

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

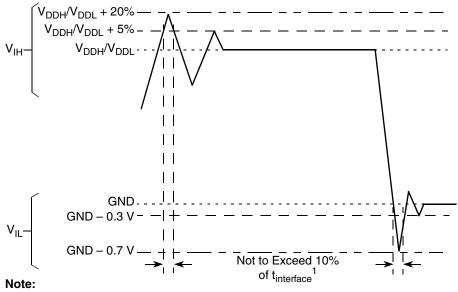
Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	· .
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	·
USB	· .
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TA)
Security Features	· .
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc855tczq50d4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Features

- System integration unit (SIU)
 - Bus monitor
 - Software watchdog
 - Periodic interrupt timer (PIT)
 - Low-power stop mode
 - Clock synthesizer
 - Decrementer, time base, and real-time clock (RTC)
 - Reset controller
 - IEEE 1149.1TM Std. test access port (JTAG)
- Interrupts
 - Seven external interrupt request (IRQ) lines
 - 12 port pins with interrupt capability
 - 23 internal interrupt sources
 - Programmable priority between SCCs
 - Programmable highest priority request
- 10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u® Standard (not available when using ATM over UTOPIA interface)
- ATM support compliant with ATM forum UNI 4.0 specification
 - Cell processing up to 50–70 Mbps at 50-MHz system clock
 - Cell multiplexing/demultiplexing
 - Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables OAM and software implementation of other protocols.
 - ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and unspecified bit rate (UBR) and providing control mechanisms enabling software support of available bit rate (ABR)
 - Physical interface support for UTOPIA (10/100-Mbps is not supported with this interface) and byte-aligned serial (for example, T1/E1/ADSL)
 - UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to four physical layer devices), connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system clock ratios of 1/2 or 1/3.
 - Serial-mode ATM connection supports transmission convergence (TC) function for T1/E1/ADSL lines, cell delineation, cell payload scrambling/descrambling, automatic idle/unassigned cell insertion/stripping, header error control (HEC) generation, checking, and statistics.
- Communications processor module (CPM)
 - RISC communications processor (CP)
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels

Thermal Characteristics

Figure 1 shows the undershoot and overshoot voltages at the interface of the MPC860.

1. t_{interface} refers to the clock period associated with the bus clock interface.

Figure 1. Undershoot/Overshoot Voltage for V_{DDH} and V_{DDL}

4 Thermal Characteristics

Table 3. Package Description

Package Designator	Package Code (Case No.)	Package Description
ZP	5050 (1103-01)	PBGA 357 25*25*0.9P1.27
ZQ/VR	5058 (1103D-02)	PBGA 357 25*25*1.2P1.27

Bus Signal Timing

NI	Characteristic	33	MHz	40 MHz		50 MHz		66 MHz		11
Num		Min	Мах	Min	Мах	Min	Max	Min	Мах	Unit
B35	A(0:31), BADDR(28:30) to \overline{CS} valid—as requested by control bit BST4 in the corresponding word in UPM	5.58		4.25		3.00	_	1.79		ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{BS}}$ valid—as requested by control bit BST1 in the corresponding word in UPM	13.15		10.50	—	8.00	_	5.58		ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{BS}}$ valid—as requested by control bit BST2 in the corresponding word in UPM	20.73		16.75	—	13.00	_	9.36		ns
B36	A(0:31), BADDR(28:30), and D(0:31) to GPL valid—as requested by control bit GxT4 in the corresponding word in UPM	5.58		4.25		3.00	_	1.79		ns
B37	UPWAIT valid to CLKOUT falling edge9	6.00		6.00		6.00	_	6.00		ns
B38	CLKOUT falling edge to UPWAIT valid ⁹	1.00		1.00		1.00	_	1.00		ns
B39	AS valid to CLKOUT rising edge ¹⁰	7.00		7.00	_	7.00		7.00		ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge	7.00		7.00	_	7.00		7.00	—	ns
B41	$\overline{\text{TS}}$ valid to CLKOUT rising edge (setup time)	7.00		7.00		7.00	_	7.00		ns
B42	CLKOUT rising edge to \overline{TS} valid (hold time)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B43	AS negation to memory controller signals negation	_	TBD	_	TBD	—	TBD	_	TBD	ns

Table 7	Bus O	neration	Timinas	(continued)
	Du3 0	peration	rinnigs	(continucu)

¹ Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.

