

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc102t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	27
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	33
3.0	CPU	37
4.0	Memory Organization	49
5.0	Flash Program Memory	83
6.0	Resets	87
7.0	Interrupt Controller	95
8.0	Oscillator Configuration	. 125
9.0	Power-Saving Features	. 133
10.0	I/O Ports	. 139
11.0	Timer1	. 165
12.0	Timer2/3 and Timer4/5	. 167
13.0	Input Capture	. 175
14.0	Output Compare	. 177
15.0	Motor Control PWM Module	. 181
16.0	Serial Peripheral Interface (SPI)	. 197
17.0	Inter-Integrated Circuit™ (I ² C™)	. 203
18.0	Universal Asynchronous Receiver Transmitter (UART)	. 211
19.0	10-Bit Analog-to-Digital Converter (ADC)	. 217
20.0	Comparator Module	. 231
21.0	Real-Time Clock and Calendar (RTCC)	. 243
22.0	Charge Time Measurement Unit (CTMU)	. 255
23.0	Special Features	. 261
24.0	Instruction Set Summary	. 269
25.0	Development Support	. 277
26.0	Electrical Characteristics	. 281
27.0	High-Temperature Electrical Characteristics	. 339
28.0	Packaging Information	. 343
Appe	ndix A: Revision History	. 373
Index		381
The I	/icrochip Web Site	. 387
Cust	omer Change Notification Service	. 387
Cust	omer Support	. 387
Prod	uct Identification System	. 389

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33/PIC24 Family Reference Manual" sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, if present on the device (regardless if ADC module is not used) (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10V-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
	—	_	US	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15						•	bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W/-0	R/\\/-0	R/\\/-0
SATA	SATB	SATDW	ACCSAT	IPL3(2)	PSV	RND	IF
bit 7	0,110	0,11011	71000711			1410	bit 0
Legend:		C = Clearable	e bit				
R = Reada	ble bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is c	leared	'x = Bit is unk	nown	U = Unimple	mented bit, read	d as '0'	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	US: DSP Mul	tiply Unsigned	Signed Contro	ol bit			
	1 = DSP engi	ne multiplies a	re unsigned				
	0 = DSP engi	ne multiplies a	re signed	(1)			
bit 11	EDT: Early DO	Loop Termina	ation Control b	1t(')			
	\perp = Terminate 0 = No effect	es executing Do	o loop at the e	nd of current i	oop iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops are active					
	•						
	•	on is activo					
	000 = 0 DO lo	ops are active					
bit 7	SATA: ACCA	Saturation En	able bit				
	1 = Accumula	tor A saturatio	n is enabled				
hit 6		Saturation En	n is disabled				
DIT U	1 = Accumula	tor B saturatio	n is enabled				
	0 = Accumula	tor B saturatio	n is disabled				
bit 5	SATDW: Data	a Space Write	rom DSP Eng	ine Saturation	Enable bit		
	1 = Data spac	ce write satura	tion is enabled				
L: 4	0 = Data space	ce write satura	tion is disabled) Salaat hit			
DIT 4	1 - 0 31 satu	ration (super s	aturation)	elect dit			
	0 = 1.31 satu	ration (normal	saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status b	oit 3 (2)			
	1 = CPU Inter	rrupt Priority Le	evel is greater	than 7			
	0 = CPU Inter	rrupt Priority Le	evel is 7 or les	s			
bit 2	PSV: Progran	n Space Visibil	ity in Data Spa	ice Enable bit			
	$\perp = Program s$ 0 = Program s	space is visible	sible in data space) ace			
bit 1	RND: Roundi	na Mode Selec	t bit				
-	1 = Biased (c	onventional) ro	ounding is ena	bled			
	0 = Unbiased	(convergent) i	ounding is ena	abled			
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit			
	1 = Integer m	ode is enabled	for DSP multi	ply operations	5		
	v = ractional	i moue is enab		unipiy operation	JUIS		
Note 1:	This bit will alwavs	read as '0'.					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM

DS70000652F-page 66

TABLE 4-18: CTMU REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	—	-	—	—	-	_	_	0000
CTMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	_	-	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	_	_	_	_	_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window based on ALRMPTR<1:0> xx											xxxx				
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624		RTCC Value Register Window based on RTCPTR<1:0> xxxx							xxxx								
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: PAD CONFIGURATION REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	—	—	—	—	_	—					—		—	-	RTSECSEL	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
—	—	INT2IF	T5IF ⁽¹⁾	T4IF ⁽¹⁾	—		—
bit 15				1			bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemer	nted: Read as '	0'				
bit 13	INT2IF: Exter	rnal Interrupt 2	Flag Status bi	it			
	1 = Interrupt	request has oc	curred				
hit 12	0 = Interrupt	Interrupt Flag	Status hit(1)				
	1 – Interrunt	request has on					
	0 = Interrupt	request has no	t occurred				
bit 11	T4IF: Timer4	Interrupt Flag	Status bit ⁽¹⁾				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 10-5	Unimplemer	nted: Read as '	0'				
bit 4	INT1IF: Exte	rnal Interrupt 1	Flag Status bi	it			
	1 = Interrupt	request has oc	curred				
1.11.0		request has no	toccurred				
bit 3	CNIF: Input C	Change Notifica		Flag Status bit			
	1 = Interrupt 0 = Interrupt	request has no	t occurred				
bit 2	CMIF: Comp	arator Interrupt	Flag Status b	it			
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 1	MI2C1IF: 120	C1 Master Even	ts Interrupt Fl	ag Status bit			
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 0	SI2C1IF: I2C	1 Slave Events	Interrupt Flag	g Status bit			
	1 = Interrupt	request has oc	curred				
		request nas no					
Note 1:	These bits are ava	ailable in dsPIC	33FJ32(GP/N	IC)10X devices	s only.		

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0> ⁽²⁾
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0> ⁽²⁾
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 3	IC3	RPINR8	IC3R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<4:0>
SDI1 SPI Data Input 1	SDI1	RPINR20	SDI1R<4:0> ⁽²⁾
SCK1 SPI Clock Input 1	SCK1	RPINR20	SCK1R<4:0> ⁽²⁾
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0> ⁽²⁾

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

2: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

REGISTER 10-15: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP9R<4:0>				
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP8R<4:0>				
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	RP9R<4:0>:	Peripheral Out	put Function i	s Assigned to I	RP9 Output Pir	n bits			
	(see Table 10	-2 for periphera	al function nu	mbers)					
bit 7-5	Unimplemen	ted: Read as '	0'						
bit 4-0	RP8R<4:0>:	Peripheral Out	put Function i	s Assigned to I	RP8 Output Pir	n bits			
	(see Table 10-2 for peripheral function numbers)								

REGISTER 10-16: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0> ⁽¹)	
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0> ⁽¹)	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
L:400	DD11D -1-0 - Derinhard Output Functi

- bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not available in dsPIC33FJXX(GP/MC)101 devices.

FIGURE 12-2: TIMER2 AND TIMER4 (16-BIT) BLOCK DIAGRAM⁽¹⁾

FIGURE 12-3: TIMER3 AND TIMER5 (16-BIT) BLOCK DIAGRAM⁽¹⁾

EXAMPLE 15-1: ASSEMBLY CODE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT CLEARING SEQUENCE

; FLTA1 pin must be pulled high externally in order to clear and disable the Fault ; Writing to P1FLTBCON register requires unlock sequence						
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWM1KEY mov w11, PWM1KEY mov w0,P1FLTACON</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of P1FLTACON register in w0 ; Write first unlock key to PWM1KEY register ; Write second unlock key to PWM1KEY register ; Write desired value to P1FLTACON register</pre>					
; FLTB1 pin must be pu ; Writing to P1FLTBCON	ulled high externally in order to clear and disable the Fault I register requires unlock sequence					
mov #0xabcd,w10	; Load first unlock key to w10 register					
mov #0x4321,w11	; Load second unlock key to wll register					
mov #0x0000,w0	; Load desired value of P1FLTBCON register in w0					
mov w10, PWM1KEY	; Write first unlock key to PWM1KEY register					
mov w11, PWM1KEY	; Write second unlock key to PWM1KEY register					
mov w0,P1FLTBCON	; Write desired value to PlFLTBCON register					
; Enable all PWMs usir ; Writing to PWM1CON1	ng PWM1CON1 register register requires unlock sequence					
mov #0xabcd,w10	; Load first unlock key to w10 register					
mov #0x4321,w11	; Load second unlock key to w11 register					
mov #0x0077,w0	; Load desired value of PWM1CON1 register in w0					
mov w10, PWM1KEY	; Write first unlock key to PWM1KEY register					
mov w11, PWM1KEY	; Write second unlock key to PWM1KEY register					
mov w0,PWM1CON1	; Write desired value to PWM1CON1 register					

