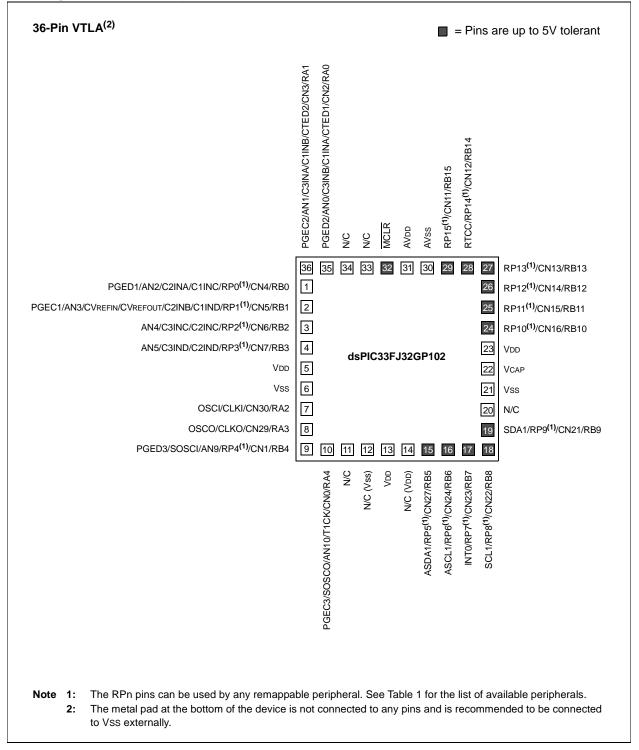


Welcome to E-XFL.COM

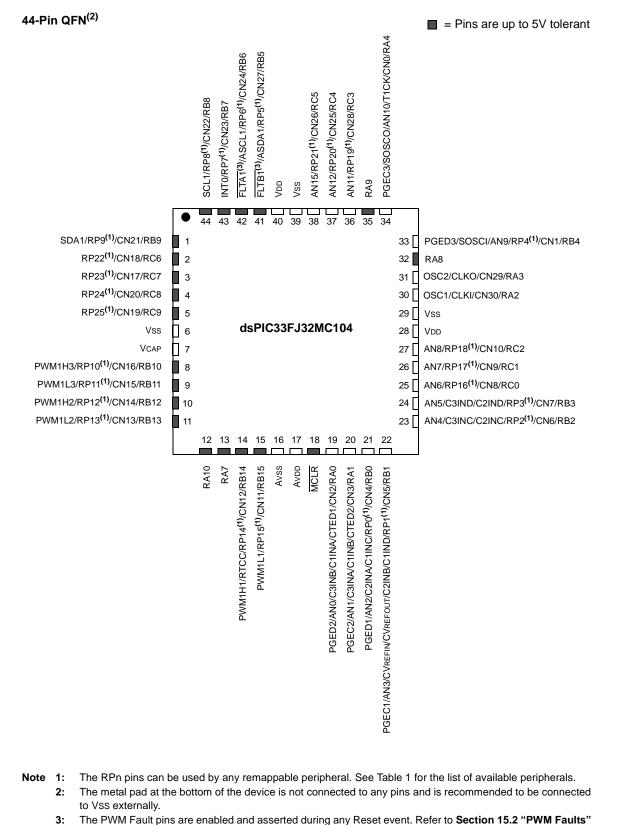
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc104t-i-tl


Email: info@E-XFL.COM

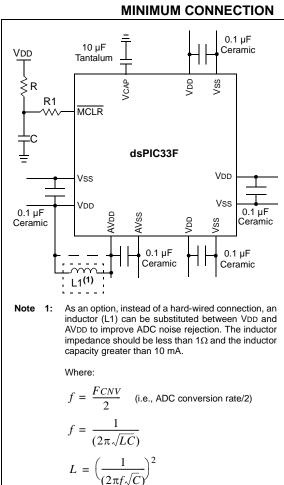
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

