

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

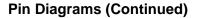
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

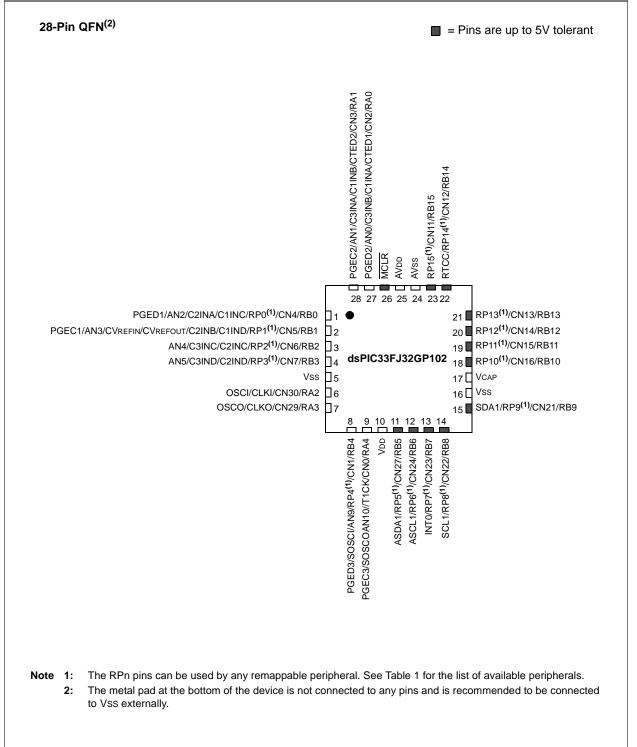
Details

Detuils	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc104-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


		(e)			Rem	appa	ble I	Perip	herals	5	-		с						
Device	Pins	Program Flash (Kbyte)	RAM (Kbytes)	Remappable Pins	16-bit Timer ^(1,2)	Input Capture	Output Compare	UART	External Interrupts ⁽³⁾	SPI	Motor Control PWM	PWM Faults	10-Bit, 1.1 Msps ADC	RTCC	I ² C™	Comparators	CTMU	I/O Pins	Packages
dsPIC33FJ32GP101	18	32	2	8	5	3	2	1	3	1		-	1 ADC, 6-ch	Y	1	3	Y	13	PDIP, SOIC
	20	32	2	8	5	3	2	1	3	1		—	1 ADC, 6-ch	Y	1	3	Y	15	SSOP
dsPIC33FJ32GP102	28	32	2	16	5	3	2	1	3	1			1 ADC, 8-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	32	2	16	5	3	2	1	3	1		_	1 ADC, 8-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ32GP104	44	32	2	26	5	3	2	1	3	1			1 ADC, 14-ch	Y	1	3	Y	35	TQFP, QFN, VTLA
dsPIC33FJ32MC101	20	32	2	10	5	3	2	1	3	1	6-ch	1	1 ADC, 6-ch	Y	1	3	Y	15	PDIP, SOIC, SSOP
dsPIC33FJ32MC102	28	32	2	16	5	3	2	1	3	1	6-ch	2	1 ADC, 8-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	32	2	16	5	3	2	1	3	1	6-ch	2	1 ADC, 8-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ32MC104	44	32	2	26	5	3	2	1	3	1	6-ch	2	1 ADC, 14-ch	Y	1	3	Y	35	TQFP, QFN, VTLA


TABLE 2: dsPIC33FJ32(GP/MC)101/102/104 DEVICE FEATURES

Note 1: Four out of five timers are remappable.

2: Two pairs can be combined to have up to two 32-bit timers.

3: Two out of three interrupts are remappable.

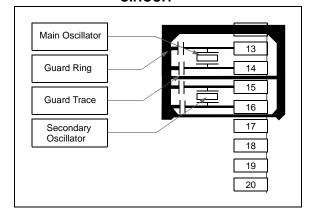
2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the "dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70659) for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- "MPLAB[®] ICD 3 Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS51616)
- *"Using MPLAB[®] REAL ICE™"* (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70204) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ16(GP/MC)101/102 The and dsPIC33FJ32(GP/MC)101/102/104 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can serve as a data, address, or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices are capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory, while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain Working registers to each address space.

4.2 Data Address Space

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

Microchip dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices implement up to 2 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decoding but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction in progress is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternately, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note:	The actual set of peripheral features and interrupts varies by the device. Refer to
	the corresponding device tables and
	pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using the MOV class of instructions, which support Memory Direct Addressing mode with a 16-bit address field or by using Indirect Addressing mode with a Working register as an Address Pointer.