EXAMPLE 15-2: C CODE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT CLEARING SEQUENCE

// FLTAl pin must be pulled high externally in order to clear and disable the Fault // Writing to PIFLTACON register requires unlock sequence // Use builtin function to write 0x0000 to PIFLTACON register __builtin_write_PWMSFR(&PIFLTACON, 0x0000, &PWM1KEY); // FLTBl pin must be pulled high externally in order to clear and disable the Fault // Writing to PIFLTBCON register requires unlock sequence // Use builtin function to write 0x0000 to PIFLTBCON register __builtin_write_PWMSFR(&PIFLTBCON, 0x0000, &PWM1KEY); // Enable all PWMs using PWM1CON1 register // Writing to PWM1CON1 register requires unlock sequence // Use builtin function to write 0x0077 to PWM1CON1 register __builtin_write_PWMSFR(&PWM1CON1, 0x0077, &PWM1KEY);

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - . .
 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)⁽³⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - **3:** Do not set both primary and secondary prescalers to a value of 1:1.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1		
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0		
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		
bit 7							bit 0		
Legend:		C = Clearable b	oit	HC = Hardwa	are Clearable bi	t			
R = Readable	bit	W = Writable bi	it	U = Unimpler	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15,13	UTXISEL<1:	0>: UARTx Tran	smission Interr	upt Mode Sele	ction bits				
	11 = Reserve	ed; do not use							
	10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty								
	01 = Interrup	t when the last cl	haracter is shifte	ed out of the Tr	ansmit Shift Re	gister; all trans	mit operations		
	are completed								

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least
one character open in the transmit buffer)

bit 14	UTXINV: UARTx Transmit Polarity Inversion bit
	If IREN = 0:
	1 = UxTX Idle state is '0'
	0 = UxTX Idle state is '1'
	<u>If IREN = 1:</u>
	1 = IrDA encoded, UxTX Idle state is '1'
	0 = IrDA encoded, UxTX Idle state is '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽¹⁾
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
hit 7 6	UDVISEL -(1.0-) UADTy Dessive Interrupt Mede Selection bits
DIL 7-0	URAISEL<1.0>. UARTX Receive Interrupt Mode Selection bits
	11 = Interrupt is set on UXRSR transfer, making the receive buffer 1/1 (i.e., has 4 data characters)
	10 = Interrupt is set on OXNON transfer, making the received and transferred from the LIXRSR to the received
	buffer; receive buffer has one or more characters