3: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 "PWM Faults" for more information on the PWM Faults.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)					
Pin Name	Pin Type	Buffer Type	PPS	Description	
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.	
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.	
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.	
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.	
FLTA1(1,2,4)	1	ST	No	PWM1 Fault A input.	
FLTB1 ^(3,4)	1	ST	No	PWM1 Fault B input.	
PWM1L1	0		No	PWM1 Low Output 1.	
PWM1H1	0		No	PWM1 High Output 1.	
PWM1L2	0		No	PWM1 Low Output 2.	
PWM1H2	0		No	PWM1 High Output 2.	
PWM1L3	0		No	PWM1 Low Output 3.	
PWM1H3	Ō	_	No	PWM1 High Output 3.	
RTCC	0	Digital	No	RTCC Alarm output.	
CTPLS	0	Digital	Yes	CTMU pulse output.	
CTED1	I	Digital	No	CTMU External Edge Input 1.	
CTED2	I	Digital	No	CTMU External Edge Input 2.	
CVREFIN	I	Analog	No	Comparator Voltage Positive Reference Input.	
CVREFOUT	0	Analog	No	Comparator Voltage Positive Reference Output.	
C1INA	I	Analog	No	Comparator 1 Positive Input A.	
C1INB	i	Analog	No	Comparator 1 Negative Input B.	
C1INC	i	Analog	No	Comparator 1 Negative Input C.	
C1IND	i	Analog	No	Comparator 1 Negative Input D.	
C1OUT	Ō	Digital	Yes	Comparator 1 Output.	
C2INA	Ĩ	Analog	No	Comparator 2 Positive Input A.	
C2INB	l i	Analog	No	Comparator 2 Negative Input B.	
C2INC	i	Analog	No	Comparator 2 Negative Input D.	
C2INC C2IND		Analog	No	Comparator 2 Negative Input C.	
C2OUT	0	Digital	Yes	Comparator 2 Output.	
		•			
C3INA		Analog	No	Comparator 3 Positive Input A.	
C3INB		Analog	No	Comparator 3 Negative Input B.	
C3INC		Analog	No	Comparator 3 Negative Input C.	
C3IND C3OUT		Analog Digital	No Yes	Comparator 3 Negative Input D. Comparator 3 Output.	
		ST		Data I/O pin for Programming/Debugging Communication Channel 1.	
PGED1	I/O		No		
PGEC1		ST	No	Clock input pin for Programming/Debugging Communication Channel 1.	
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.	
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.	
PGED3 PGEC3	I/O	ST ST	No No	Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3.	
	- ·				
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.	
				input or output Analog = Analog input P = Power	
S	I = Schr	nitt Frigger	input w	ith CMOS levels O = Output I = Input	


TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: An external pull-down resistor is required for the FLTA1 pin in dsPIC33FJXXMC101 (20-pin) devices.

- 2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.
- 3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.

PPS = Peripheral Pin Select

- 4: The PWM Fault pins are enabled during any Reset event. Refer to **Section 15.2 "PWM Faults"** for more information on the PWM Faults.
- 5: Not all pins are available on all devices. Refer to the specific device in the "**Pin Diagrams**" section for availability.
- 6: These pins are available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.

FIGURE 2-1: RECOMMENDED

TANK CAPACITORS 2.2.1

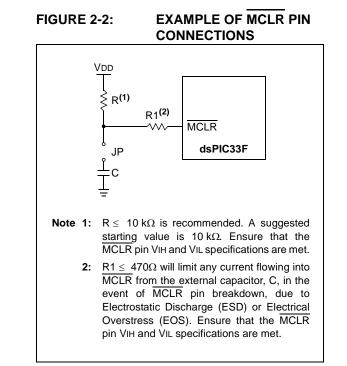
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

2.3 **CPU Logic Filter Capacitor Connection (VCAP)**

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 µF and 10 µF, 16V connected to ground. The type can be ceramic or tantalum. Refer to Section 26.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 23.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

