

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (2)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc860decvr50d4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

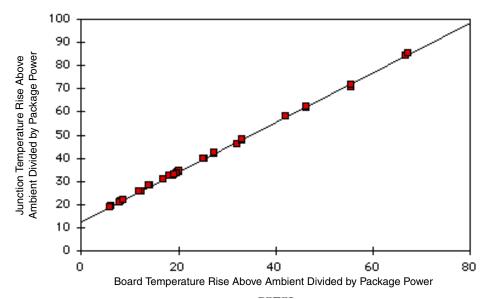


Figure 2. Effect of Board Temperature Rise on Thermal Behavior

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_I = T_B + (R_{\theta IB} \times P_D)$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 T_B = board temperature (°C)

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_{J} = T_{T} + (\Psi_{JT} \times P_{D})$$

Layout Practices

where:

 Ψ_{IT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International (415) 964-5111

805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) Specifications 800-854-7179 or (Available from Global Engineering Documents) 303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

8 Layout Practices

Each V_{DD} pin on the MPC860 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1 μ F-bypass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. A four-layer board employing two inner layers as V_{CC} and GND planes is recommended.

All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

Table 7. Bus Operation Timings (continued)

Niver	Characteristic	33 1	MHz	40 I	MHz 50 MHz		66 MHz		Unit	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B23	CLKOUT rising edge to $\overline{\text{CS}}$ negated GPCM read access, GPCM write access ACS = 00, TRLX = 0, and CSNT = 0	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0	5.58	_	4.25	_	3.00	_	1.79	_	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 0	13.15	_	10.50	_	8.00	_	5.58	_	ns
B25	CLKOUT rising edge to $\overline{\text{OE}}$, $\overline{\text{WE}}$ (0:3) asserted	_	9.00	_	9.00	_	9.00	_	9.00	ns
B26	CLKOUT rising edge to OE negated	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1	35.88	_	29.25	_	23.00	_	16.94	_	ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1	43.45	_	35.50	_	28.00	_	20.73	_	ns
B28	CLKOUT rising edge to $\overline{\text{WE}}(0:3)$ negated GPCM write access CSNT = 0	_	9.00	_	9.00	_	9.00	_	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, 1, CSNT = 1, EBDF = 0	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B28b	CLKOUT falling edge to $\overline{\text{CS}}$ negated GPCM write access TRLX = 0, 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0	_	14.33	_	13.00	_	11.75	_	10.54	ns
B28c	CLKOUT falling edge to WE(0:3) negated GPCM write access TRLX = 0, 1, CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1	10.86	17.99	8.88	16.00	7.00	14.13	5.18	12.31	ns
B28d	CLKOUT falling edge to $\overline{\text{CS}}$ negated GPCM write access TRLX = 0, 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	_	17.99	_	16.00	_	14.13	_	12.31	ns
B29	WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access CSNT = 0, EBDF = 0	5.58	_	4.25	_	3.00	_	1.79	_	ns
B29a	WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0	13.15	_	10.5	_	8.00	_	5.58	_	ns
B29b	CS negated to D(0:31), DP(0:3), High-Z GPCM write access, ACS = 00, TRLX = 0, 1, and CSNT = 0	5.58		4.25		3.00		1.79		ns
B29c	CS negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0	13.15	_	10.5	_	8.00	_	5.58	_	ns

Bus Signal Timing

Table 7. Bus Operation Timings (continued)

