

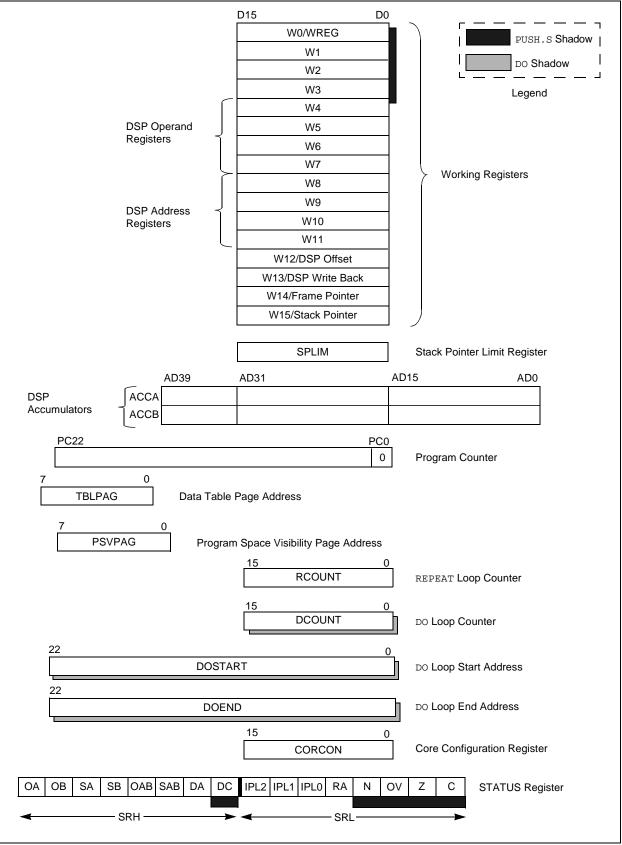
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc104-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15	·						bit 8
(2))) (2)	(2)					
R/W-0 ⁽³		R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit (
Legend:		C = Clearable	bit				
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15		ator A Overflow					
		ator A has overf ator A has not o					
bit 14		ator B Overflow					
DIL 14		ator B has overf					
		ator B has not o					
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	itus bit ⁽¹⁾			
	1 = Accumula	ator A is saturat	ed or has be	en saturated at	some time		
		ator A is not sat		(4)			
bit 12		ator B Saturatio					
		ator B is saturat ator B is not sat		en saturated at	some time		
bit 11	OAB: OA C	B Combined A	ccumulator C	Verflow Status	bit		
		ators A or B hav					
bit 10	SAB: SA S	B Combined Ac	cumulator 'S	ticky' Status bit			
					urated at some	time in the past	
		ccumulator A o			it will clear SA a	and SB	
bit 9	DA: DO LOOP			Cleaning this bi			
	1 = DO loop is						
		not in progres	5				
bit 8	DC: MCU AL	U Half Carry/Bo	prrow bit				
			ow-order bit	(for byte-sized o	data) or 8th low-	order bit (for wo	rd-sized data
		sult occurred	h low-order	hit (for hyte-siz	ed data) or 8th	low-order bit (f	or word-sized
	•	he result occur					
Note 1:	This bit can be rea	nd or cleared (ne	ot set).				
	The IPL<2:0> bits						
	Level. The value in	n parentheses i	ndicates the	IPL if IPL<3> =	1. User interru	ots are disabled	when
	IPL<3> = 1.						

REGISTER 3-1: SR: CPU STATUS REGISTER

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, although the implemented memory locations vary by device.

5.2 RTSP Operation

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions); and to program one word. Table 26-12 shows typical erase and programming times. The 8-row erase pages are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the operation is finished.

The programming time depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3). Use the following formula to calculate the minimum and maximum values for the Word write time and page erase time (see Parameters D138a and D138b, and Parameters D137a and D137b in Table 26-12, respectively).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 8-3) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

 $T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 + 0.02) \times (1 - 0.00375)} = 47.4 \mu s$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 - 0.02) \times (1 - 0.00375)} = 49.3 \mu s$$

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one word (24 bits) of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Note:	Performing a page erase operation on the							
	last page of program memory will clear the							
	Flash Configuration Words, thereby							
	enabling code protection as a result.							
	Therefore, users should avoid performing							
	page erase operations on the last page of							
	program memory.							

Refer to **"Flash Programming"** (DS70191) in the *"dsPIC33/PIC24 Family Reference Manual"* for details and codes examples on programming using RTSP.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts (Part IV)" (DS70300) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors consisting of eight non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices implement up to 26 unique interrupts and 4 nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a way to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications to facilitate evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices clear their registers in response to a Reset, forcing the PC to zero. The Digital Signal Controller then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1: dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 INTERRUPT VECTOR TABLE

1		7	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector	_	
	Address Error Trap Vector	_	
	Stack Error Trap Vector	_	
	Math Error Trap Vector	_	
	Reserved	-	
	Reserved	_	
	Reserved Interrupt Vector 0	0x000014	
	Interrupt Vector 1	0,000014	
		-	
	~		
	~	_	
	Interrupt Vector 52	0x00007C	(4)
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ity	Interrupt Vector 54	0x000080	
iori	~		
ā	~		
der	~		
Decreasing Natural Order Priority	Interrupt Vector 116	0x0000FC	
ra	Interrupt Vector 117	0x0000FE	
atu	Reserved	0x000100	
Z	Reserved	0x000102	
sing	Reserved		
eas	Oscillator Fail Trap Vector		
ecr	Address Error Trap Vector		
ă	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1	_	
	~	4	
	~	4	
	~ Interrupt Vector 52	0x000470	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
		0x00017C	
	Interrupt Vector 53 Interrupt Vector 54	0x00017E 0x000180	
	~	0000180	
	~	-	
	~	_	
	- Interrupt Vector 116	-	
	Interrupt Vector 117	0x0001FE	
*	Start of Code	0x000200	L
Note 1: See	e Table 7-1 for the list of impleme	ented interrupt v	ectors.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred INTOIF: External Interrupt 0 Flag Status bit

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. Devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration**".

9.2 Instruction-Based Power-Saving Modes

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices have two special powersaving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device will wake-up from Sleep mode on any of the these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE; Put the device into SLEEP modePWRSAV #IDLE_MODE; Put the device into IDLE mode

REGISTER 9-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled 0 = SPI1 module is enabled

bit 2-1 Unimplemented: Read as '0'

- bit 0 AD1MD: ADC1 Module Disable bit⁽²⁾
 - 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled
- **Note 1:** These bits are available in dsPIC33FJ32(GP/MC)10X devices only.
 - 2: PCFGx bits have no effect if the ADC module is disabled by setting this bit. When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.

REGISTER 9-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	IC3MD	IC2MD	IC1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	OC2MD	OC1MD
bit 7			•				bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10	IC3MD: Input Capture 3 Module Disable bit
	1 = Input Capture 3 module is disabled
	0 = Input Capture 3 module is enabled
bit 9	IC2MD: Input Capture 2 Module Disable bit
	1 = Input Capture 2 module is disabled
	0 = Input Capture 2 module is enabled
bit 8	IC1MD: Input Capture 1 Module Disable bit
	 I = Input Capture 1 module is disabled
	0 = Input Capture 1 module is enabled
bit 7-2	Unimplemented: Read as '0'
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled
	0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled
	0 = Output Compare 1 module is enabled

10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70193) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch (LATx) register read the latch. Writes to the Output Latch register write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that is not valid for a particular device will be disabled. This means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:							
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)							
	See MPLAB IDE Help for more information.							

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

	10-4: RPINF		ERAL PIN SE							
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—	_	T5CKR4 ⁽¹⁾	T5CKR3 ⁽¹⁾	T5CKR2 ⁽¹⁾	T5CKR1 ⁽¹⁾	T5CKR0 ⁽¹⁾			
bit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	_		T4CKR4 ⁽¹⁾	T4CKR3 ⁽¹⁾	T4CKR2 ⁽¹⁾	T4CKR1 ⁽¹⁾	T4CKR0 ⁽¹⁾			
bit 7				1			bit (
Logondi										
Legend: R = Readable	e hit	W = Writable	hit	II = Unimplen	nented bit, read	l as '0'				
-n = Value at		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr	own			
			-							
bit 15-13	Unimplemen	nted: Read as	'0'							
bit 12-8	-			ck (T5CK) to th	ne Correspondi	na RPn Pin hits	<u>s</u> (1)			
	T5CKR<4:0>: Assign Timer5 External Clock (T5CK) to the Corresponding RPn Pin bits ⁽¹⁾ 11111 = Input tied to Vss									
	11111 = mpt									
	-									
	11010 = Reserved									
	11001 = Input tied to RP25									
	•									
	•									
	00001 = Input tied to RP1									
	00000 = Inpu	ut tied to RP0								
bit 7-5	Unimplemen	nted: Read as	'0'							
bit 4-0	T4CKR<4:0>	. Assign Time	r4 External Clo	ck (T4CK) to th	ne Correspondi	ng RPn Pin bits	₃ (1)			
	11111 = I npu	ut tied to Vss								
	11110 = Res	served								
	•									
	• 11010 Dee	an cad								
	11010 = Res	ut tied to RP25	1							
	11001 - 1100									
	•									
		ut tied to RP1								

REGISTER 10-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

NOTES:

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

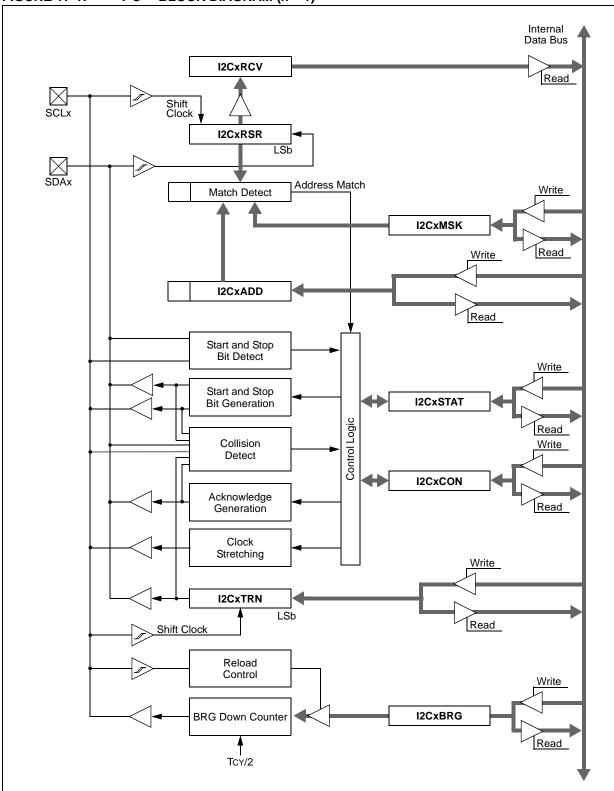
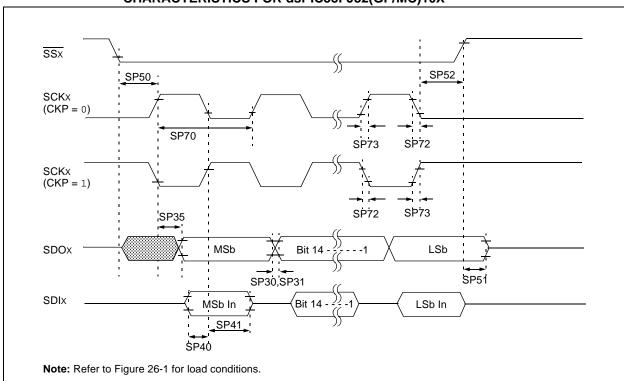



FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (x = 1)

Bit Field	Description						
GCP	General Segment Code-Protect bit						
	1 = User program memory is not code-protected0 = Code protection is enabled for the entire program memory space						
GWRP	General Segment Write-Protect bit						
	1 = User program memory is not write-protected0 = User program memory is write-protected						
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator source when ready 0 = Starts up device with user-selected oscillator source 						
PWMLOCK	PWM Lock Enable bit						
	1 = Certain PWM registers may only be written after a key sequence0 = PWM registers may be written without a key sequence						
WDTWIN<1:0>	Watchdog Timer Window Select bits 11 = WDT window is 24% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period						
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Reserved; do not use 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (MS + PLL, EC + PLL) 010 = Primary Oscillator (MS, HS, EC) 001 = Fast RC Oscillator with Divide-by-N and PLL module (FRCDIVN + PLL) 000 = Fast RC Oscillator (FRC)						
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled						
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations						
OSCIOFNC	OSC2 Pin Function bit (except in MS and HS modes) 1 = OSC2 is a clock output 0 = OSC2 is a general purpose digital I/O pin						
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode (10 MHz-32 MHz) 01 = MS Crystal Oscillator mode (3 MHz-10 MHz) 00 = EC (External Clock) mode (DC-32 MHz)						
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register) 						
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode						

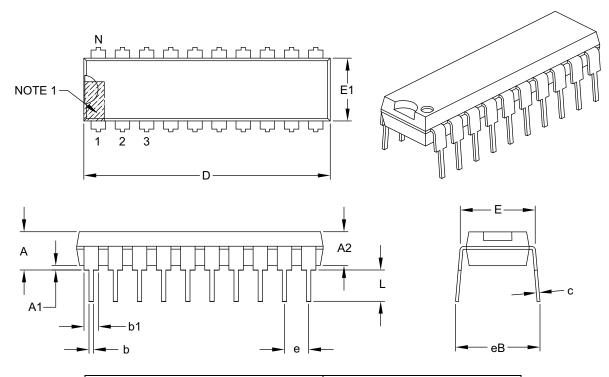

TABLE 23-4: dsPIC33F CONFIGURATION BITS DESCRIPTION

FIGURE 26-26: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

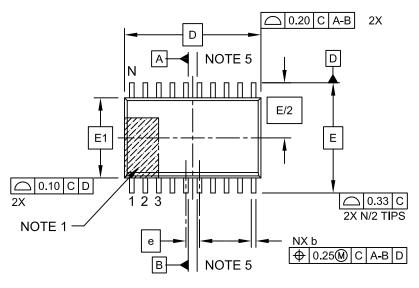
	Units			INCHES		
Dimensio	on Limits	MIN	NOM	MAX		
Number of Pins	Ν		20			
Pitch	е		.100 BSC			
Top to Seating Plane	Α	-	-	.210		
Molded Package Thickness	A2	.115	.130	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	Е	.300	.310	.325		
Molded Package Width	E1	.240	.250	.280		
Overall Length	D	.980	1.030	1.060		
Tip to Seating Plane	L	.115	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.045	.060	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	-	-	.430		

Notes:

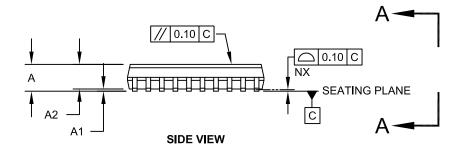
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

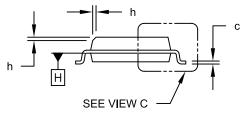
2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-019B


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

NOTES:

Resets	87
BOR (Brown-out Reset)	87
BOR and Power-up Timer (PWRT)	92
CM (Configuration Mismatch Reset)	
Configuration Mismatch (CM)	
External (EXTR)	
Illegal Condition	
Illegal Opcode	
Security	93, 94
Uninitialized W Register	
IOPUWR (Illegal Condition Reset)	87
Illegal Opcode	
Security	
Uninitialized W Register	87
MCLR (Master Clear Pin)	87
Oscillator Delays	
POR (Power-on Reset)	87
Power-on Reset (POR)	92
Software RESET Instruction (SWR)	93
SWR (RESET Instruction)	
System	
Cold Reset	90
Warm Reset	90
Trap Conflict	93
TRAPR (Trap Conflict Reset)	87
Watchdog Timer Time-out (WDTO)	93
WDTO (Watchdog Timer Reset)	87
Revision History	373
RTCC	
Control Registers	245
Module Registers	244
Register Mapping	244
e	

S

Serial Peripheral Interface (SPI)	197
Control Registers	199
Helpful Tips	198
Resources	198
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	73
Special Features	
Code Protection	
Flexible Configuration	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	
Watchdog Timer (WDT)	

Т

I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	. 330
Input Capture x (ICx)	. 301
Motor Control PWMx	. 303
Motor Control PWMx Fault	. 303
OCx/PWMx	. 302
Output Compare x (OCx)	. 302
Output Compare x Operation	
Reset, Watchdog Timer, Oscillator Start-up Timer	-
and Power-up Timer	298
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x_1	
SMP = 1) for dsPIC33FJ16(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x_i	
SMP = 1) for dsPIC33FJ32(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x_1	
SMP = 1) for dsPIC33FJ16(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x_1	
SMP = 1) for dsPIC33FJ32(GP/MC)10X	
SPIx Master Transmit Mode (Half-Duplex, CKE = 0)	
for dsPIC33FJ16(GP/MC)10X	
SPIx Master Transmit Mode (Half-Duplex, CKE = 0)	
for dsPIC33FJ32(GP/MC)10X	
SPIx Master Transmit Mode (Half-Duplex, CKE = 1)	
for dsPIC33FJ16(GP/MC)10X	
SPIx Master Transmit Mode (Half-Duplex, CKE = 1)	
for dsPIC33FJ32(GP/MC)10X	. 317
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,	
SMP = 0) for dsPIC33FJ16(GP/MC)10X	. 314
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,	
SMP = 0) for dsPIC33FJ32(GP/MC)10X	. 326
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,	
SMP = 0) for dsPIC33FJ16(GP/MC)10X	. 312
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,	
SMP = 0) for dsPIC33FJ32(GP/MC)10X	. 324
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,	
SMP = 0) for dsPIC33FJ16(GP/MC)10X	. 308
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,	
SMP = 0) for dsPIC33FJ32(GP/MC)10X	. 320
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,	
SMP = 0) for dsPIC33FJ16(GP/MC)10X	. 310
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,	
SMP = 0) for dsPIC33FJ32(GP/MC)10X	. 322
System Reset	91
Timer1/2/3 External Clock	. 299
Timing Requirements	
10-Bit ADC Conversion	. 335
Capacitive Loading on Output Pins	. 294
CLKO and I/O	297
External Clock	
I2Cx Bus Data (Master Mode)	. 329
I2Cx Bus Data (Slave Mode)	
Input Capture x (ICx)	
Motor Control PWMx	
Output Compare x (OCx)	
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out Reset	298
Simple OCx/PWMx Mode	
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x_i	
SMP = 1) for dsPIC33FJ16(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x_1	
SMP = 1) for dsPIC33FJ32(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x_1	
SMP = 1) for dsPIC33FJ16(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x_1	
SMP = 1) for dsPIC33FJ32(GP/MC)10X	
	. 510