8.2 Oscillator Control Registers

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y			
_	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾			
bit 15					•		bit 8			
DAMA	DAMO	.		D/0 0		DAMO	DAVA			
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0			
CLKLOCK	IOLOCK	LOCK		CF		LPOSCEN	OSWEN			
bit 7							bit (
Legend:		C = Clearable	e bit	y = Value set	from Configura	tion bits on PO	R			
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15	Unimplemen	ted: Read as '	0'							
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only)					
	101 = Low-Po 100 = Second 011 = Primary 010 = Primary 001 = Fast R	C Oscillator (Fl ower RC Oscill dary Oscillator y Oscillator (M y Oscillator (M C Oscillator (Fl C Oscillator (Fl	ator (LPRC) (SOSC) S, EC) with PL S, HS, EC) RC) with Divid	L	L (FRCPLL)					
bit 11	Unimplemen	ted: Read as '	0'							
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	_S (2)						
	110 = Fast R 101 = Low-Po 100 = Second 011 = Primar 010 = Primar 001 = Fast R	C Oscillator (FI C Oscillator (FI ower RC Oscill dary Oscillator y Oscillator (Mi y Oscillator (Mi C Oscillator (FI C Oscillator (FI	RC) with Divid ator (LPRC) (SOSC) S, EC) with PL S, HS, EC) RC) with Divid	le-by-16 _L	L (FRCPLL)					
bit 7	CLKLOCK: C	lock Lock Ena	ble bit							
		If Clock Switching is Enabled and FSCM is Disabled (FCKSM<1:0> (FOSC<7:6>) = 0b01): 1 = Clock switching is disabled, system clock source is locked								
					n be modified by	/ clock switchin	a			
bit 6		ipheral Pin Sel	-			,	~			
	1 = Periphera	al Pin Select is	locked, a write		l Pin Select regi eral Pin Select					
bit 5	LOCK: PLL L	ock Status bit	(read-only)							
		that PLL is in that PLL is ou			satisfied progress or PLL	is disabled				
bit 4	Unimplemen	ted: Read as '	0'							
	/rites to this regis dsPIC33/PIC24 F				Oscillator (Part	t VI) " (DS7064∠	1) in the			
	irect clock switch his applies to cloc									

mode as a transitional clock source between the two PLL modes.

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:						
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)						
	See MPLAB IDE Help for more information.						

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

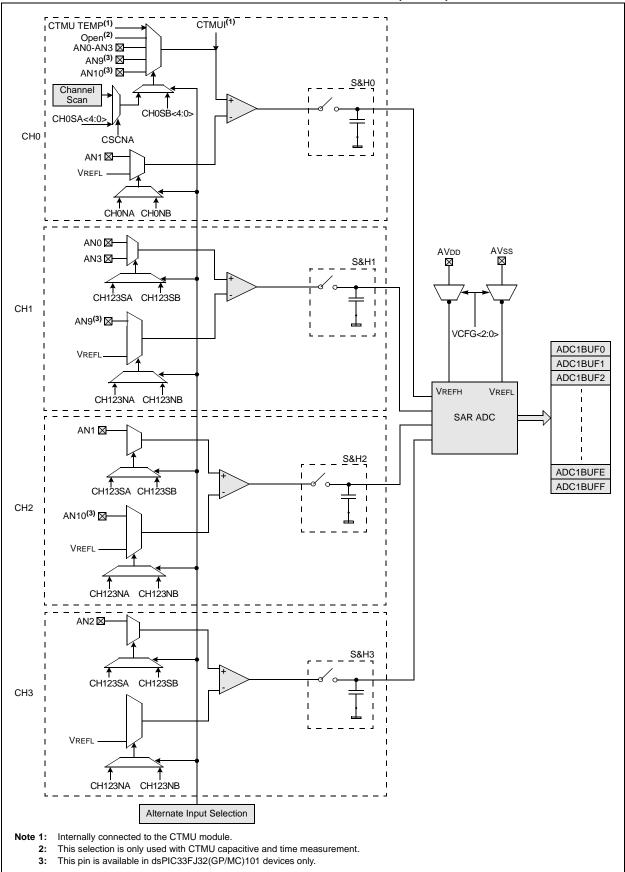
In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104


	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
—	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0				
bit 15							bit 8				
							D/M/ 4				
U-0	U-0	U-0	R/W-1 T2CKR4	R/W-1 T2CKR3	R/W-1 T2CKR2	R/W-1 T2CKR1	R/W-1 T2CKR0				
bit 7			1201411	1201410	1201112		bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	iown				
			(- 1								
bit 15-13	-	ted: Read as									
bit 12-8		-	r3 External Clo	ck (T3CK) to t	he Correspondi	ng RPn Pin bits	5				
	•	11111 = Input tied to Vss									
	11110 = Res	erved									
	•										
	•										
	11010 = Reserved										
	11001 = Inpu	t tied to RP25									
	•										
	00001 = Inpu										
	00000 = Inpu	t tied to RP0									
bit 7-5	00000 = Inpu Unimplemen	t tied to RP0 ted: Read as									
bit 7-5 bit 4-0	00000 = Inpu Unimplemen	t tied to RP0 ted: Read as		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	3				
	00000 = Inpu Unimplemen T2CKR<4:0>	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu	It tied to RP0 ted: Read as : Assign Time It tied to Vss		ck (T2CK) to ti	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved		ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	3				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	3				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				
	00000 = Inpu Unimplemen T2CKR<4:0> 11111 = Inpu 11110 = Res	It tied to RP0 ted: Read as : Assign Timer It tied to Vss erved erved t tied to RP25 tt tied to RP1	r2 External Clo	ck (T2CK) to tl	he Correspondi	ng RPn Pin bits	5				

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

NOTES:

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware sets or clears when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware sets or clears when Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – Indicates data transfer is output from slave 0 = Write – Indicates data transfer is input to slave
	Hardware sets or clears after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware sets when I2CxRCV is written with received byte. Hardware clears when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty
	Hardware sets when software writes to I2CxTRN. Hardware clears at completion of data transmission.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	_	—	—	_	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
_	—	_	—	—	_	RTSECSEL ⁽¹⁾	_		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			own		
bit 15-2	Unimplemen	ted: Read as '	0'						
bit 1	RTSECSEL:	RTCC Second	s Clock Outpu	ut Select bit ⁽¹⁾					
		conds clock is arm pulse is se							

REGISTER 21-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

bit 0 Unimplemented: Read as '0'

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0		
bit 7			1				bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15		•	ed automatica	lly after an ala	irm event wher	never ARPT<7:	0> = 0x00 and		
	0 = Alarm is	- /							
bit 14	CHIME: Chir	ne Enable bit							
		s enabled; ARP s disabled; ARP				00 to 0xFF			
bit 13-10	AMASK<3:0	>: Alarm Mask	Configuration	bits					
		y half second	0						
	0001 = Every second								
	0010 = Every 10 seconds								
	0011 = Every minute								
	0100 = Every 10 minutes 0101 = Every hour								
	0110 = Once	-							
	0111 = Onc								
	1000 = Once		twhen configu	rad for Eabrur	ny 20th anany	avery (1 veere)			
	1000 = Once 1001 = Once	e a year (excep	-	red for Februa	ary 29th, once e	every 4 years)			
	1000 = Onco 1001 = Onco 101x = Rese		ise	red for Februa	ary 29th, once e	every 4 years)			
bit 9-8	1000 = Once 1001 = Once 101x = Rese 11xx = Rese	e a year (excep erved – do not u erved – do not u	ise			every 4 years)			
bit 9-8	1000 = Onco 1001 = Onco 101x = Reso 11xx = Reso ALRMPTR< Points to the	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding /	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4	LH and ALRM			
bit 9-8	1000 = Once 1001 = Once 101x = Rese 11xx = Rese ALRMPTR< Points to the the ALRMPT	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding <i>i</i> R<1:0> value d	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4				
bit 9-8	1000 = Onco 1001 = Onco 101x = Reso 11xx = Reso ALRMPTR< Points to the	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u>	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4	LH and ALRM			
bit 9-8	1000 = Onco 1001 = Onco 101x = Reso 11xx = Reso ALRMPTR< Points to the the ALRMPT ALRMVAL<1 00 = ALRMM 01 = ALRMV	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u> /IN VD	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4	LH and ALRM			
bit 9-8	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT <u>ALRMVAL<1</u> 00 = ALRMM 01 = ALRMM 10 = ALRMM	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u> /IN VD /NTH	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4	LH and ALRM			
bit 9-8	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT <u>ALRMVAL<1</u> 00 = ALRMM 01 = ALRMM 11 = Unimple	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d 5:8>: /IIN VD /INTH emented	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4	LH and ALRM			
bit 9-8	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT <u>ALRMVAL<1</u> 00 = ALRMM 01 = ALRMM 10 = ALRMM 11 = Unimple <u>ALRMVAL<7</u>	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u> /IIN VD /NTH emented <u>':0>:</u>	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4	LH and ALRM			
bit 9-8	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT <u>ALRMVAL<1</u> 00 = ALRMM 01 = ALRMM 11 = Unimple	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u> AIN VD MNTH emented <u>':0>:</u> SEC	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4	LH and ALRM			
bit 9-8	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT ALRMVAL<1 00 = ALRMN 01 = ALRMN 11 = Unimple ALRMVAL<7 00 = ALRMS	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u> AIN VD MNTH emented <u>2:0>:</u> SEC IR	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4	LH and ALRM			
bit 9-8	1000 = Onc 1001 = Onc 101x = Rese ALRMPTR< Points to the the ALRMPT ALRMVAL<1 00 = ALRMN 10 = ALRMN 11 = Unimple ALRMVAL<7 00 = ALRMS 01 = ALRMF	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u> /IN VD /NTH emented <u>2:0>:</u> SEC IR DAY	ise ise ue Register W Alarm Value reg	indow Pointer gisters when re	bits eading ALRMV4	LH and ALRM			
bit 9-8 bit 7-0	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT ALRMVAL<1 00 = ALRMN 01 = ALRMN 11 = Unimple ALRMVAL<7 00 = ALRMS 01 = ALRMS 01 = ALRMS 10 = ALRMS 11 = Unimple	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u> /IN VD /NTH emented <u>2:0>:</u> SEC IR DAY	use use Alarm Value re ecrements on o	indow Pointer gisters when re every read or v	bits eading ALRMV4	ALH and ALRM			
	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT ALRMVAL<1 00 = ALRMM 01 = ALRMM 11 = Unimple ALRMVAL<7 00 = ALRMS 01 = ALRMS 01 = ALRMS 11 = Unimple ARPT<7:0>:	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d 5:8>: MN VD MNTH emented <u>2:0>:</u> EC IR DAY emented	ise ise ue Register W Alarm Value re ecrements on o	indow Pointer gisters when re every read or v	bits eading ALRMV4	ALH and ALRM			
	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT ALRMVAL<1 00 = ALRMM 01 = ALRMM 11 = Unimple ALRMVAL<7 00 = ALRMS 01 = ALRMS 01 = ALRMS 11 = Unimple ARPT<7:0>:	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u> //IN VD //NTH emented / <u>:0>:</u> SEC IR OAY emented / Alarm Repeat	ise ise ue Register W Alarm Value re ecrements on o	indow Pointer gisters when re every read or v	bits eading ALRMV4	ALH and ALRM			
	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT ALRMVAL<1 00 = ALRMM 01 = ALRMM 11 = Unimple ALRMVAL<7 00 = ALRMS 01 = ALRMS 01 = ALRMS 11 = Unimple ARPT<7:0>:	e a year (excep erved – do not u erved – do not u 1:0>: Alarm Val corresponding / R<1:0> value d <u>5:8>:</u> //IN VD //NTH emented / <u>:0>:</u> SEC IR OAY emented / Alarm Repeat	ise ise ue Register W Alarm Value re ecrements on o	indow Pointer gisters when re every read or v	bits eading ALRMV4	ALH and ALRM			
	1000 = Onco 1001 = Onco 101x = Reso ALRMPTR< Points to the the ALRMPT ALRMVAL<1 00 = ALRMN 01 = ALRMN 11 = Unimple ALRMVAL<7 00 = ALRMS 01 = ALRMS 01 = ALRME 11 = Unimple ARPT<7:0>: 11111111 = 000000000 =	e a year (excep erved – do not u erved – do not u filo>: Alarm Val corresponding / R<1:0> value d 5:8>: //IN VD //NTH emented /:0>: EC IR DAY emented Alarm Repeat Alarm will repe	ise lse ue Register W Alarm Value re ecrements on o counter Value at 255 more ti repeat	indow Pointer gisters when re every read or v bits mes	bits eading ALRMV/ vrite of ALRMV/	ALH and ALRM	hes '00 ['] .		