Nivers	Obava ataviatia	33 1	ИНz	40 I	ИНz	50 1	ИНz	66 I	ИНz	11
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B35	A(0:31), BADDR(28:30) to $\overline{\text{CS}}$ valid—as requested by control bit BST4 in the corresponding word in UPM	5.58	_	4.25	_	3.00	_	1.79	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to BS valid—as requested by control bit BST1 in the corresponding word in UPM	13.15	_	10.50	_	8.00		5.58	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to BS valid—as requested by control bit BST2 in the corresponding word in UPM	20.73	_	16.75	_	13.00		9.36	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to GPL valid—as requested by control bit GxT4 in the corresponding word in UPM	5.58	_	4.25	_	3.00	_	1.79	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁹	6.00	_	6.00	_	6.00	_	6.00	_	ns
B38	CLKOUT falling edge to UPWAIT valid ⁹	1.00	_	1.00	_	1.00	_	1.00	_	ns
B39	AS valid to CLKOUT rising edge ¹⁰	7.00	_	7.00	_	7.00	_	7.00	_	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge	7.00	_	7.00	_	7.00	_	7.00	_	ns
B41	TS valid to CLKOUT rising edge (setup time)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B42	CLKOUT rising edge to TS valid (hold time)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B43	AS negation to memory controller signals negation	_	TBD	_	TBD	_	TBD	_	TBD	ns

¹ Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.

² If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.

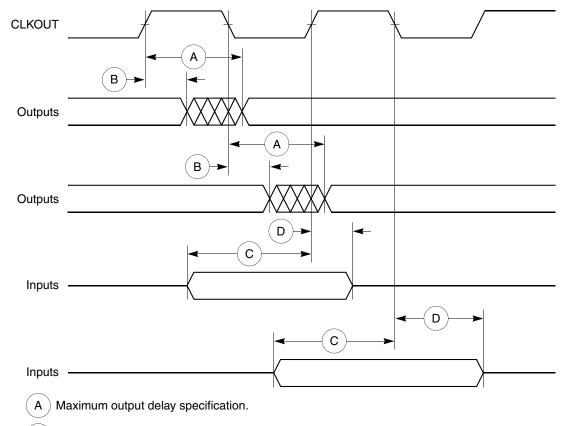
³ The timings specified in B4 and B5 are based on full strength clock.

⁴ The timing for \overline{BR} output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for \overline{BG} output is relevant when the MPC860 is selected to work with internal bus arbiter.

⁵ The timing required for \overline{BR} input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing for \overline{BG} input is relevant when the MPC860 is selected to work with external bus arbiter.

⁶ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.

⁷ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)


⁸ The timing B30 refers to \overline{CS} when ACS = 00 and to \overline{WE} (0:3) when CSNT = 0.

⁹ The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 18.

¹⁰ The $\overline{\text{AS}}$ signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 21.

Figure 3 is the control timing diagram.

- (B) Minimum output hold time.
- C Minimum input setup time specification.
- (D) Minimum input hold time specification.

Figure 3. Control Timing

Figure 4 provides the timing for the external clock.

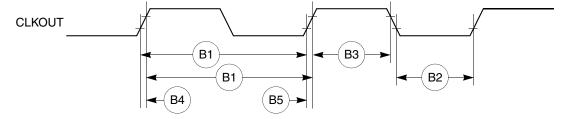


Figure 4. External Clock Timing

Bus Signal Timing

Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

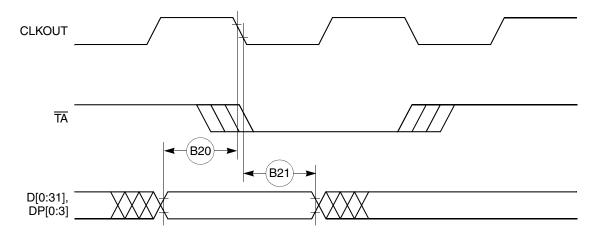


Figure 9. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM factors.

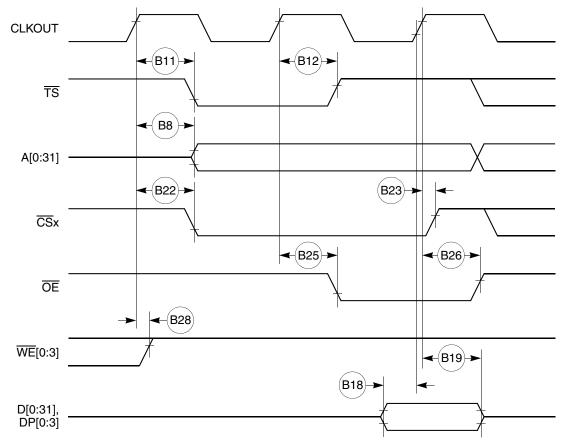


Figure 10. External Bus Read Timing (GPCM Controlled—ACS = 00)

Bus Signal Timing

Figure 17 provides the timing for the external bus controlled by the UPM.