Note 1: Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for transmit operation.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
DAVA	DAMO	DANO	DANO	D/M/ O	D/W/O	DAMA	DANIO
R/W-U	R/W-U			R/W-U	R/W-U	R/W-U	R/W-U
ARP17	ARP16	ARP15	ARP14	ARP13	ARP12	ARP11	ARPIU
							DIL U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	ALRMEN: Ala	arm Enable bit	ad automation	lly offer on old	arm overt when		
	CHIME = 0 = Alarm is 0	enabled (clean : 0) disabled		illy aller all ala	ann event when		0> = 0x00 and
bit 14	CHIME: Chim	ne Enable bit					
	1 = Chime is 0 = Chime is	enabled; ARP disabled; ARP	T<7:0> bits ar T<7:0> bits st	e allowed to ro op once they i	oll over from 0x0 reach 0x00	00 to 0xFF	
bit 13-10	AMASK<3:0>	Alarm Mask	Configuration	bits			
	0000 = Every	/ half second					
	0001 = Every 0010 = Every	/ second					
	0011 = Every	minute					
	0100 = Every	/ 10 minutes					
	0101 = Every 0110 = Once	a dav					
	0111 = Once	a week					
	1000 = Once	a month	hudhan aanfin	wedfer Febru			
	1001 = Once 101x = Rese	a year (except rved – do not u	i when configu Ise	Ired for Februa	ary 29th, once e	every 4 years)	
	11xx = Rese	rved – do not u	ise				
bit 9-8	ALRMPTR<1	:0>: Alarm Val	ue Register W	indow Pointer	bits		
	Points to the c the ALRMPTF	corresponding A R<1:0> value de	Alarm Value re ecrements on	gisters when re every read or v	eading ALRMVA	ALH and ALRM	/ALL registers; hes '00'.
	ALRMVAL<15	<u>5:8>:</u>					
	00 = ALRMM	IN /D					
	10 = ALRMM	NTH					
	11 = Unimple	mented					
	ALRMVAL<7:	0>:					
		EC D					
	10 = ALRMD	AY					
	11 = Unimple	mented					
bit 7-0	ARPT<7:0>:	Alarm Repeat	Counter Value	bits			
	11111111 = .	Alarm will repe	at 255 more ti	mes			
	•						
	•	Ale					
	The counter of 0xFF unless (Alarm will not r lecrements on CHIME = 1.	epeat any alarm eve	ent. The counte	er is prevented	from rolling ove	er from 0x00 to

REGISTER 21-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

FIGURE 26-12: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

TABLE 26-30:SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS
FOR dsPIC33FJ16(GP/MC)10X

AC CH	ARACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	ram Symbol Characteristic ⁽¹⁾			Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency	—	—	15	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—		ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_			ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30		_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

FIGURE 26-33: FORWARD VOLTAGE VERSUS TEMPERATURE

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Parameter No.	Typical	Мах	Units	Conditions			
Operating Cur	rent (IDD) – d	dsPIC33FJ32	2(GP/MC)10)	K Devices			
DC20e	1.3	2.0	mA	3.3V	LPRC (32.768 kHz)		
DC22e	7.25	8.5	mA	3.3V 5 MIPS			

TABLE 27-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD))

TABLE 27-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE))

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Parameter No.	Typical	Мах	Units	Conditions					
Idle Current (I	Idle Current (IIDLE) – dsPIC33FJ16(GP/MC)10X Devices								
DC40e	0.5	1.0	mA	3.3V	LPRC (32.768 kHz)				
DC22e	1.2	1.6	mA	3.3V 5 MIPS					
Idle Current (IIDLE) – dsPIC33FJ32(GP/MC)10X Devices									
DC40e	0.5	1.0	mA	3.3V	LPRC (32.768 kHz)				
DC22e	1.4	1.8	mA	3.3V	5 MIPS				

TABLE 27-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +150^{\circ}C$ for High Temperature				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions			
Power-Down (Current (IPD)	- dsPIC33F	JXX(GP/MC)	10X			
DC60e	500	1000	μA	3.3V	Base Power-Down Current		
DC61e	650	1000	μA	3.3V Watchdog Timer Current: ∆IwDT			

Note 1: Data in the Typical column is 3.3V unless otherwise stated.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E		10.30 BSC	
Molded Package Width	E1		7.50 BSC	
Overal Length	D		17.90 BSC	
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	_	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	М	ILLIMETERS	6
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.20 REF	
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.20
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.50	0.55	0.70
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 26.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings.
	Updated TABLE 26-3: Thermal Packaging Characteristics.
	Updated TABLE 26-6: DC Characteristics: Operating Current (Idd).
	Updated TABLE 26-7: DC Characteristics: Idle Current (lidle).
	Updated TABLE 26-8: DC Characteristics: Power-Down Current (Ipd).
	Updated TABLE 26-9: DC Characteristics: Doze Current (Idoze).
	Updated TABLE 26-10: DC Characteristics: I/O Pin Input Specifications.
	Replaced all SPI specifications and figures (see Table 26-29 through Table 26-44 and Figure 26-11 through Figure 26-26).
Section 28.0 "Packaging Information"	Added the following Package Marking Information and Package Drawings:
	44-Lead TQFP
	44-Lead QFN
	 44-Lead VTLA (referred to as TLA in the package drawings)