REGISTER 21-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768
	1110 = 1:16,384
	• 0001 = 1:2
	0001 = 1.2 0000 = 1:1
PLLKEN	PLL Lock Enable bit
	1 = Clock switch to PLL will wait until the PLL lock signal is valid
	0 = Clock switch will not wait for the PLL lock signal
ALTI2C	Alternate I ² C [™] Pins bit
	$1 = I^2C$ is mapped to SDA1/SCL1 pins
	$0 = I^2C$ is mapped to ASDA1/ASCL1 pins
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicate on PGEC1 and PGED1
	10 = Communicate on PGEC2 and PGED2
	01 = Communicate on PGEC3 and PGED3
PWMPIN	00 = Reserved, do not use Motor Control PWM Module Pin Mode bit
PVVIVIPIN	
	 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins)
HPOL	Motor Control PWM High Side Polarity bit
	1 = PWM module high side output pins have active-high output polarity
	0 = PWM module high side output pins have active-low output polarity
LPOL	Motor Control PWM Low Side Polarity bit
	1 = PWM module low side output pins have active-high output polarity
	0 = PWM module low side output pins have active-low output polarity

TABLE 23-4: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.9 PICkit 3 In-Circuit Debugger/ Programmer

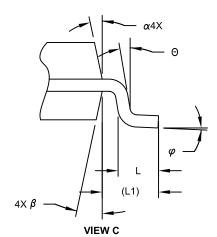
The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