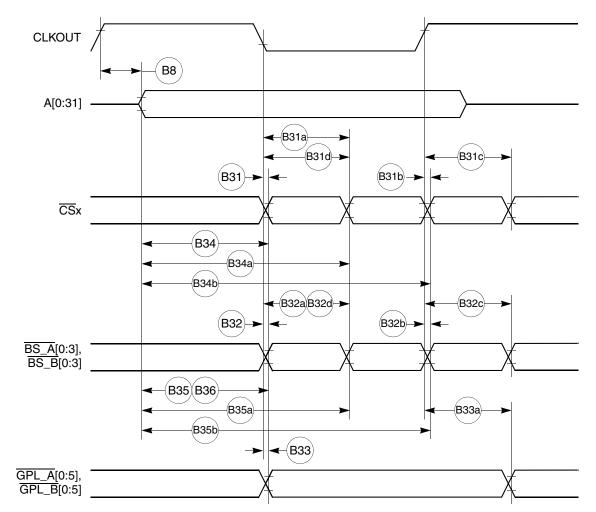


Figure 17. External Bus Timing (UPM Controlled Signals)

Figure 34 provides the reset timing for the debug port configuration.

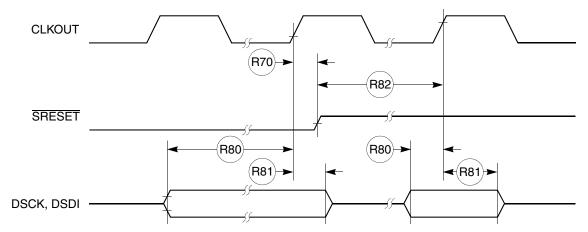


Figure 34. Reset Timing—Debug Port Configuration

10 IEEE 1149.1 Electrical Specifications

Table 13 provides the JTAG timings for the MPC860 shown in Figure 35 through Figure 38.

Table	13. ւ	JTAG	Tim	ing
-------	-------	------	-----	-----

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Max	Unit
J82	TCK cycle time	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	_	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	_	ns
J86	TMS, TDI data hold time	25.00	_	ns
J87	TCK low to TDO data valid	_	27.00	ns
J88	TCK low to TDO data invalid	0.00	_	ns
J89	TCK low to TDO high impedance	_	20.00	ns
J90	TRST assert time	100.00	_	ns
J91	TRST setup time to TCK low	40.00	_	ns
J92	TCK falling edge to output valid	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid	50.00	_	ns

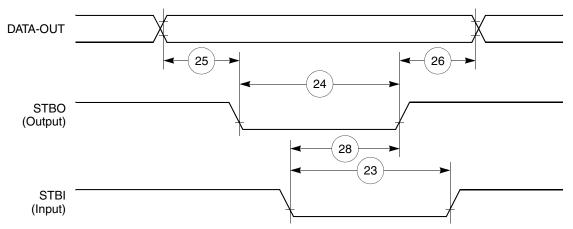


Figure 40. PIP Tx (Interlock Mode) Timing Diagram

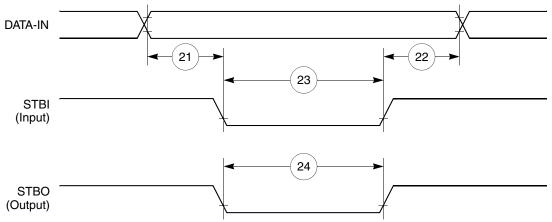


Figure 41. PIP Rx (Pulse Mode) Timing Diagram

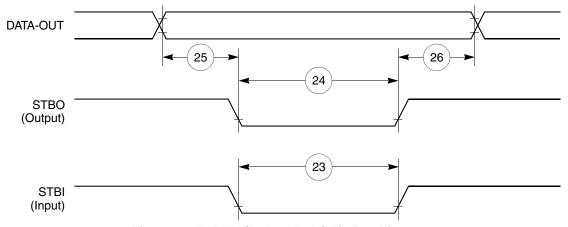


Figure 42. PIP TX (Pulse Mode) Timing Diagram

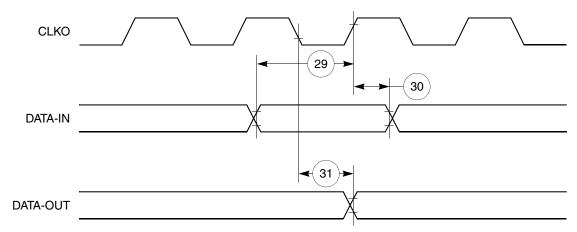


Figure 43. Parallel I/O Data-In/Data-Out Timing Diagram

11.2 Port C Interrupt AC Electrical Specifications

Table 15 provides the timings for port C interrupts.

Table 15. Port C Interrupt Timing

Num Characteristic		≥ 33.34 MHz ¹		Unit	
Num	Characteristic		Max	Oilit	
35	Port C interrupt pulse width low (edge-triggered mode)	55	_	ns	
36	Port C interrupt minimum time between active edges	55	_	ns	

¹ External bus frequency of greater than or equal to 33.34 MHz.

Figure 44 shows the port C interrupt detection timing.

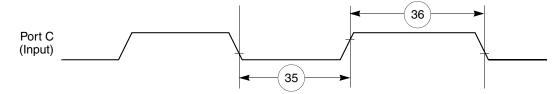


Figure 44. Port C Interrupt Detection Timing

11.3 IDMA Controller AC Electrical Specifications

Table 16 provides the IDMA controller timings as shown in Figure 45 through Figure 48.

Table 16. IDMA Controller Timing

Num	Characteristic	All Freq	Unit		
Num	Characteristic	Min	Max	Oill	
40	DREQ setup time to clock high	7	_	ns	
41	DREQ hold time from clock high	3		ns	

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

Table 16. IDMA Controller Timing (continued)

Nivers	Characteristic	All Freq	I I mia	
Num	Characteristic		Max	Unit
42	SDACK assertion delay from clock high	_	12	ns
43	SDACK negation delay from clock low	_	12	ns
44	SDACK negation delay from TA low	_	20	ns
45	SDACK negation delay from clock high	_	15	ns
46	$\overline{\text{TA}}$ assertion to rising edge of the clock setup time (applies to external $\overline{\text{TA}}$)	7	_	ns

Figure 45. IDMA External Requests Timing Diagram

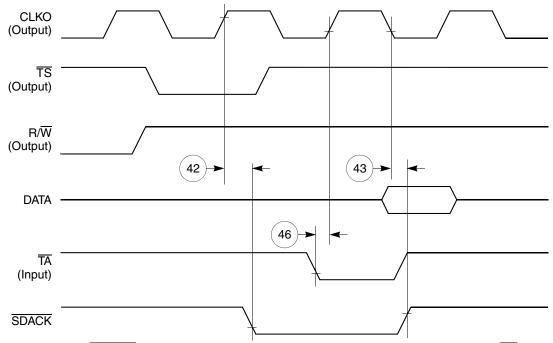


Figure 46. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

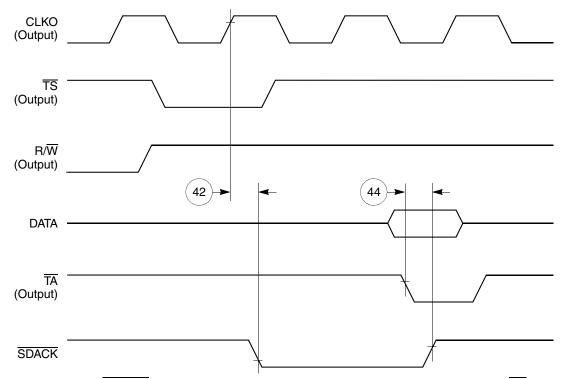


Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

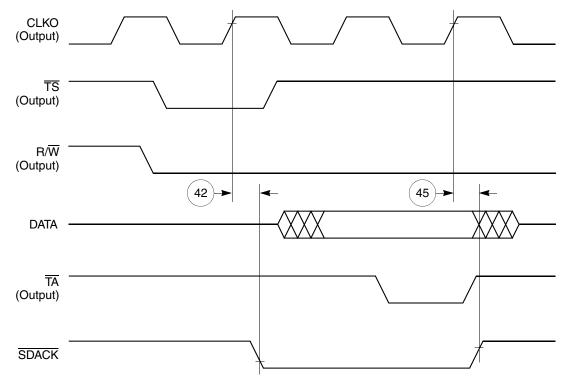


Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

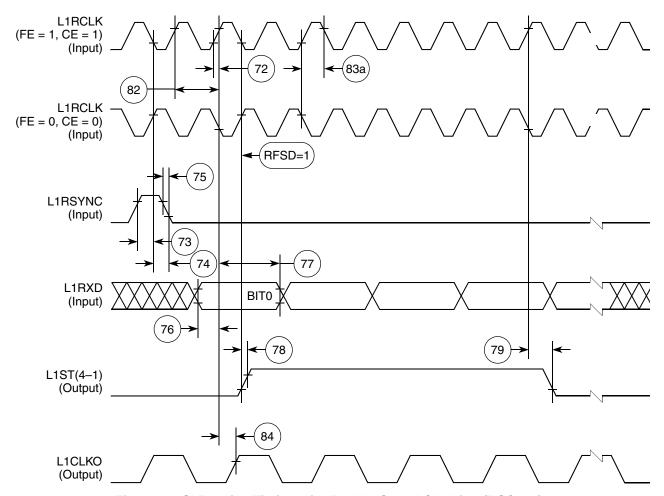


Figure 52. SI Receive Timing with Double-Speed Clocking (DSC = 1)

Figure 53. SI Transmit Timing Diagram (DSC = 0)

Figure 56 through Figure 58 show the NMSI timings.

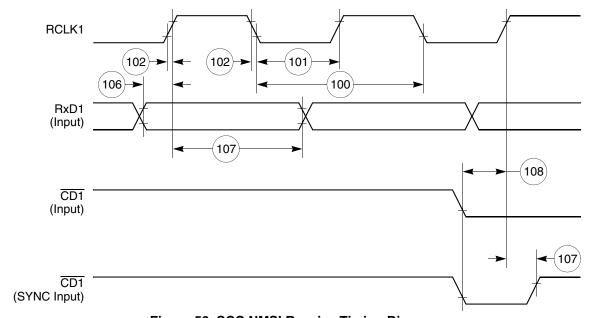


Figure 56. SCC NMSI Receive Timing Diagram

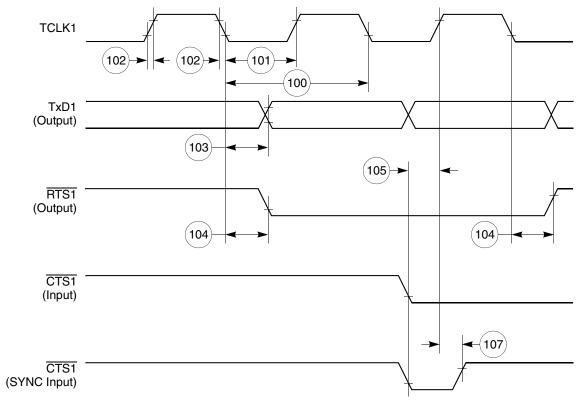


Figure 57. SCC NMSI Transmit Timing Diagram

Figure 69 shows the I²C bus timing.

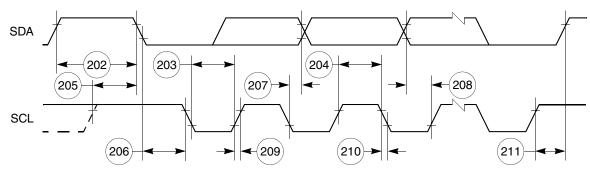


Figure 69. I²C Bus Timing Diagram

12 UTOPIA AC Electrical Specifications

Table 28 shows the AC electrical specifications for the UTOPIA interface.

Table 28. UTOPIA AC Electrical Specifications

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output	_	3.5	ns
	Duty cycle		50	50	%
	Frequency		_	50	MHz
U1a	UtpClk rise/fall time (external clock option)	Input	_	3.5	ns
	Duty cycle		40	60	%
	Frequency		_	50	MHz
U2	RxEnb and TxEnb active delay	Output	2	16	ns
U3	UTPB, SOC, Rxclav and Txclav setup time	Input	8	_	ns
U4	UTPB, SOC, Rxclav and Txclav hold time	Input	1	_	ns
U5	UTPB, SOC active delay (and PHREQ and PHSEL active delay in MPHY mode)	Output	2	16	ns

UTOPIA AC Electrical Specifications

Figure 70 shows signal timings during UTOPIA receive operations.

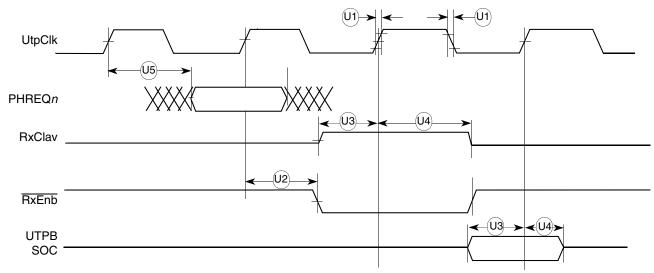


Figure 70. UTOPIA Receive Timing

Figure 71 shows signal timings during UTOPIA transmit operations.

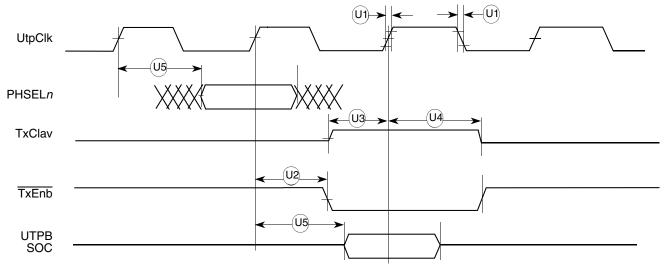


Figure 71. UTOPIA Transmit Timing

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

Mechanical Data and Ordering Information

Table 34. MPC860 Family Package/Frequency Availability (continued)

Package Type	Freq. (MHz) / Temp. (Tj)	Package	Order Number
Ball grid array (continued) ZP suffix—leaded ZQ suffix—leaded VR suffix—lead-free	80 0° to 95°C	ZP/ZQ ¹	MPC855TZQ80D4 MPC860DEZQ80D4 MPC860DTZQ80D4 MPC860ENZQ80D4 MPC860SRZQ80D4 MPC860TZQ80D4 MPC860DPZQ80D4 MPC860PZQ80D4
		Tape and Reel	MPC860PZQ80D4R2 MPC860PVR80D4R2
		VR	MPC855TVR80D4 MPC860DEVR80D4 MPC860DPVR80D4 MPC860ENVR80D4 MPC860PVR80D4 MPC860SRVR80D4 MPC860TVR80D4
Ball grid array (CZP suffix) CZP suffix—leaded CZQ suffix—leaded CVR suffix—lead-free	50 -40° to 95°C	ZP/ZQ ¹	MPC855TCZQ50D4 MPC855TCVR50D4 MPC860DECZQ50D4 MPC860DTCZQ50D4 MPC860ENCZQ50D4 MPC860SRCZQ50D4 MPC860TCZQ50D4 MPC860DPCZQ50D4 MPC860PCZQ50D4
		Tape and Reel	MPC855TCZQ50D4R2 MC860ENCVR50D4R2
		CVR	MPC860DECVR50D4 MPC860DTCVR50D4 MPC860ENCVR50D4 MPC860PCVR50D4 MPC860SRCVR50D4 MPC860TCVR50D4
	66 -40° to 95°C	ZP/ZQ ¹	MPC855TCZQ66D4 MPC855TCVR66D4 MPC860ENCZQ66D4 MPC860SRCZQ66D4 MPC860TCZQ66D4 MPC860DPCZQ66D4 MPC860PCZQ66D4
		CVR	MPC860DTCVR66D4 MPC860ENCVR66D4 MPC860PCVR66D4 MPC860SRCVR66D4 MPC860TCVR66D4

¹ The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

14.2 Pin Assignments

Figure 76 shows the top view pinout of the PBGA package. For additional information, see the MPC860 PowerQUICC User's Manual, or the MPC855T User's Manual.

NOTE: This is the top view of the device.

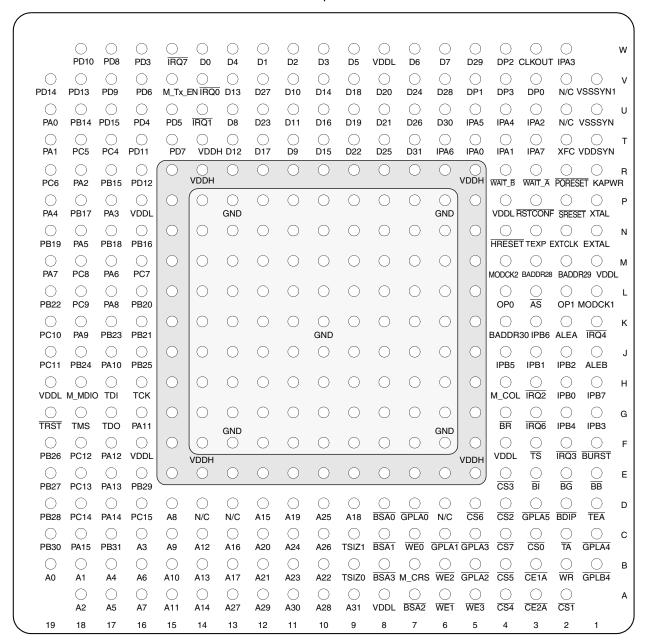
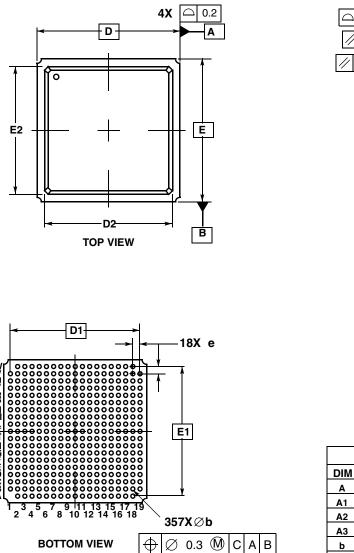



Figure 76. Pinout of the PBGA Package

Mechanical Data and Ordering Information

14.3 Mechanical Dimensions of the PBGA Package

Figure 77 shows the mechanical dimensions of the ZP PBGA package.

NOTE

 \varnothing 0.15 $\dot{\mathbb{M}}$

- 1. Dimensions and tolerance per ASME Y14.5M, 1994.
- 2. Dimensions in millimeters.
- Dimension b is the maximum solder ball diameter measured parallel to data C.

	MILLIN	IETERS		
DIM	MIN MAX			
Α		2.05		
A 1	0.50	0.70		
A2	0.95	1.35		
А3	0.70	0.90		
b	0.60	0.90		
D	25.00	BSC		
D1	22.86	BSC		
D2	22.40	22.60		
е	1.27 BSC			
Е	25.00 BSC			
E1	22.86 BSC			
E2	22.40	22.60		

SIDE VIEW

0.2 C

Figure 77. Mechanical Dimensions and Bottom Surface Nomenclature of the ZP PBGA Package