² If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.

³ The timings specified in B4 and B5 are based on full strength clock.

⁴ The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC860 is selected to work with internal bus arbiter.

⁵ The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing for BG input is relevant when the MPC860 is selected to work with external bus arbiter.

⁶ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.

⁷ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁸ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.

⁹ The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 18.

¹⁰ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 21.

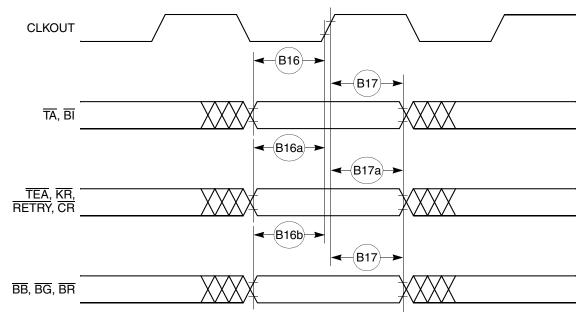


Figure 7 provides the timing for the synchronous input signals.

Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

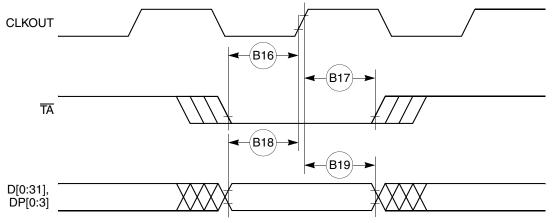


Figure 8. Input Data Timing in Normal Case

Bus Signal Timing

Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

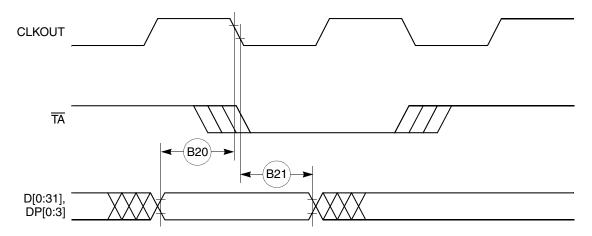
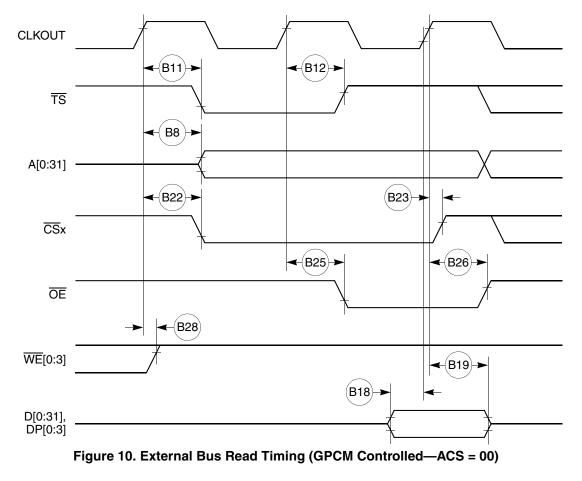



Figure 9. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM factors.

Bus Signal Timing

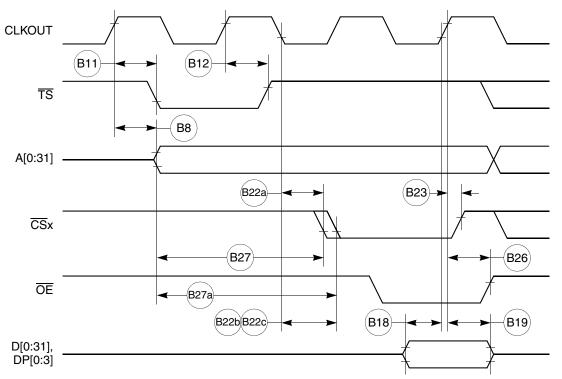


Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

Figure 14 through Figure 16 provide the timing for the external bus write controlled by various GPCM factors.