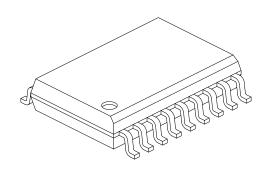
25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

AC CH	ARACTER	RISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions	
IM10 TLO:SO		Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μS		
			400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾		100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns	1	
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns		
		Setup Time	400 kHz mode	100		ns	-	
			1 MHz mode ⁽²⁾	40		ns	1	
IM26 THD:DAT	Data Input	100 kHz mode	0		μS			
		Hold Time	400 kHz mode	0	0.9	μS	-	
			1 MHz mode ⁽²⁾	0.2		μS	-	
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)		μS	Only relevant for	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period the first	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	clock pulse is generated	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	1	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μS	-	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS	1	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns		
		from Clock	400 kHz mode	—	1000	ns		
			1 MHz mode ⁽²⁾	_	400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be	
-	_		400 kHz mode	1.3		μS	free before a new	
			1 MHz mode ⁽²⁾	0.5	_	μs	transmission can start	
IM50	Св	Bus Capacitive L			400	pF		
IM51	TPGD	Pulse Gobbler De		65	390	ns	See Note 3	

TABLE 26-45: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest "dsPIC33/PIC24 Family Reference Manual" sections.

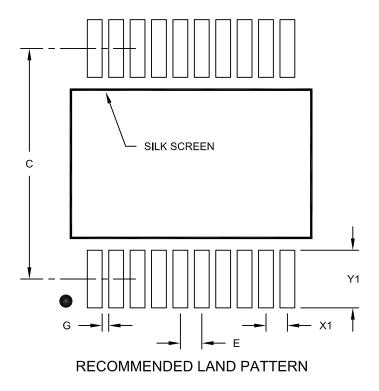

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Lin	nits	MIN	NOM	MAX	
Number of Pins	N		18		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E		10.30 BSC		
Molded Package Width	E1	7.50 BSC			
Overall Length	D		11.55 BSC		
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	с	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S	
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 26.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings.
	Updated TABLE 26-3: Thermal Packaging Characteristics.
	Updated TABLE 26-6: DC Characteristics: Operating Current (Idd).
	Updated TABLE 26-7: DC Characteristics: Idle Current (lidle).
	Updated TABLE 26-8: DC Characteristics: Power-Down Current (Ipd).
	Updated TABLE 26-9: DC Characteristics: Doze Current (Idoze).
	Updated TABLE 26-10: DC Characteristics: I/O Pin Input Specifications.
	Replaced all SPI specifications and figures (see Table 26-29 through Table 26-44 and Figure 26-11 through Figure 26-26).
Section 28.0 "Packaging Information"	Added the following Package Marking Information and Package Drawings:
	44-Lead TQFP
	• 44-Lead QFN
	 44-Lead VTLA (referred to as TLA in the package drawings)

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

SPIx Master Transmit Mode (Half-Duplex)		
for dsPIC33FJ16(GP/MC)10X		
SPIx Master Transmit Mode (Half-Duplex)		
for dsPIC33FJ32(GP/MC)10X		
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,		
SMP = 0) for dsPIC33FJ16(GP/MC)10X		
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,		
SMP = 0) for dsPIC33FJ32(GP/MC)10X		
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,		
SMP = 0) for dsPIC33FJ16(GP/MC)10X		
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,		
SMP = 0) for dsPIC33FJ32(GP/MC)10X		
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,		
SMP = 0) for dsPIC33FJ16(GP/MC)10X		
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,		
SMP = 0) for dsPIC33FJ32(GP/MC)10X		
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,		
SMP = 0) for dsPIC33FJ16(GP/MC)10X		
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,		
SMP = 0) for dsPIC33FJ32(GP/MC)10X		
Timer1 External Clock		
Timer2/4 External Clock		
Timer3/5 External Clock		
Timing Specifications		
Comparator Module		
Comparator Timing		
Comparator Voltage Reference		
Comparator Voltage Reference Settling Time		

U

UART	
Control Registers	213
Helpful Tips	212
Resources	212
Universal Asynchronous Receiver	
Transmitter (UART)	
Using the RCON Status Bits	
v	
Voltage Regulator (On-Chip)	
W	
Watchdog Timer (WDT)	267
Programming Considerations	
WWW Address	387
WWW, On-Line Support	24

NOTES: