

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc102t-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FIGURE 1-1: dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 BLOCK DIAGRAM

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts, in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between Bit Positions 16 and 31 for right shifts, and between Bit Positions 0 and 16 for left shifts.

DS70000652F-page 72

TABLE 4-37: SYSTEM CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	—	—	—	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{xxxx} (1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN	0300 (2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	—	—	—	—	—	—	—	_	3040
OSCTUN	0748	_	_	_	_	_	_	_		_	_			TUN	<5:0>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-38: NVM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	—	—	—	—	—	ERASE	—	—	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000(1)
NVMKEY	0766	—	—	_	_	—	_	_	_				NVMKE	Y<7:0>				0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-39: PMD REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD ⁽²⁾	T4MD ⁽²⁾	T3MD	T2MD	T1MD	—	PWM1MD ⁽¹⁾	—	I2C1MD	—	U1MD	—	SPI1MD	—	_	AD1MD	0000
PMD2	0772	_	_	_	_	_	IC3MD	IC2MD	IC1MD	_	_	_	_	_	_	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	_	_	_	_	_	_	_	_	_	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_	_	_	_	CTMUMD	_	_	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is available in dsPIC33FJXXMC10X devices only.

2: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

NOTES:

6.5 External Reset (EXTR)

The External Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 26.0** "**Electrical Characteristics**" for minimum pulse-width specifications. The External Reset pin (MCLR) bit (EXTR) in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.5.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This External Reset signal can be directly connected to the MCLR pin to reset the device when the rest of the system is reset.

6.5.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the External Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The External Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.6 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain as the source. SYSRST is released at the next instruction cycle and the Reset vector fetch will commence.

The Software RESET (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the Software Reset.

6.7 Watchdog Timer Time-out Reset (WDTO)

Whenever a Watchdog Timer Time-out Reset occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control (RCON<4>) register is set to indicate the Watchdog Timer Reset. Refer to **Section 23.4 "Watchdog Timer (WDT)**" for more information on the Watchdog Timer Reset.

6.8 Trap Conflict Reset

If a lower priority hard trap occurs while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of Priority Level 13 through Level 15, inclusive. The address error (Level 13) and oscillator error (Level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller"** for more information on Trap Conflict Resets.

6.9 Configuration Mismatch Reset

To maintain the integrity of the Peripheral Pin Select Control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset occurs.

The Configuration Mismatch Flag (CM) bit in the Reset Control (RCON<9>) register is set to indicate the Configuration Mismatch Reset. Refer to **Section 10.0 "I/O Ports"** for more information on the Configuration Mismatch Reset.

Note: The Configuration Mismatch feature and associated Reset flag is not available on all devices.

6.10 Illegal Condition Device Reset

An Illegal Condition Device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag (IOPUWR) bit in the Reset Control (RCON<14>) register is set to indicate the Illegal Condition Device Reset.

6.10.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 0x3F, which is an illegal opcode value.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	_	—	_	
bit 15		·					bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	—	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	
bit 7					·		bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	INT2R<4:0>:	Assign Extern	al Interrupt 2 ((INTR2) to the	Corresponding	RPn Pin bits		
	11111 = I npu	it tied to Vss						
	11110 = Res	erved						
	•							
	11010 – Pes	erved						
	11010 = 1000	it tied to RP25						
	00001 = Inpu	It tied to RP1						
	00000 = Inpu	It tied to RP0						

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC			SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7(2)	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾
bit 7							bit 0
Legend:		_		_	_	_	
R = Readab	le bit	W = Writable I	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ADRC: ADC1	Conversion Cl	ock Source bit	t			
	1 = ADC1 inte	ernal RC clock	no ale ale				
hit 4 4 4 0	U = Clock der	ivea from syste	III CIOCK				
DIT 14-13	Unimplemen	tea: Read as '() Time 1:1 (1)				
DIT 12-8	5AMC<4:0>:	Auto-Sample I	ITTIE DITS				
	• •	AU					
	•						
	•						
	00001 = 1 TA	D					
	00000 = 0 TA	D					
bit 7-0	ADCS<7:0>:	ADC1 Convers	ion Clock Sele	ect bits ⁽²⁾			
	11111111 =	Reserved					
	•						
	•						
	•						
	- 0100000	Reserved					
	00111111 =	TCY • (ADCS<7	7:0> + 1) = 64	• TCY = TAD			
	•	,					
	•						
	•						
	00000010 =		7:0>+1)=3 •	TCY = TAD			
	00000001 = 0000000000000000000000000000	ICY • (ADCS<7	$(:0> + 1) = 2 \cdot 7$	ICY = IAD			
	50000000 =						
Note 1: ⊤	his bit is only use	d if SSRC<2:0>	> (AD1CON1<	7:5>) = 1.			
2 : ⊤	his bit is not used	I if ADRC (AD1	CON3<15>) =	1.			

REGISTER 19-3: AD1CON3: ADC1 CONTROL REGISTER 3

REGISTER	19-5: AD1Ch	150: ADC1 I	NPUT CHAN	NEL U SELE	CI REGISTE	R							
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
CH0NB		—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0						
bit 15							bit 8						
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
CH0NA		—	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0						
bit 7							bit 0						
Legend:	- hit		L.:.	II Inimum In m	nented bit was								
		vv = vvritable	DIL	0 = 0 minipier	nented bit, rea	uas U							
-n = value at	POR	T = Bit is set		$0^{\circ} = Bit is cle$	ared	X = BIt IS UNKI	nown						
6:4 <i>4</i> 5		an al O Na a atiu		ian Camala D h	:.								
DIL 15				or Sample B b	п								
	1 = Channel (0 = Channel () negative inpu	it is AVss										
bit 14-13	Unimplemen	ted: Read as '	0'										
bit 12-8	CH0SB<4:0>	: Channel 0 Po	ositive Input Se	lect for Sample	e B bits								
	11111-1000	0 = Reserved;	do not use										
	01111 = Cha	01111 = Channel 0 positive input is $AN15^{(2)}$											
	01110 = No c	hannels conne	ected, all inputs	s are floating (u	sed for CTMU)							
	01101 = Cha	nnel 0 positive	input is conne	cted to CTMU	temperature se	ensor							
	01100 = Cha	nnel 0 positive	input is AN12	2) 2)									
	01011 = Chai	nnel 0 positive	input is AN119	3)									
	01010 = Char01001 = Char	nnel 0 positive	input is ANQ(3))									
	01000 = Cha	nnel 0 positive	input is AN8 ⁽²⁾)									
	00111 = Cha	nnel 0 positive	input is AN7 ⁽²⁾)									
	00110 = Cha	nnel 0 positive	input is AN6(2)										
	00101 = Cha	nnel 0 positive	input is AN5										
	00100 = Char	nnel 0 positive	input is AN4	,									
	00011 = Char00010 - Char	nnel 0 positive	input is AN3										
	000010 = Cha	nnel 0 positive	input is AN1										
	00000 = Cha	nnel 0 positive	input is AN0										
bit 7	CH0NA: Char	nnel 0 Negativ	e Input Select f	or Sample A b	it								
	1 = Channel () negative inpu	ıt is AN1										
	0 = Channel () negative inpu	it is AVss										
bit 6-5	Unimplemen	ted: Read as '	0'										
bit 4-0	CH0SA<4:0>	: Channel 0 Po	ositive Input Se	lect for Sample	e A bits								
	Refer to bits<	12-8> for the a	vailable setting	js.									
Note 1: Th	nis setting is avai	lable in all dev	ices, excluding	the dsPIC33F	JXX(GP/MC)1	01, where it is r	eserved.						
2: Th	nis setting is avai	lable in the dsl	PIC33FJ32(GP	/MC)104 devic	es only and is	reserved in all	other devices.						
3: Th	nis setting is avai	lable in all dev	ices, excluding	the dsPIC33F	J16(GP/MC)10)1/102, where i	t is reserved.						

DECISTED 40 F. ADAOLION, ADOA INDUT OLIANINEL A OEL FOT DEOLOTED

21.2 RTCC Control Registers

REGISTER 21-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

	11.0		D O	D A							
	0-0										
RICEN-	_	RICWREN	RICSINC	HALFSEC	RICOE	RICPIRI	RICPIRU				
							DIL 8				
P/M-0	P/\/_0	P///_0	R/M_0	P/\\/_0	R/M-0	R/M_0	P/M-0				
bit 7	CALO	UAL5	UAL4	UAL3	UALZ	CALI	bit 0				
Dit 7							Dit 0				
Legend:											
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit. read	l as '0'					
-n = Value at P	-n = Value at POR $(1' = Bit is set)$ $(0' = Bit is cleared)$ x = Bit is unknown										
bit 15	RTCEN: RTC	C Enable bit ⁽²⁾									
	1 = RTCC mo	odule is enable	d								
	0 = RTCC modelse	odule is disable	ed								
bit 14	Unimplemen	ted: Read as '	0'								
bit 13 RTCWREN: RTCC Value Registers Write Enable bit											
 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user 											
bit 12	RTCSYNC: R	TCC Value Re	gisters Read	Synchronizatio	n bit						
	1 = RTCVAL	H, RTCVALL ar	d ALCFGRPT	registers can	change while re	ading, due to a	rollover ripple,				
	resulting i	in an invalid da	ta read. If the	register is read	I twice and the r	esults are the s	ame data, the				
	0 = RTCVALI	be assumed to H. RTCVALL of	be valid.	registers can b	e read without	concern over a	rollover ripple				
bit 11	HALFSEC: H	alf-Second Sta	tus bit ⁽³⁾	g							
	1 = Second h	alf period of a	second								
	0 = First half	period of a sec	cond								
bit 10	RTCOE: RTC	C Output Enab	ole bit								
	1 = RTCC out	tput is enabled									
h it 0.0		Itput is disabled) De sister Wir	deur Deinter h	:4-						
DIL 9-0	Points to the	>: RICC value	REGISTER MIL	adistors when	reading RTCV/	ALH and RTCV	All registers.				
	the RTCPTR<	<1:0> value dec	crements on e	very read or w	rite of RTCVAL	H until it reache	es '00'.				
	RTCVAL<15:8	<u> 3>:</u>									
		S									
	01 = WEEKD 10 = MONTH	AY									
	11 = Reserve	d									
	RTCVAL<7:0	<u>>:</u>									
		DS									
	10 = DAY										
	11 = YEAR										

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

YRONE3

YRONE2

YRONE1

YRONE0

REGISTER 21-4: RTCVAL (WHEN RTCPTR<1:0> = 11): RTCC YEAR VALUE REGISTER⁽¹⁾

YRTEN0

bit 7				bit 0
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits
	Contains a value from 0 to 9.
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

YRTEN1

YRTEN3

YRTEN2

REGISTER 21-5: RTCVAL (WHEN RTCPTR<1:0> = 10): RTCC MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of 0 or 1.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS

W-x R/W-x R/W-x AY2 WDAY1 WDAY0 bit 8			
AY2 WDAY1 WDAY0 bit 8			
bit 8			
/V-A I\/VV-A I\/VV-A			
DNE2 HRONE1 HRONE0			
bit 0			
U = Unimplemented bit, read as '0'			
x = Bit is unknown			
) 			

DIT 15-11	Unimplemented: Read as 0
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2011-2014 Microchip Technology Inc.

REGISTER 21-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

D D e a deble bit M M i the bit M bit e bit e a deble e the second end of O		
R = Readable bit $V = VVIItable bit$ $U = Unimplemented bit, read as '0'$	W = Writable bit U = Unimplemented bit, read as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	(1) = Bit is set $(0) = Bit is cleared$ $x = Bit is unknown$	

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (DS70635) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four edge input trigger sources
- · Polarity control for each edge source
- · Control of edge sequence
- Control of response to edges
- · Precise time measurement resolution of 200 ps
- Accurate current source suitable for capacitive measurement
- On-chip temperature measurement using a built-in diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module, the edge delay generation, sequencing of edges, and controls the current source and the output trigger. CTMUCON2 controls the edge source selection, edge source polarity selection and edge sampling mode. The CTMUICON register controls the selection and trim of the current source.

Figure 22-1 shows the CTMU block diagram.

NOTES:

24.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ16(GP/ MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com).

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 24-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V ⁽³⁾	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sourced and sunk by any I/O pin excluding OSCO	15 mA
Maximum output current sourced and sunk by OSCO	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of the device maximum power dissipation (see Table 26-2).
- 3: See the "Pin Diagrams" section for 5V tolerant pins.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A