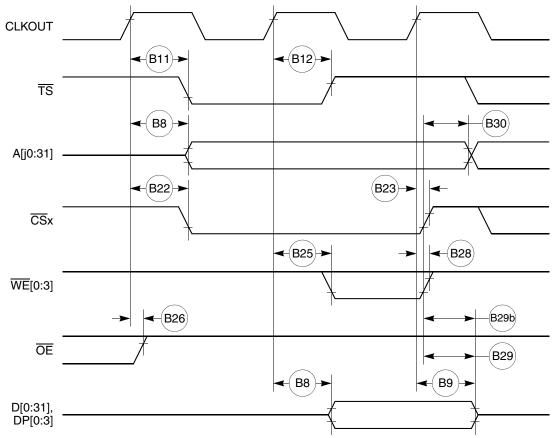


Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)

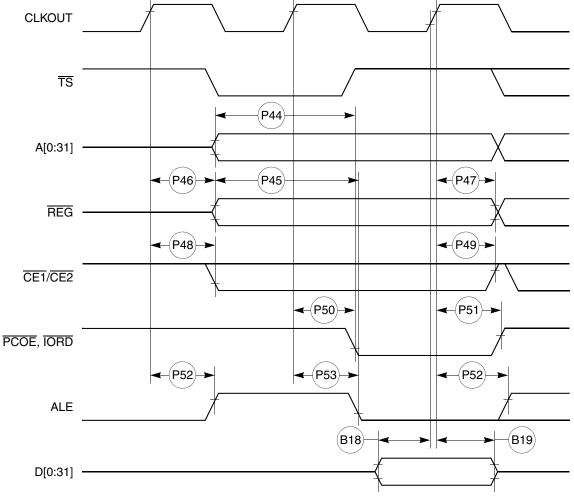


Figure 25 provides the PCMCIA access cycle timing for the external bus read.

Figure 25. PCMCIA Access Cycle Timing External Bus Read

Table 10 shows the PCMCIA port timing for the MPC860.

Table 10. PCMCIA Port Timing

Num	Characteristic		MHz	40 I	MHz	50 I	MHz	66 I	MHz	Unit
			Max	Min	Max	Min	Max	Min	Max	Unit
P57	CLKOUT to OPx valid	—	19.00	_	19.00	—	19.00	—	19.00	ns
P58	HRESET negated to OPx drive ¹	25.73	_	21.75	_	18.00	_	14.36	_	ns
P59	IP_Xx valid to CLKOUT rising edge	5.00		5.00		5.00		5.00	_	ns
P60	CLKOUT rising edge to IP_Xx invalid	1.00	_	1.00	_	1.00	_	1.00	_	ns

¹ OP2 and OP3 only.

Figure 28 provides the PCMCIA output port timing for the MPC860.

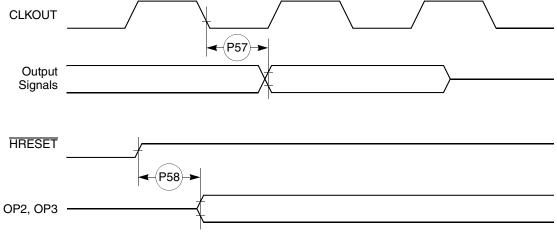


Figure 28. PCMCIA Output Port Timing

Figure 29 provides the PCMCIA output port timing for the MPC860.

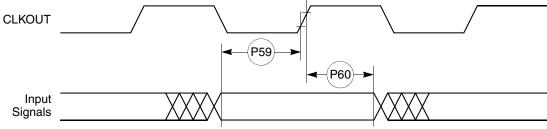


Figure 29. PCMCIA Input Port Timing

11 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC860.

11.1 PIP/PIO AC Electrical Specifications

Table 14 provides the PIP/PIO AC timings as shown in Figure 39 through Figure 43.

Table 14. PIP/PIO Timing

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	onin
21	Data-in setup time to STBI low	0	_	ns
22	Data-in hold time to STBI high	2.5 – t3 ¹	—	CLK
23	STBI pulse width	1.5	_	CLK
24	STBO pulse width	1 CLK – 5 ns	_	ns
25	Data-out setup time to STBO low	2	_	CLK
26	Data-out hold time from STBO high	5	_	CLK
27	STBI low to STBO low (Rx interlock)	—	2	CLK
28	STBI low to STBO high (Tx interlock)	2	_	CLK
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	—	25	ns

¹ t3 = Specification 23.

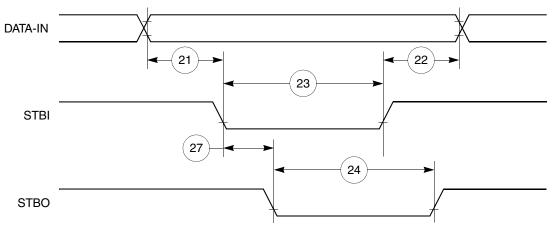


Figure 39. PIP Rx (Interlock Mode) Timing Diagram

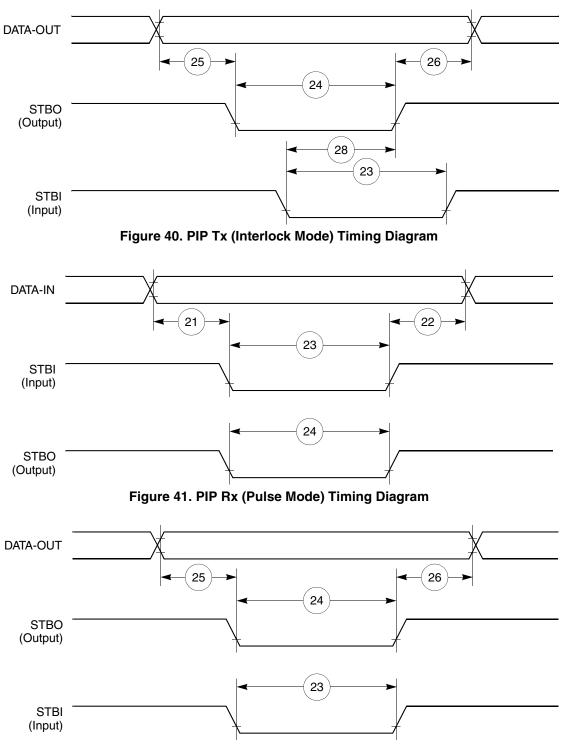


Figure 42. PIP TX (Pulse Mode) Timing Diagram

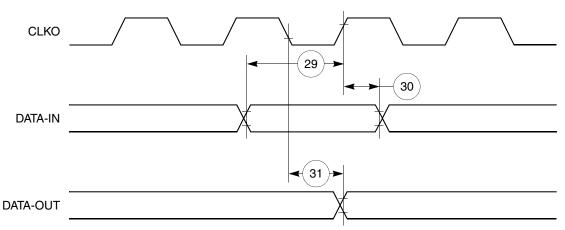


Figure 43. Parallel I/O Data-In/Data-Out Timing Diagram

11.2 Port C Interrupt AC Electrical Specifications

Table 15 provides the timings for port C interrupts.

Table 15	. Port C	Interrupt	Timing
----------	----------	-----------	--------

Num	Characteristic	≥ 33.34	Unit	
Num		Min	Max	Onic
35	Port C interrupt pulse width low (edge-triggered mode)	55	_	ns
36	Port C interrupt minimum time between active edges	55		ns

¹ External bus frequency of greater than or equal to 33.34 MHz.

Figure 44 shows the port C interrupt detection timing.

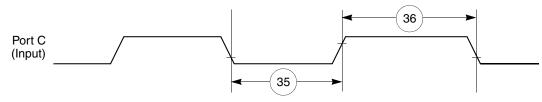


Figure 44. Port C Interrupt Detection Timing

11.3 IDMA Controller AC Electrical Specifications

Table 16 provides the IDMA controller timings as shown in Figure 45 through Figure 48.

Table 16. IDMA Controller Timing

Num	Num Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	Unit
40	DREQ setup time to clock high	7	_	ns
41	DREQ hold time from clock high	3		ns

Num	Characteristic		All Frequencies		
Num	Characteristic	Min	Мах	Unit	
42	SDACK assertion delay from clock high	—	12	ns	
43	SDACK negation delay from clock low	—	12	ns	
44	SDACK negation delay from TA low	—	20	ns	
45	SDACK negation delay from clock high	—	15	ns	
46	\overline{TA} assertion to rising edge of the clock setup time (applies to external \overline{TA})	7		ns	

Table 16. IDMA Controller Timing (continued)

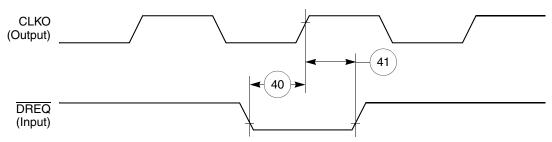


Figure 45. IDMA External Requests Timing Diagram

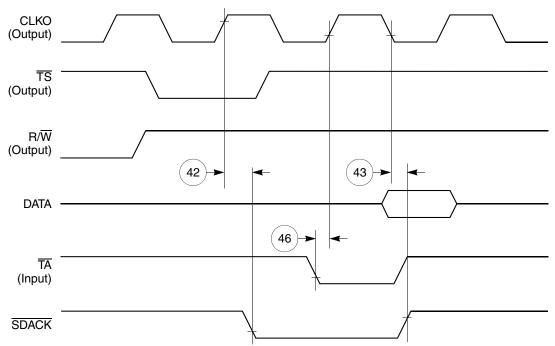


Figure 46. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

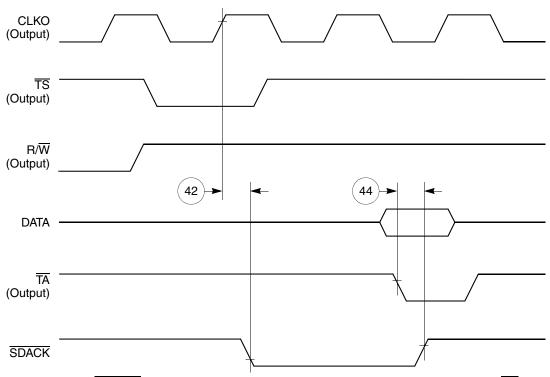


Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

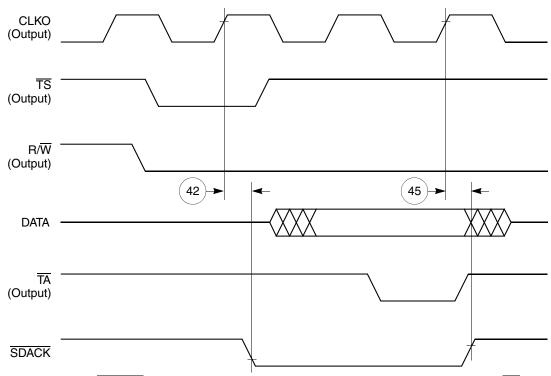


Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

Num	Characteristic	All Freq	11	
	Characteristic	Min	Max	Unit
84	L1CLK edge to L1CLKO valid (DSC = 1)	_	30.00	ns
85	L1RQ valid before falling edge of L1TSYNC ⁴	1.00	—	L1TCL K
86	L1GR setup time ²	42.00	_	ns
87	L1GR hold time	42.00	—	ns
88	L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

Table 19. SI Timing (continued)

¹ The ratio SYNCCLK/L1RCLK must be greater than 2.5/1.

² These specs are valid for IDL mode only.

³ Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes later.

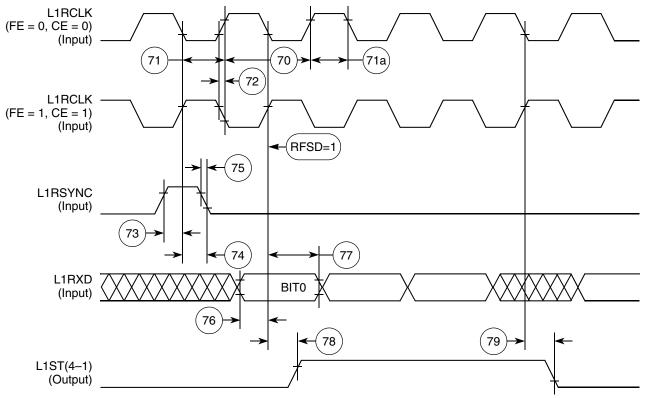
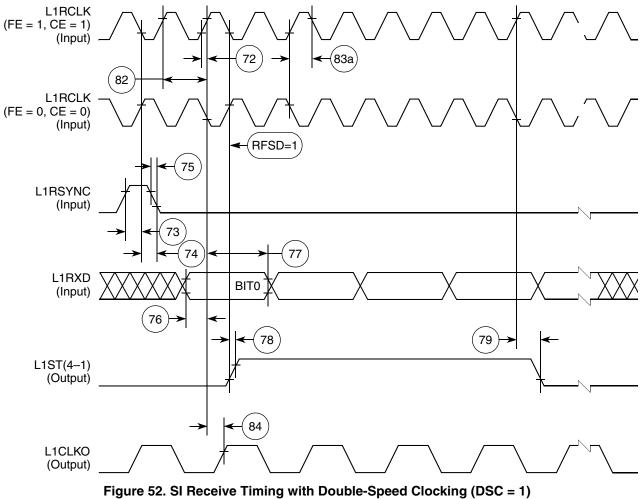
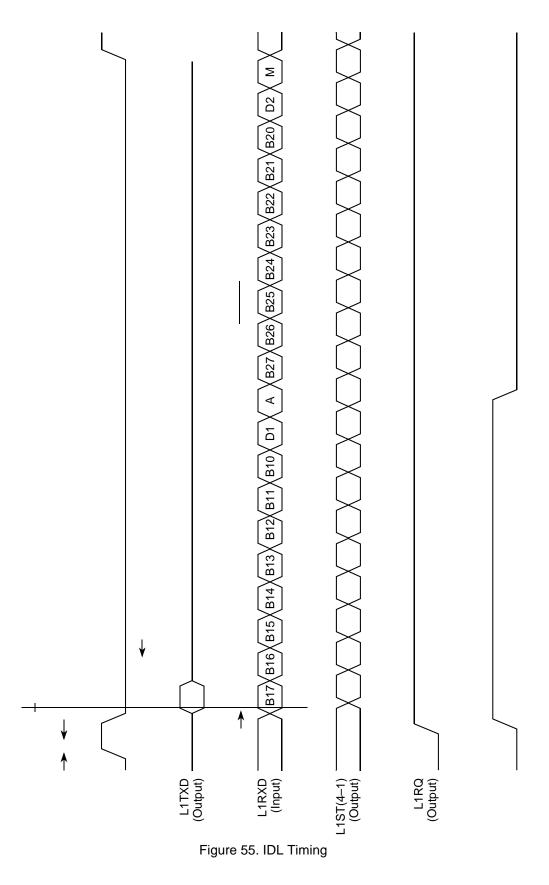
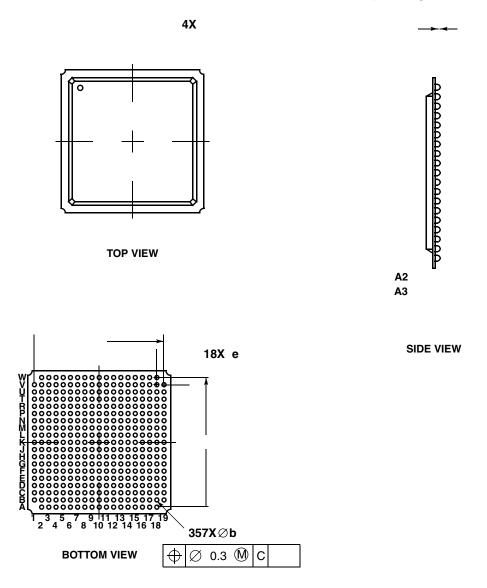




Figure 51. SI Receive Timing Diagram with Normal Clocking (DSC = 0)

CPM Electrical Characteristics



MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

Mechanical Data and Ordering Information

14.3 Mechanical Dimensions of the PBGA Package

Figure 77 shows the mechanical dimensif the ZP PBGA package.

