

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc104t-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

Pin Diagrams (Continued)

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously, and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value, to saturate.

Six STATUS Register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

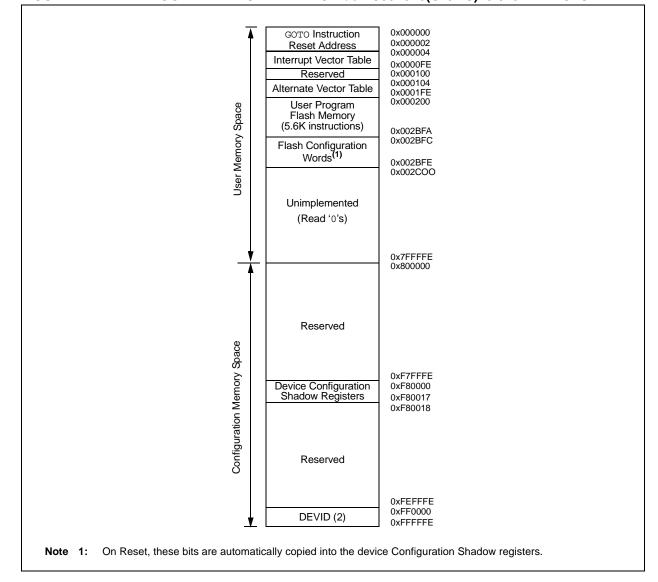
- SB: ACCB saturated (bit 31 overflow and saturation)
 - ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)
- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

or

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when OA and OB are set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action; for example, to correct system gain.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Data Memory" (DS70202) and "Program Memory" (DS70203) in the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com).


The device architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps for the dsPIC33FJ16(GP/MC)101/ 102 and dsPIC33FJ32(GP/MC)101/102/104 family of devices are shown in Figure 4-1 and Figure 4-2.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJ16(GP/MC)101/102 DEVICES

TABLE 4-12: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_		_			_	_				I2C1 Recei	ve Register				0000
I2C1TRN	0202	_	_	_	—	_	_	_	_				I2C1 Trans	mit Register	•			00FF
I2C1BRG	0204	_	_	_	—	_	_	_	Baud Rate Generator Register								0000	
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_		_	_	_	_	I2C1 Address Register							0000			
I2C1MSK	020C	—	_	_	_	_					120	C1 Address	Mask Regis	ter				0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK UTXEN UTXBF TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR URXDA										0110		
U1TXREG	0224	_	_	-	_	_	_					UART1	Transmit R	egister				xxxx
U1RXREG	0226	— — — — — — — UART1 Receive Register										0000						
U1BRG	0228	Baud Rate Generator Prescaler											0000					

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	_				SPIROV	_	_	_		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	FRMEN SPIFSD FRMPOL FRMDLY -											0000				
SPI1BUF	0248	SPI1 Transmit and Receive Buffer Register												0000				

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000652F-page 72

TABLE 4-37: SYSTEM CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_		_	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN	0300 (2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	_	-		_			_	_	3040
OSCTUN	0748	_	_	_	_	_	_	_	_	_		TUN<5:0>					0000	

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-38: NVM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	-	_	-	_	_	ERASE	_		NVMOP3	NVMOP2	NVMOP1	NVMOP0	₀₀₀₀ (1)
NVMKEY	0766		_	_			—		_				NVMKE	Y<7:0>				0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-39: PMD REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD ⁽²⁾	T4MD ⁽²⁾	T3MD	T2MD	T1MD	_	PWM1MD ⁽¹⁾	_	I2C1MD	_	U1MD		SPI1MD	-	—	AD1MD	0000
PMD2	0772	_	_	-		_	IC3MD	IC2MD	IC1MD	-			_	_	_	OC2MD	OC1MD	0000
PMD3	0774	_	_	-		_	CMPMD	RTCCMD	_	-			_	_	_	_	_	0000
PMD4	0776	—	_	_	_	_	_	_	_	_	_	_	_		CTMUMD	_	_	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is available in dsPIC33FJXXMC10X devices only.

2: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70192) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

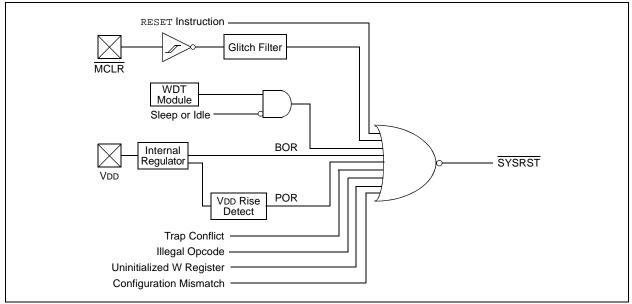
The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

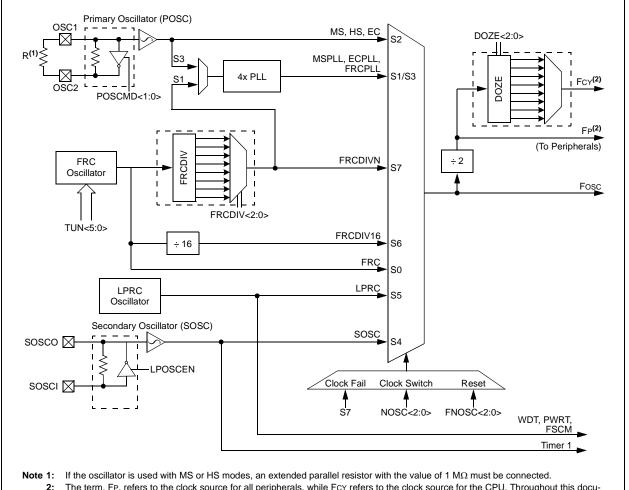

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

All bits that are set, with the exception of the POR bit (RCON<0>), are cleared during a POR event. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM



8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator (Part VI)" (DS70644) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The oscillator system for dsPIC33FJ16(GP/MC)101/ 102 and dsPIC33FJ32(GP/MC)101/102/104 devices provides:

- External and internal oscillator options as clock sources
- An on-chip, 4x Phase Lock Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection
- A simplified diagram of the oscillator system is shown in Figure 8-1.

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a Doze ratio of 1:2 or lower.

FIGURE 8-1: OSCILLATOR SYSTEM DIAGRAM

10.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Section 26.0 "Electrical Characteristics". Table 26-11 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD, with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin, (i.e., ANx), are always analog pins by default after any Reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the ADC1 Port Configuration Low (AD1PCFGL) register in the ADC module, by setting the appropriate bit that corresponds to that I/O port pin, to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

- 4. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD – 0.8), not VDD. This is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -6 mA and VDD = 3.3V

The maximum output current sourced by any 6 mA I/O pin = 15 mA.

LED source current < 15 mA is technically permitted. Refer to the VOH/IOH specifications in **Section 26.0 "Electrical Characteristics"** for additional information.

10.6 I/O Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

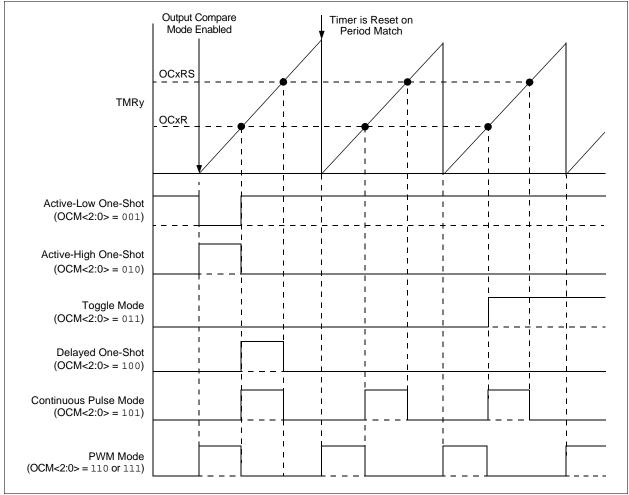
```
Note: In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554109
```

10.6.1 KEY RESOURCES

- "I/O Ports" (DS70193) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode bits (OCM<2:0>) in the Output Compare x Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user


TABLE 14-1: OUTPUT COMPARE x MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note: See "Output Compare" in the "dsPIC33/ PIC24 Family Reference Manual" (DS70209) for OCxR and OCxRS register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	
001	Active-Low One-Shot	0	OCx Rising Edge
010	Active-High One-Shot	1	OCx Falling Edge
011	Toggle	Current output is maintained	OCx Rising and Falling Edge
100	Delayed One-Shot	0	OCx Falling Edge
101	Continuous Pulse	0	OCx Falling Edge
110	PWM without Fault Protection	0, if OCxR is zero 1, if OCxR is non-zero	No Interrupt
111	PWM with Fault Protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling Edge for OC1 to OC4

FIGURE 14-2: OUTPUT COMPARE x OPERATION

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware sets or clears when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware sets or clears when Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – Indicates data transfer is output from slave 0 = Write – Indicates data transfer is input to slave
	Hardware sets or clears after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware sets when I2CxRCV is written with received byte. Hardware clears when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty
	Hardware sets when software writes to I2CxTRN. Hardware clears at completion of data transmission.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

REGISTER	20-2: CMxC	ON: COMPA	RATOR x CO	ONTROL REC	GISTER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	_	—	_	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0	0-0	CREF			CCH1	CCH0
bit 7	LVIOLO		GIVEI			Com	bit C
Legend:							
R = Readable		W = Writable		-	nented bit, rea		
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	CON: Compa	arator x Enable	bit				
	=	tor x is enable					
		tor x is disable					
bit 14	COE: Compa	arator x Output	Enable bit				
		tor output is pr tor output is in	esent on the C ternal only	xOUT pin			
bit 13	CPOL: Comp	parator x Outpu	it Polarity Sele	ct bit			
		tor x output is tor x output is					
bit 12-10	Unimplemen	ted: Read as	0'				
bit 9	CEVT: Comp	arator x Event	bit				
	interrupts	ator x event ac s until the bit is ator x event dic	cleared	POL<1:0> set	ings occurred	; disables future	e triggers and
bit 8	COUT: Comp	parator x Outpu	ıt bit				
	1 = VIN+ > VI		ted polarity):				
	0 = VIN+ < VI						
	$\frac{\text{When CPOL}}{1 = \text{VIN+} < \text{VI}}$	= 1 (inverted p	olarity):				
	0 = VIN + > VI						
bit 7-6	EVPOL<1:0>	. Trigger/Ever	t/Interrupt Pola	arity Select bits			
	10 = Trigger/		is generated			ator output (whil tion of the pol	
	If $CPOL = 1$ ((inverted polari		1421.14			
	•	(non-inverted p	•	արտ.			
			comparator ou	ıtput.			
		event/interrupt/ ator output (wh		only on low-	to-high transi	tion of the pol	arity selected
		(inverted polari ransition of the	t <u>y):</u> comparator οι	itput.			
	-	(non-inverted p	-				
	Low-to-high t	ransition of the	comparator o	-			
	00 = Trigger/	event/interrupt	generation is o	disabled			
		ted: Read as					

CIETED 20 2 CMACONI COMPADATOD A CONTROL DECISTED

REGISTER 20-2: CMxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

- bit 4 **CREF:** Comparator x Reference Select bit (VIN+ input)
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to CxINA pin

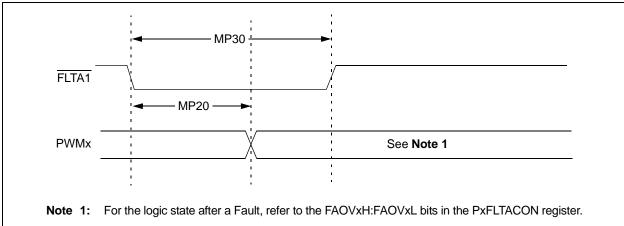
bit 3-2 Unimplemented: Read as '0'

- bit 1-0 CCH<1:0>: Comparator x Channel Select bits
 - 11 = VIN- input of comparator connects to INTREF
 - 10 = VIN- input of comparator connects to CXIND pin
 - 01 = VIN- input of comparator connects to CxINC pin
 - ${\tt 00}$ = VIN- input of comparator connects to CxINB pin

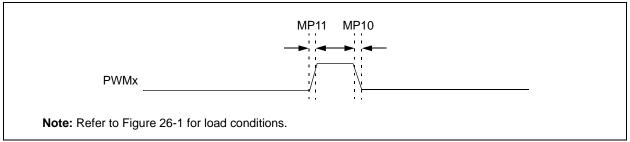
26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.


Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 3.0V^{(3)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD $< 3.0V^{(3)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sourced and sunk by any I/O pin excluding OSCO	15 mA
Maximum output current sourced and sunk by OSCO	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA


Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of the device maximum power dissipation (see Table 26-2).
- 3: See the "Pin Diagrams" section for 5V tolerant pins.

FIGURE 26-9: MOTOR CONTROL PWMx MODULE FAULT TIMING CHARACTERISTICS

FIGURE 26-10: MOTOR CONTROL PWMx MODULE TIMING CHARACTERISTICS

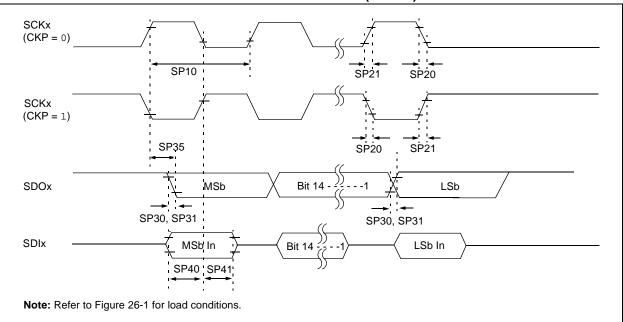


TABLE 26-28: MOTOR CONTROL PWMx MODULE TIMING REQUIREMENTS

АС СНА	RACTERIS	TICS	(unless	rd Opera otherwis ng tempe	se stated rature	d) -40°C ≤ T	3.0V to 3.6V A ≤ +85°C for Industrial A ≤ +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
MP10	TFPWM	PWM Output Fall Time	—	_	—	ns	See Parameter DO32
MP11	TRPWM	PWM Output Rise Time	—	—	—	ns	See Parameter DO31
MP20	Tfd	Fault Input ↓ to PWM I/O Change	—		50	ns	
MP30	Tfh	Minimum Pulse Width	50	_		ns	

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

FIGURE 26-14: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

TABLE 26-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CHA	RACTERIS	rics	(unless o	I Operatin otherwise g temperat	stated) ture -40	°C ≤ Ta ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCKx Frequency		_	10	MHz	-40°C to +125°C, see Note 3
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_		—	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_		—	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 26-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

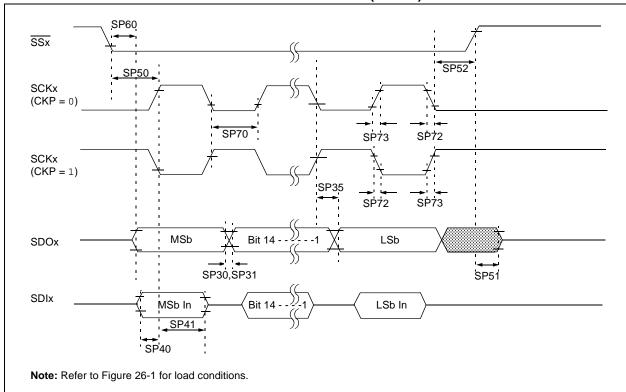
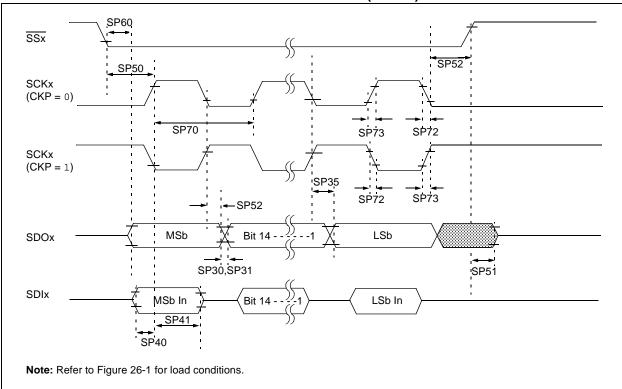
AC CH	ARACTERIS	TICS	Standard Op (unless othe Operating ter	erwise st	t ated) e -40°	C ≤ TA ≤	IV to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_		11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—			ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	—	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_	—	ns	See Note 4

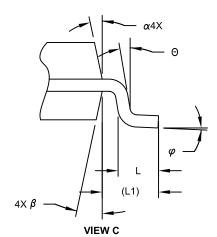
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.


FIGURE 26-23: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

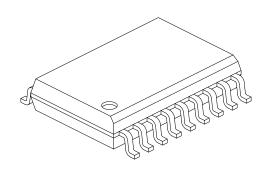


FIGURE 26-24: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	/ILLIMETER	S		
Dimension Lin	nits	MIN	NOM	MAX		
Number of Pins	N		18			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	D		11.55 BSC			
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	с	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

ALCFGRPT (Alarm Configuration)248
ALRMVAL (Alarm Minutes and Seconds Value,
ALRMPTR Bits = 00)
ALRMVAL (Alarm Month and Day Value, ALRMPTR Bits = 10)252
ALKING TR DIS = 10)
ALRMPTR Bits = 01)253
CLKDIV (Clock Divisor)130
CMSTAT (Comparator Status)234
CMxCON (Comparator x Control)235
CMxFLTR (Comparator x Filter Control)241 CMxMSKCON (Comparator x Mask
Gating Control)
CMxMSKSRC (Comparator x Mask
Source Select)
CORCON (Core Control) 42, 99
CTMUCON1 (CTMU Control 1)
CTMUCON2 (CTMU Control 2)
CTMUICON (CTMU Current Control)259 CVRCON (Comparator Voltage
Reference Control)
DEVID (Device ID)
DEVREV (Device Revision)
I2CxCON (I2Cx Control)
I2CxMSK (I2Cx Slave Mode Address Mask)
I2CxSTAT (I2Cx Status)
ICxCON (Input Capture x Control)
IEC1 (Interrupt Enable Control 1)
IEC2 (Interrupt Enable Control 2)
IEC3 (Interrupt Enable Control 3)110
IEC4 (Interrupt Enable Control 4)111
IFS0 (Interrupt Flag Status 0)
IFS1 (Interrupt Flag Status 1) 105 IFS2 (Interrupt Flag Status 2) 106
IFS3 (Interrupt Flag Status 3)
IFS4 (Interrupt Flag Status 4)
INTCON1 (Interrupt Control 1)100
INTCON2 (Interrupt Control 2)102
INTTREG (Interrupt Control and Status)123
IPC0 (Interrupt Priority Control 0)
IPC1 (Interrupt Priority Control 1)
IPC15 (Interrupt Priority Control 15)
IPC16 (Interrupt Priority Control 16)
IPC19 (Interrupt Priority Control 19)122
IPC2 (Interrupt Priority Control 2)114
IPC3 (Interrupt Priority Control 3)
IPC4 (Interrupt Priority Control 4)116 IPC5 (Interrupt Priority Control 5)117
IPC6 (Interrupt Priority Control 6)
IPC7 (Interrupt Priority Control 7)
IPC9 (Interrupt Priority Control 9)119
NVMCON (Flash Memory Control)85
NVMKEY (Nonvolatile Memory Key)85
OCxCON (Output Compare x Control)
OSCCON (Oscillator Control)
PADCFG1 (Pad Configuration Control)
PMD1 (Peripheral Module Disable Control 1)
PMD2 (Peripheral Module Disable Control 2)136

PMD4 (Peripheral Module Disable Control 4) 137
PWMxCON1 (PWMx Control 1) 188
PWMxCON2 (PWMx Control 2) 189
PWMxKEY (PWMx Unlock)
PxDC1 (PWMx Duty Cycle 1) 195
PxDC2 (PWMx Duty Cycle 2)
PxDC3 (PWMx Duty Cycle 3)
PxDTCON1 (PWMx Dead-Time Control 1)
PxDTCON2 (PWMx Dead-Time Control 2)
PxFLTACON (PWMx Fault A Control)
PxFLTBCON (PWMx Fault B Control)
PxOVDCON (PWMx Override Control) 194
PxSECMP (PWMx Special Event Compare)
PxTCON (PWMx Time Base Control) 185
PxTMR (PWMx Timer Count Value) 186
PxTPER (PWMx Time Base Period) 186
RCFGCAL (RTCC Calibration
and Configuration)
RCON (Reset Control)
RPINR0 (Peripheral Pin Select Input 0)
RPINR1 (Peripheral Pin Select Input 0)
RPINR11 (Peripheral Pin Select Input 1)
RPINR18 (Peripheral Pin Select Input 18)154
RPINR20 (Peripheral Pin Select Input 20) 155
RPINR21 (Peripheral Pin Select Input 21) 156
RPINR3 (Peripheral Pin Select Input 3) 149
RPINR4 (Peripheral Pin Select Input 4) 150
RPINR7 (Peripheral Pin Select Input 7) 151
RPINR8 (Peripheral Pin Select Input 8) 152
RPOR0 (Peripheral Pin Select Output 0) 157
RPOR1 (Peripheral Pin Select Output 1) 157
RPOR10 (Peripheral Pin Select Output 10)
RPOR11 (Peripheral Pin Select Output 11) 162
RPOR12 (Peripheral Pin Select Output 12)
RPOR2 (Peripheral Pin Select Output 2)
RPOR3 (Peripheral Pin Select Output 3) 158
RPOR3 (Peripheral Pin Select Output 3) 158 RPOR4 (Peripheral Pin Select Output 4) 159
RPOR3 (Peripheral Pin Select Output 3)
RPOR3 (Peripheral Pin Select Output 3)158RPOR4 (Peripheral Pin Select Output 4)159RPOR5 (Peripheral Pin Select Output 5)159RPOR6 (Peripheral Pin Select Output 6)160RPOR7 (Peripheral Pin Select Output 7)160RPOR8 (Peripheral Pin Select Output 8)161RPOR9 (Peripheral Pin Select Output 9)161RTCVAL (RTCC Minutes and Seconds Value, RTCPTR Bits = 00)251RTCVAL (RTCC Month and Day Value, RTCPTR Bits = 10)249RTCVAL (RTCC Weekdays and Hours Value, RTCPTR Bits = 01)250RTCVAL (RTCC Year Value,250
RPOR3 (Peripheral Pin Select Output 3)
RPOR3 (Peripheral Pin Select Output 3)
RPOR3 (Peripheral Pin Select Output 3)158RPOR4 (Peripheral Pin Select Output 4)159RPOR5 (Peripheral Pin Select Output 5)159RPOR6 (Peripheral Pin Select Output 6)160RPOR7 (Peripheral Pin Select Output 7)160RPOR9 (Peripheral Pin Select Output 7)161RPOR9 (Peripheral Pin Select Output 9)161RTCVAL (RTCC Minutes and Seconds Value, RTCPTR Bits = 00)251RTCVAL (RTCC Month and Day Value, RTCPTR Bits = 10)249RTCVAL (RTCC Weekdays and Hours Value, RTCPTR Bits = 01)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)249SPIxCON1 (SPIx Control 1)200SPIxCON2 (SPIx Control 2)202
RPOR3 (Peripheral Pin Select Output 3)158RPOR4 (Peripheral Pin Select Output 4)159RPOR5 (Peripheral Pin Select Output 5)159RPOR6 (Peripheral Pin Select Output 6)160RPOR7 (Peripheral Pin Select Output 7)160RPOR9 (Peripheral Pin Select Output 8)161RPOR9 (Peripheral Pin Select Output 9)161RTCVAL (RTCC Minutes and Seconds Value, RTCPTR Bits = 00)251RTCVAL (RTCC Month and Day Value, RTCPTR Bits = 10)249RTCVAL (RTCC Weekdays and Hours Value, RTCPTR Bits = 01)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)249SPIxCON1 (SPIx Control 1)200SPIxCON2 (SPIx Control 2)202SPIxSTAT (SPIx Status and Control)199
RPOR3 (Peripheral Pin Select Output 3)158RPOR4 (Peripheral Pin Select Output 4)159RPOR5 (Peripheral Pin Select Output 5)159RPOR6 (Peripheral Pin Select Output 6)160RPOR7 (Peripheral Pin Select Output 7)160RPOR9 (Peripheral Pin Select Output 8)161RPOR9 (Peripheral Pin Select Output 9)161RTCVAL (RTCC Minutes and Seconds Value, RTCPTR Bits = 00)251RTCVAL (RTCC Month and Day Value, RTCPTR Bits = 10)249RTCVAL (RTCC Weekdays and Hours Value, RTCPTR Bits = 01)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)249SPIxCON1 (SPIx Control 1)200SPIxCON2 (SPIx Control 2)202SPIxSTAT (SPIx Status and Control)199SR (CPU STATUS)40, 99
RPOR3 (Peripheral Pin Select Output 3)158RPOR4 (Peripheral Pin Select Output 4)159RPOR5 (Peripheral Pin Select Output 5)159RPOR6 (Peripheral Pin Select Output 6)160RPOR7 (Peripheral Pin Select Output 7)160RPOR9 (Peripheral Pin Select Output 7)161RTCVAL (RTCC Minutes and Seconds Value, RTCPTR Bits = 00)251RTCVAL (RTCC Month and Day Value, RTCPTR Bits = 10)249RTCVAL (RTCC Weekdays and Hours Value, RTCPTR Bits = 01)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)249SPIxCON1 (SPIx Control 1)200SPIxCON2 (SPIx Control 2)202SPIxSTAT (SPIx Status and Control)199SR (CPU STATUS)40, 99T1CON (Timer1 Control)166
RPOR3 (Peripheral Pin Select Output 3)158RPOR4 (Peripheral Pin Select Output 4)159RPOR5 (Peripheral Pin Select Output 5)159RPOR6 (Peripheral Pin Select Output 6)160RPOR7 (Peripheral Pin Select Output 7)160RPOR9 (Peripheral Pin Select Output 8)161RPOR9 (Peripheral Pin Select Output 9)161RTCVAL (RTCC Minutes and Seconds Value, RTCPTR Bits = 00)251RTCVAL (RTCC Month and Day Value, RTCPTR Bits = 10)249RTCVAL (RTCC Weekdays and Hours Value, RTCPTR Bits = 01)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)249SPIxCON1 (SPIx Control 1)200SPIxCON2 (SPIx Control 2)202SPIxSTAT (SPIx Status and Control)199SR (CPU STATUS)40, 99T1CON (Timer1 Control)166T2CON (Timer2 Control)170
RPOR3 (Peripheral Pin Select Output 3)158RPOR4 (Peripheral Pin Select Output 4)159RPOR5 (Peripheral Pin Select Output 5)159RPOR6 (Peripheral Pin Select Output 6)160RPOR7 (Peripheral Pin Select Output 7)160RPOR9 (Peripheral Pin Select Output 7)161RTCVAL (RTCC Minutes and Seconds Value, RTCPTR Bits = 00)251RTCVAL (RTCC Month and Day Value, RTCPTR Bits = 10)249RTCVAL (RTCC Weekdays and Hours Value, RTCPTR Bits = 01)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)250RTCVAL (RTCC Year Value, RTCPTR Bits = 11)249SPIxCON1 (SPIx Control 1)200SPIxCON2 (SPIx Control 2)202SPIxSTAT (SPIx Status and Control)199SR (CPU STATUS)40, 99T1CON (Timer1 Control)166T2CON (Timer2 Control)170T3CON (Timer3 Control)171
RPOR3 (Peripheral Pin Select Output 3)