

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc104-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the primary reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ16MC102 product page of the Microchip Web site (www.microchip.com). In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "CPU" (DS70204)
- "Data Memory" (DS70202)
- "Program Memory" (DS70203)
- "Flash Programming" (DS70191)
- "Reset" (DS70192)
- "Watchdog Timer and Power-Saving Modes" (DS70196)
- "Timers" (DS70205)
- "Input Capture" (DS70198)
- "Output Compare" (DS70209)
- "Motor Control PWM" (DS70187)
- "Analog-to-Digital Converter (ADC)" (DS70183)
- "UART" (DS70188)
- "Serial Peripheral Interface (SPI)" (DS70206)
- "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- "CodeGuard Security" (DS70199)
- "Programming and Diagnostics" (DS70207)
- "Device Configuration" (DS70194)
- "I/O Ports with Peripheral Pin Select (PPS)" (DS70190)
- "Real-Time Clock and Calendar (RTCC)" (DS70301)
- "Introduction (Part VI)" (DS70655)
- "Oscillator (Part VI)" (DS70644)
- "Interrupts (Part VI)" (DS70633)
- "Comparator with Blanking" (DS70647)
- "Charge Time Measurement Unit (CTMU)" (DS70635)

Pin Nam	ne Pin Type	Buffer Type	PPS	Description				
AVDD	P	Ρ	No	Positive supply for analog modules. This pin must be connected at all times. AVDD is connected to VDD in the 18-pin dsPIC33FJXXGP101 and 20-pin dsPIC33FJXXMC101 devices. In all other devices, AVDD is separated from VDD.				
AVss	P	Р	No	Ground reference for analog modules. AVss is connected to Vss in the 18-pin dsPIC33FJXXGP101 and 20-pin dsPIC33FJXXMC101 devices. In all other devices, AVss is separated from Vss.				
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.				
VCAP	Р	—	No	CPU logic filter capacitor connection.				
Vss	Р	—	No	Ground reference for logic and I/O pins.				
Legend:	CMOS = 0	CMOS comp	batible	input or output Analog = Analog input P =	= Power			
ST = Schmitt Trigger input with CMOS levels O = Output I = Input								

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels O = Output PPS = Peripheral Pin Select

Note 1: An external pull-down resistor is required for the FLTA1 pin in dsPIC33FJXXMC101 (20-pin) devices.

2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.

3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.

4: The PWM Fault pins are enabled during any Reset event. Refer to **Section 15.2** "**PWM Faults**" for more information on the PWM Faults.

5: Not all pins are available on all devices. Refer to the specific device in the "**Pin Diagrams**" section for availability.

6: These pins are available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.

FIGURE 4-2: PROGRAM MEMORY MAP FOR dsPIC33FJ32(GP/MC)101/102/104 DEVICES

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	T1IP<2:0>: ⊺	imer1 Interrupt	Priority bits								
	111 = Interru	pt is Priority 7 (highest priori	ty interrupt)							
	•										
	•										
	001 = Interru	ot is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 11	Unimplemen	ted: Read as '	0'								
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits										
	111 = Interru	pt is Priority 7 (highest priori	ty interrupt)							
	•										
	•										
	001 = Interrupt is Priority 1										
	000 = Interru	pt source is dis	abled								
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits										
	111 = Interru	pt is Priority 7 (nignest priori	ty interrupt)							
	•										
	•										
	001 = Interrup 000 = Interrup	pt is Priority 1 pt source is dis	abled								
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0	INT0IP<2:0>:	External Inter	rupt 0 Priority	bits							
	111 = Interru	ot is Priority 7 (highest priori	ty interrupt)							
	111 = Interru •	pt is Priority 7 (highest priori	ty interrupt)							
	111 = Interrup	pt is Priority 7 (highest priori	ty interrupt)							
	111 = Interrup • • • • •	pt is Priority 7 (ot is Priority 1	highest priori	ty interrupt)							

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	<u> </u>	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	CTMUIP2	CTMUIP1	CTMUIP0	_	<u> </u>		<u> </u>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	CTMUIP<2:0	CTMU Interr	upt Priority bi	ts			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-27: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

10.4.2.2 Output Mapping

In contrast to the inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-11 through Register 10-23). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3: MULTIPLEXING OF **REMAPPABLE OUTPUT** FOR RPn RPnR<4:0> Default 0 U1TX Output Enable 3 U1RTS Output Enable 4 Output Enable • • • OC2 Output Enable 19

Default

U1TX Output

OC2 Output

U1RTS Output

0

3

4

•

•

19

Output Data

 \mathbf{X}

RPn

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to Default Port Pin
C1OUT	00001	RPn tied to Comparator 1 Output
C2OUT	00010	RPn tied to Comparator 2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready-to-Send
SCK1	01000	RPn tied to SPI Clock ⁽¹⁾
SDO1	00111	RPn tied to SPI Data Output ⁽¹⁾
SS1	01001	RPn tied to SPI1 Slave Select Output ⁽¹⁾
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
CTPLS	11101	RPn tied to CTMU Pulse Output
C3OUT	11110	RPn tied to Comparator 3 Output

Note 1: This function is available in dsPIC33FJ32(GP/MC)10X devices only.

13.1 Input Capture Control Register

REGISTER 13-1: ICXCON: INPUT CAPTURE X CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	ICSIDL	_	_	_	_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7		•					bit 0
Legend:		HC = Hardwa	re Clearable b	bit			
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown
bit 15-14	Unimplemen	ted: Read as '	י'				
bit 13	ICSIDL: Input	Capture x Sto	o in Idle Contr	ol bit			
	1 = Input Cap	ture x module v	will halt in CP	U Idle mode			
hit 12 0			will continue to	o operate in Ci			
bit 7		Capture v Tim	or Soloct hits				
Dit 7	1 - TMR2 cor	Capture x min	ured on a can	ture event			
	0 = TMR3 cor	ntents are capt	ured on a cap	ture event			
bit 6-5	ICI<1:0>: Sel	ect Number of	Captures per	Interrupt bits			
	11 = Interrupt	on every fourt	h capture eve	nt			
	10 = Interrupt	on every third	capture event	t ,			
	01 = Interrupt 00 = Interrupt	on every seco	na capture ev ire event	ent			
bit 4	ICOV: Input C	apture x Overf	low Status Fla	aa bit (read-onl	V)		
	1 = Input Cap	ture x overflow	occurred	.g (<i>,</i>		
	0 = No Input 0	Capture x overf	low occurred				
bit 3	ICBNE: Input	Capture x Buff	er Empty Stat	us bit (read-on	ily)		
	1 = Input Cap	ture x buffer is	not empty, at	least one more	e capture value	can be read	
hit 2.0		ture x buffer is	empty Ando Soloot b	ite			
DIT 2-0	1111 - Input (put Capture x N	ions as an int	IIS errunt nin only	when device is	in Sleep or Idle	mode (rising
		letect only, all o	other control b	oits are not app	licable)		e mode (naing
	110 = Unuse	d (module is di	sabled)		,		
	101 = Captur	re mode, every	16th rising ed	dge			
	100 = Captur	re mode, every re mode, every	4th rising edg	je			
	010 = Captur	re mode, every	falling edge				
	001 = Captur	re mode, every	edge, rising a	and falling (ICI	<1:0> bits do no	ot control interru	upt generation
	for this	s mode) Capture v modu	Ila is turnad a	ff			
		Japiule x mout					

Image: constraint of the second sec
Image: Note of the second se
R/W-0 R/W-0 <th< td=""></th<>
R/W-0R/W-0R/W-0R/W-0R/W-0R/W-0R/W-0SSEN(2)CKPMSTENSPRE2(3)SPRE1(3)SPRE0(3)PPRE1(3)PPRE0(3)bit 7bit 0Legend: R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown
SSEN(2)CKPMSTENSPRE2(3)SPRE1(3)SPRE0(3)PPRE1(3)PPRE0(3)bit 7bit 0Legend: R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown
bit 7 bit 0 Legend: W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is cleared $x = Bit is unknown$
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as '0'
bit 12 DISSCK: Disable SCKx pin bit (SPI Master modes only)
1 = Internal SPI clock is disabled, pin functions as I/O
0 = Internal SPI clock is enabled
bit 11 DISSDO: Disable SDOx pin bit
1 = SDOx pin is not used by the module; pin functions as I/O0 = SDOx pin is controlled by the module
bit 10 MODE16: Word/Byte Communication Select bit
1 = Communication is word-wide (16 bits)
0 = Communication is byte-wide (8 bits)
bit 9 SMP: SPIx Data Input Sample Phase bit
Master mode:
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time Slave mode:
SMP must be cleared when SPIx is used in Slave mode.
bit 8 CKE: Clock Edge Select bit ⁽¹⁾
1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6)
0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)
bit 7 SSEN: SPIx Slave Select Enable bit (Slave mode) ⁽²⁾
1 = SSx pin is used for Slave mode 0 = SSx pin is not used by the module, pin is controlled by port function
bit 6 CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level: active state is a low level
0 = Idle state for clock is a low level; active state is a high level
bit 5 MSTEN: Master Mode Enable bit
1 = Master mode
0 = Slave mode
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes
(FINITIN = 1). 2. This hit must be cleared when FRMEN = 1
3: Do not set both primary and secondary prescalers to a value of 1.1

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware clears at end of master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master) 1 = Enables Receive mode for I^2C ; hardware clears at end of eighth bit of the master receive data byte 0 = Receive sequence is not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as l²C master) 1 = Initiates Stop condition on SDAx and SCLx pins; hardware clears at end of the master Stop sequence 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware clears at end of the master Repeated Start sequence 0 = Repeated Start condition is not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiates Start condition on SDAx and SCLx pins; hardware clears at end of master Start sequence 0 = Start condition is not in progress

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0'
	0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	11 = 9-bit data, no parity
	10 = 8-bit data, odd parity
	01 = 8-bit data, even parity
	00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits
	0 = One Stop bit

- **Note 1:** Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is available for 16x BRG mode (BRGH = 0) only.

r							
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2	VCFG1	VCFG0	—	—	CSCNA	CHPS1	CHPS0
bit 15							bit 8
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	VCFG<2:0>:	Converter Vol	age Reference	Configuration	bits		
	A	DREF+	ADREF-				
	xxx	AVdd	AVss	=			
bit 12-11	Unimplemen	tad. Road as	٠́،	/			
bit 10	CSCNA: Scal	n Innut Selecti	ons for CH0+ □	Juring Sample	A hit		
bit TO	1 = Scans int	outs		Juning Gample			
	0 = Does not	scan inputs					
bit 9-8	CHPS<1:0>:	Select Channe	els Utilized bits				
	1x = Convert	s CH0, CH1, C	CH2 and CH3				
	01 = Convert	s CH0 and CH	11				
1			/ I I				
Dit 7	BUFS : Buffer Fill Status bit (valid only when BUFM = 1)						
	1 = ADC1 is 0 = ADC1 is	currently filling	i second nair or i first half of buf	fer user applic	nould access da	ata in the first n	all he second half
bit 6	Unimplemen	ted: Read as	'0'				
bit 5-2	SMPI<3:0>: S	Sample/Conve	rt Sequences P	Per Interrupt Se	election bits		
	1111 = Inter	rupts at the co	mpletion of cor	version for ea	ch 16th sample	convert seque	ence
	1110 = Inter	rupts at the co	mpletion of cor	version for ea	ch 15th sample	/convert seque	ence
	•						
	•						
	•						
	0001 = Inter	rupts at the co	mpletion of cor	version for ea	ch 2nd sample	convert seque	nce
bit 1		Fill Mode Sol			ch sample/com	ven sequence	
DILT	1 – Starts filli	ng first half of	eu bil buffer on first ir	terrunt and th	e second half o	f buffer on nev	tinterrunt
	0 = Always st	tarts filling buf	fer from the beg	ginning			linterrupt
bit 0	ALTS: Alterna	ate Input Sam	ole Mode Selec	t bit			
	1 = Uses cha	annel input sel	ects for Sample	A on first sam	ple and Sampl	e B on next sa	mple
	0 = Always u	ses channel ir	put selects for	Sample A			