TABLE 4-	17:	ADC1	REGIS	STER M	AP FO	R dsPIC	33FJ32(GP/MC)1	04 DEV	ICES								
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Da	ata Buffer	0							xxxx
ADC1BUF1	0302								ADC1 Da	ata Buffer	1							xxxx
ADC1BUF2	0304								ADC1 Da	ata Buffer	2							xxxx
ADC1BUF3	0306								ADC1 Da	ata Buffer	3							xxxx
ADC1BUF4	0308								ADC1 Da	ata Buffer	4							xxxx
ADC1BUF5	030A								ADC1 Da	ata Buffer	5							xxxx
ADC1BUF6	030C								ADC1 Da	ata Buffer	6							xxxx
ADC1BUF7	030E								ADC1 Da	ata Buffer	7							xxxx
ADC1BUF8	0310								ADC1 Da	ata Buffer	8							xxxx
ADC1BUF9	0312								ADC1 Da	ata Buffer	9							xxxx
ADC1BUFA	0314								ADC1 Da	ita Buffer '	10							xxxx
ADC1BUFB	0316					ADC1 Data Buffer 11								xxxx				
ADC1BUFC	0318								ADC1 Da	ita Buffer 1	12							xxxx
ADC1BUFD	031A								ADC1 Da	ita Buffer 1	13							xxxx
ADC1BUFE	031C								ADC1 Da	ita Buffer 1	14							xxxx
ADC1BUFF	031E								ADC1 Da	ita Buffer 1	15							xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	_		FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	—	_	CSCNA	CHPS1	CHPS0	BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	—	_	—	—	_	CH123NB1	CH123NB0	CH123SB	—	—		_	—	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB	_	—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	—		CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	PCFG15	_	—						F	PCFG<12:0)> ⁽¹⁾						0000
AD1CSSL	0330	CSS15	_	_							CSS12:0>	(1)						0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)104 devices only.

FIGURE 7-1: dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 INTERRUPT VECTOR TABLE

1		7	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector	_	
	Address Error Trap Vector	_	
	Stack Error Trap Vector	_	
	Math Error Trap Vector	_	
	Reserved	-	
	Reserved	_	
	Reserved Interrupt Vector 0	0x000014	
	Interrupt Vector 1	0,000014	
		-	
	~		
	~	_	
	Interrupt Vector 52	0x00007C	(4)
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ity	Interrupt Vector 54	0x000080	
iori	~		
ā	~		
der	~		
Decreasing Natural Order Priority	Interrupt Vector 116	0x0000FC	
ra	Interrupt Vector 117	0x0000FE	
atu	Reserved	0x000100	
Z	Reserved	0x000102	
sing	Reserved		
eas	Oscillator Fail Trap Vector		
ecr	Address Error Trap Vector		
ă	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1	_	
	~	4	
	~	4	
	~ Interrupt Vector 52	0x000470	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
		0x00017C	
	Interrupt Vector 53 Interrupt Vector 54	0x00017E 0x000180	
	~	0000180	
	~	-	
	~ ~	_	
	- Interrupt Vector 116	-	
	Interrupt Vector 117	0x0001FE	
*	Start of Code	0x000200	L
Note 1: See	e Table 7-1 for the list of impleme	ented interrupt v	ectors.

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0						
bit 15							bit 8						
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0						
_	IC2IP2	IC2IP1	IC2IP0		—		—						
bit 7							bit						
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown						
bit 15	Unimplemer	nted: Read as '	0'										
bit 14-12	T2IP<2:0>: 7	Fimer2 Interrupt	Priority bits										
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•												
	•												
		ipt is Priority 1 ipt source is dis	abled										
bit 11		h ted: Read as '											
bit 10-8	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits												
	111 = Interrupt is Priority 7 (highest priority interrupt)												
	•												
	• 001 = Interrupt is Priority 1												
	001 = Interr	int is Priority 1											
			abled										
bit 7	000 = Interru	ipt is Priority 1 ipt source is dis nted: Read as '											
	000 = Interru Unimplemer	ipt source is dis nted: Read as '	0'	errupt Priority bi	its								
	000 = Interru Unimplemer IC2IP<2:0>:	ipt source is dis nted: Read as ' Input Capture (0' Channel 2 Inte		its								
	000 = Interru Unimplemer IC2IP<2:0>:	ipt source is dis nted: Read as '	0' Channel 2 Inte		its								
	000 = Interru Unimplemer IC2IP<2:0>:	ipt source is dis nted: Read as ' Input Capture (0' Channel 2 Inte		its								
	000 = Interru Unimplemen IC2IP<2:0>: 111 = Interru • •	ipt source is dis nted: Read as ' Input Capture C ipt is Priority 7 (0' Channel 2 Inte		its								
bit 7 bit 6-4	000 = Interru Unimplemen IC2IP<2:0>: 111 = Interru • • 001 = Interru	ipt source is dis nted: Read as ' Input Capture (^{0'} Channel 2 Inte highest priorit		its								

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0> ⁽²⁾
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0> ⁽²⁾
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 3	IC3	RPINR8	IC3R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<4:0>
SDI1 SPI Data Input 1	SDI1	RPINR20	SDI1R<4:0> ⁽²⁾
SCK1 SPI Clock Input 1	SCK1	RPINR20	SCK1R<4:0> ⁽²⁾
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0> ⁽²⁾

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

2: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

	0 2. 0 0.017				OIOTEIX				
R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1		
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0		
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		
bit 7							bit C		
Legend:		C = Clearable b	oit	HC = Hardwa	are Clearable bi	t			
R = Readable	bit	W = Writable bi	t	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	a = Bit is unknown		
bit 15,13	11 = Reserve 10 = Interrup transmit	D>: UARTx Trans ed; do not use t when a charact buffer becomes t when the last ch pleted	ter is transferre empty	ed to the Transr	mit Shift Registe	. ,			

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

00 = Interrupt when a character is transferred to the	Transmit Shift Register (this implies there is at least
one character open in the transmit buffer)	

bit 14	UTXINV: UARTx Transmit Polarity Inversion bit
	If IREN = 0:
	1 = UxTX Idle state is '0'
	0 = UxTX Idle state is '1'
	<u>If IREN = 1:</u>
	1 = IrDA encoded, UxTX Idle state is '1'
	0 = IrDA encoded, UxTX Idle state is '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽¹⁾
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)
	10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
	0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive
	buffer; receive buffer has one or more characters
Note 1	Pater to "ILAPT" (DS70199) in the "doDIC22/DIC24 Family Pateroneo Manual" for information on applying

Note 1: Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for transmit operation.

REGISTER 21-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS

VALU	E REGISTER	(1)					
U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	
	_	_	—	WDAY2	WDAY1	WDAY0	
						bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0	
						bit (
it	W – Writable	hit	II – Unimplen	nented hit read	l as '0'		
R = Readable bit -n = Value at POR					x = Bit is unknown		
	U-0 — U-0 —	U-0 U-0 — — — U-0 R/W-x — HRTEN1 it W = Writable	U-0 R/W-x R/W-x — HRTEN1 HRTEN0 it W = Writable bit	U-0 U-0 U-0 U-0 — — — — — U-0 R/W-x R/W-x R/W-x — HRTEN1 HRTEN0 HRONE3 it W = Writable bit U = Unimplen	U-0 U-0 U-0 U-0 R/W-x — — — — WDAY2 U-0 R/W-x R/W-x R/W-x R/W-x — HRTEN1 HRTEN0 HRONE3 HRONE2 it W = Writable bit U = Unimplemented bit, read	U-0 U-0 U-0 R/W-x R/W-x — — — WDAY2 WDAY1 U-0 R/W-x R/W-x R/W-x R/W-x HRTEN1 HRTEN0 HRONE3 HRONE2 HRONE1 it W = Writable bit U = Unimplemented bit, read as '0'	

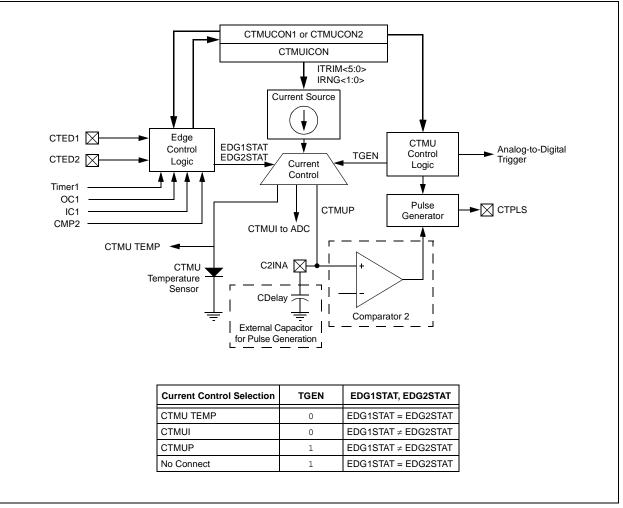
Dit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2011-2014 Microchip Technology Inc.

REGISTER 21-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER


U-0	R/W-x							
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0	
bit 15							bit 8	

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

FIGURE 22-1: CTMU BLOCK DIAGRAM

DC CHARACI	TERISTICS		(unless oth	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Typical ⁽¹⁾	Max	Units		Conditions				
Idle Current (IIDLE): Core Off, Clock On Base Current ⁽²⁾ – dsPIC33FJ16(GP/MC)10X Devices									
DC40d	0.4	1.0	mA	-40°C					
DC40a	0.4	1.0	mA	+25°C	2.21/	LPRC			
DC40b	0.4	1.0	mA	+85°C	- 3.3V	(32.768 kHz) ⁽³⁾			
DC40c	0.5	1.0	mA	+125°C	_				
DC41d	0.5	1.1	mA	-40°C					
DC41a	0.5	1.1	mA	+25°C	2.21/	1 MIPS ⁽³⁾			
DC41b	0.5	1.1	mA	+85°C	- 3.3V	T MIPS(*)			
DC41c	0.8	1.1	mA	+125°C	1				
DC42d	0.9	1.6	mA	-40°C					
DC42a	0.9	1.6	mA	+25°C	2.21/	4 MIPS ⁽³⁾			
DC42b	1.0	1.6	mA	+85°C	- 3.3V	4 101195(*)			
DC42c	1.2	1.6	mA	+125°C	1				
DC43a	1.6	2.6	mA	+25°C					
DC43d	1.6	2.6	mA	-40°C	2.21/	10 MIPS ⁽³⁾			
DC43b	1.7	2.6	mA	+85°C	- 3.3V	TU MIPS			
DC43c	2	2.6	mA	+125°C	1				
DC44d	2.4	3.8	mA	-40°C					
DC44a	2.4	3.8	mA	+25°C	2.2)/	16 MIPS ⁽³⁾			
DC44b	2.6	3.8	mA	+85°C	- 3.3V	TO MIPS			
DC44c	2.9	3.8	mA	+125°C	1				

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Base Idle current is measured as follows:

• CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail

- CLKO is configured as an I/O input pin in the Configuration Word
- External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- **3:** These parameters are characterized, but not tested in manufacturing.

	RACTER			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
	RAUIER	131163	Operati	ng tempe	erature		\leq TA \leq +85°C for Industrial			
	1					-40°C :	\leq TA \leq +125°C for Extended			
Param No.	Symbol	Characteristic ⁽³⁾	Min	Min Typ ⁽¹⁾ Max		Units	Conditions			
		Program Flash Memory								
D130a	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +125°C			
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage			
D132b	Vpew	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage			
D134	Tretd	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated			
D135	IDDP	Supply Current during Programming	—	10	—	mA				
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2			
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2			
D138a	Tww	Word Write Cycle Time	47.4	—	49.3	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2			
D138b	Tww	Word Write Cycle Time	47.4	_	49.3	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2			

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

3: These parameters are ensured by design, but are not characterized or tested in manufacturing.

TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHA	DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)		

Note 1: Typical VCAP voltage = 2.5V when VDD \ge VDDMIN.

TABLE 26-17: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteris	stic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlle (VCO) Input Frequence	d Oscillator cy Range ⁽²⁾	3.0		8	MHz	ECPLL and MSPLL modes
OS51	Fsys	On-Chip VCO System Frequency ⁽³⁾		12	—	32	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time) ⁽³⁾		—	—	2	mS	
OS53	DCLK	CLKO Stability (Jitter)	(3)	-2	1	+2	%	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity, but are tested in manufacturing at 7.7 MHz input only.

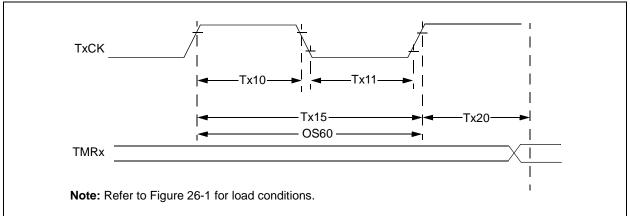
3: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. The effective jitter for individual time bases, or communication clocks used by the user application, are derived from dividing the CLKO stability specification by the square root of "N" (where "N" is equal to Fosc, divided by the peripheral data rate clock). For example, if Fosc = 32 MHz and the SPI bit rate is 5 MHz, the effective jitter of the SPI clock is equal to:

$$\frac{DCLK}{\sqrt{\frac{32}{5}}} = \frac{2\%}{2.53} = 0.79\%$$

TABLE 26-18: AC CHARACTERISTICS: INTERNAL FAST RC (FRC) ACCURACY

AC CHA	ARACTERISTICS		Operating temperature	e -40	$0^{\circ}C \le TA \le$	3 .6V (unless otherwise +85°C for Industrial +125°C for Extended	stated)	
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	Internal FRC Accur	acy @ 7.37	′ MHz ⁽¹⁾					
F20a	FRC	-2	±0.25	+2	%	$\text{-40°C} \leq \text{TA} \leq \text{-10°C}$	Vdd 3.0-3.6V	
F20b	FRC	-1	±0.25	+1	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD 3.0-3.6V	
F20c	FRC	-5	±0.25	+5	%	$\textbf{+85^{\circ}C} \leq \textbf{TA} \leq \textbf{+125^{\circ}C}$	Vdd 3.0-3.6V	

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits may be used to compensate for temperature drift.


TABLE 26-19: INTERNAL LOW-POWER RC (LPRC) ACCURACY

АС СНА	RACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic Min Typ Max Units Conditions					ns			
	LPRC @ 32.768 kH	z ^(1,2)							
F21a	LPRC	-30	±10	+20	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD 3.0-3.6V		
F21b	LPRC	-20	±10	+30	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD 3.0-3.6V		
F21c	LPRC	-35	±10	+35	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	Vdd 3.0-3.6V		

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 23.4 "Watchdog Timer (WDT)" for more information.

FIGURE 26-5: TIMER1/2/3 EXTERNAL CLOCK TIMING CHARACTERISTICS

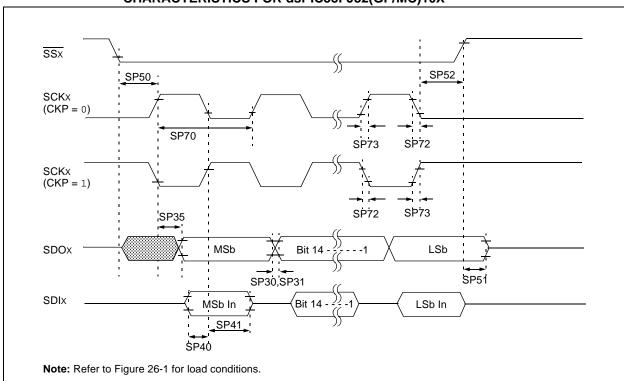
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended Param Characteristic⁽²⁾ Symbol Min Max Units Conditions Тур No. TA10 ТтхН T1CK High Synchronous Greater of: Must also meet ns Time mode 20 or Parameter TA15, (TCY + 20)/N N = prescale value (1, 8, 64, 256) Asynchronous 35 ns _ ____ TA11 T1CK Low Must also meet TTXL Synchronous Greater of: ns Time mode 20 ns or Parameter TA15, (TCY + 20)/N N = prescale value (1, 8, 64, 256) Asynchronous 10 ns TA15 ΤτχΡ T1CK Input Synchronous Greater of: N = prescale value ns Period mode 40 or (1, 8, 64, 256) (2 TCY + 40)/N **OS60** Ft1 SOSC1/T1CK Oscillator DC 50 kHz ____ Input Frequency Range (oscillator enabled by setting the TCS (T1CON<1>) bit) TA20 TCKEXTMRL Delay from External T1CK 0.75 Tcy + 40 1.75 Tcy + 40 ns Clock Edge to Timer Increment

TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

TABLE 26-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X


AC CH	AC CHARACTERISTICS			Standard Operating Conditions: 2.4V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscP	Maximum SCKx Input Frequency	_		11	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See Parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—		_	ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—		_	ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—		—	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns			
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 4		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_		ns	See Note 4		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-26: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

		BIT ADC MODULE SPEC						
АС СНА	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V ⁽⁴⁾ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min. Typ Max.			Units	Conditions	
		10-Bit ADC Accurac	y – Meas	uremen	ts with A	Vdd/AV	ss ⁽³⁾	
AD20b	Nr	Resolution	10 Data Bits			bits		
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25b	—	Monotonicity	—		—	_	Guaranteed ⁽¹⁾	
		Dynamic P	erforman	ce (10-E	Bit Mode) ⁽²⁾		
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB		
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	—	dB		
AD32b	SFDR	Spurious Free Dynamic Range	72	—	—	dB		
AD33b	Fnyq	Input Signal Bandwidth	—	—	550	kHz		
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits		

TABLE 26-48: 10-BIT ADC MODULE SPECIFICATIONS

Note 1: The Analog-to-Digital conversion result never decreases with an increase in the input voltage and has no missing codes.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: These parameters are characterized, but are tested at 20 ksps only.

4: Overall functional device operation at VBOR < VDD < VDDMIN is guaranteed but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN