJ16(GP/MC)10X$	310
Special Features2	261	SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,	
Code Protection2	261	SMP = 0) for $dsPIC33FJ32(GP/MC)10X$	322
Flexible Configuration2	261	System Reset	. 91
In-Circuit Emulation2	261	Timer1/2/3 External Clock	299
In-Circuit Serial Programming (ICSP)2	261 Tin	ning Requirements	
Watchdog Timer (WDT)2	261	10-Bit ADC Conversion	335
т		Capacitive Loading on Output Pins	294
Т		CLKO and I/O	297
Timer1 1	65	External Clock	295
Control Register1		I2Cx Bus Data (Master Mode)	329
Timer2/3 and Timer4/51		I2Cx Bus Data (Slave Mode)	
16-Bit Operation1	67	Input Capture x (ICx)	
32-Bit Operation1	67	Motor Control PWMx	
Control Registers1	70	Output Compare x (OCx)	
Timing Diagrams		Reset, Watchdog Timer, Oscillator Start-up Timer,	
ADC Conversion Characteristics (CHPS<1:0> = 01,		Power-up Timer and Brown-out Reset	298
SIMSAM = 0, $ASAM = 0$,		Simple OCx/PWMx Mode	302
SSRC<2:0> = 000)	334	SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x ,	
ADC Conversion Characteristics (CHPS<1:0> = 01,		SMP = 1) for dsPIC33FJ16(GP/MC)10X	307
SIMSAM = 0, $ASAM = 1$, $SSRC < 2:0 > = 111$,		SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x,	
SAMC<4:0> = 00001)3	334	SMP = 1) for dsPIC33FJ32(GP/MC)10X	319
Brown-out Reset Situations		SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x,	-
CLKO and I/O2	297	SMP = 1) for dsPIC33FJ16(GP/MC)10X	306
External Clock2	295	SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x,	
I2Cx Bus Data (Master Mode)3		SMP = 1) for dsPIC33FJ32(GP/MC)10X	318
I2Cx Bus Data (Slave Mode)		,	-