REGISTER 19-2: AD1CON2: ADC1 CONTROL REGISTER 2

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PCFG<12:0>(4,5,7) PCFG15^(4,5) ____ ____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PCFG<7:0>(4,5,6) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

REGISTER 19-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW^(1,2,3)

				,	
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
hit 15	PCEGU	- ADC1 Port Configuration	Control hit(4,5)		
bit 15	1 = Port 0 = Port	pin is in Digital mode, port re pin is in Analog mode, port	ead input is enabled, ADC1 input read input is disabled, ADC1 sa	t multiplexer is connected to AVss amples pin voltage	
bit 14-13	Unimple	emented: Read as '0'			
bit 12-0	PCFG<	12:0>: ADC1 Port Configura	tion Control bits ^(4,5,6,7)		
	1 = Port 0 = Port	pin is in Digital mode, port re pin is in Analog mode, port	ead input is enabled, ADC1 input read input is disabled, ADC1 sa	t multiplexer is connected to AVss amples pin voltage	
Note 1:	On devices w ports without	rithout 14 analog inputs, all P a corresponding input on th	CFGx bits are R/W by user. How e device.	wever, PCFGx bits are ignored on	
2:	PCFGx = AN	x, where x = 0 through 12 ar	nd 15.		
3:	The PCFGx b When the bit	its have no effect if the ADC is set, all port pins that have	module is disabled by setting the been multiplexed with ANx will be	e AD1MD bit in the PMD1 register. be in Digital mode.	
4:	Pins shared to enable any a '0', regardle	with analog functions (i.e., A ν digital function on that pin. ess of the signal input level.	Nx) are analog by default and the a Reading any port pin with the a	nerefore, must be set by the user nalog function enabled will return	
5:	The PCFG<15,12:11,8:6> bits are available in the dsPIC33FJ32(GP/MC)104 devices only and are reserved in all other devices.				
6:	6: The PCFG<5:4> bits are available on all devices, excluding the dsPIC33FJXX(GP/MC)101 devic they are reserved.			FJXX(GP/MC)101 devices, where	
7.	The PCEG<1	0.9 bits are available on al	I devices excluding the dsPIC3	3E.116(GP/MC)101/102 devices	

7: The PCFG<10:9> bits are available on all devices, excluding the dsPIC33FJ16(GP/MC)101/102 devices, where they are reserved.

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768
	1110 = 1:16,384
	•
	•
	0001 = 1:2
PLLKEN	PLL Lock Enable bit
	1 = Clock switch to PLL will wait until the PLL lock signal is valid
	0 = Clock switch will not wait for the PLL lock signal
ALTI2C	Alternate I ² C [™] Pins bit
	$1 = I^2 C$ is mapped to SDA1/SCL1 pins
	0 = I ² C is mapped to ASDA1/ASCL1 pins
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicate on PGEC1 and PGED1
	10 = Communicate on PGEC2 and PGED2
	01 = Communicate on PGEC3 and PGED3
	00 = Reserved, do hot use
PVVIVIPIN	
	1 = PWM module pins controlled by PORT register at device Reset (tri-stated)
HPOL	Motor Control PWM High Side Polarity bit
	1 = PWM module high side output pins have active-high output polarity
	0 = PWW module high side output pins have active-low output polarity
LPOL	Motor Control PVVM Low Side Polarity bit
	1 = PWM module low side output pins have active-high output polarity
	0 = PVVIVI module low side output pins have active-low output polarity

TABLE 23-4: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V ⁽³⁾	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sourced and sunk by any I/O pin excluding OSCO	15 mA
Maximum output current sourced and sunk by OSCO	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of the device maximum power dissipation (see Table 26-2).
- 3: See the "Pin Diagrams" section for 5V tolerant pins.

TABLE 26-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	—		15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	_			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	_			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time				ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time				ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	-	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40			ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dime	nsion Limits	MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е		0.65 BSC		
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	ø	0°	4°	8°	
Lead Width	b	0.22	_	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch E		0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

NOTES: