



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc860dtcvr50d4 |
|---------------------------------|--------------------------------------------------------------------------|
| Supplier Device Package         | 357-PBGA (25x25)                                                         |
| Package / Case                  | 357-BBGA                                                                 |
| Security Features               | -                                                                        |
| Operating Temperature           | -40°C ~ 95°C (TA)                                                        |
| Voltage - I/O                   | 3.3V                                                                     |
| USB                             | -                                                                        |
| SATA                            | -                                                                        |
| Ethernet                        | 10Mbps (2), 10/100Mbps (1)                                               |
| Display & Interface Controllers |                                                                          |
| Graphics Acceleration           | No                                                                       |
| RAM Controllers                 | DRAM                                                                     |
| Co-Processors/DSP               | Communications; CPM                                                      |
| Speed                           | 50MHz                                                                    |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                           |
| Core Processor                  | MPC8xx                                                                   |
| Product Status                  | Obsolete                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- Up to 8 Kbytes of dual-port RAM
- 16 serial DMA (SDMA) channels
- Three parallel I/O registers with open-drain capability
- Four baud-rate generators (BRGs)
  - Independent (can be tied to any SCC or SMC)
  - Allows changes during operation
  - Autobaud support option
- Four serial communications controllers (SCCs)
  - Ethernet/IEEE 802.3<sup>®</sup> standard optional on SCC1–4, supporting full 10-Mbps operation (available only on specially programmed devices)
  - HDLC/SDLC (all channels supported at 2 Mbps)
  - HDLC bus (implements an HDLC-based local area network (LAN))
  - Asynchronous HDLC to support point-to-point protocol (PPP)
  - AppleTalk
  - Universal asynchronous receiver transmitter (UART)
  - Synchronous UART
  - Serial infrared (IrDA)
  - Binary synchronous communication (BISYNC)
  - Totally transparent (bit streams)
  - Totally transparent (frame-based with optional cyclic redundancy check (CRC))
- Two SMCs (serial management channels)
  - UART
  - Transparent
  - General circuit interface (GCI) controller
  - Can be connected to the time-division multiplexed (TDM) channels
- One SPI (serial peripheral interface)
  - Supports master and slave modes
  - Supports multimaster operation on the same bus
- One I<sup>2</sup>C (inter-integrated circuit) port
  - Supports master and slave modes
  - Multiple-master environment support
- Time-slot assigner (TSA)
  - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
  - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined
  - 1- or 8-bit resolution
  - Allows independent transmit and receive routing, frame synchronization, and clocking



**Thermal Calculation and Measurement** 

# 7 Thermal Calculation and Measurement

For the following discussions,  $P_D = (V_{DD} \times I_{DD}) + PI/O$ , where PI/O is the power dissipation of the I/O drivers.

## 7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T<sub>J</sub>, in °C can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 $T_A$  = ambient temperature (°C)

 $R_{\theta JA}$  = package junction-to-ambient thermal resistance (°C/W)

 $P_D$  = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity  $T_J - T_A$ ) are possible.

## 7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$ 

where:

 $R_{\theta JA}$  = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta IC}$  = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$  = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$  is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance,  $R_{\theta CA}$ . For instance, the user can change the airflow around the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

## 7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature; see Figure 2.



**Bus Signal Timing** 

|      | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                       | 33 MHz 40 MHz |      | MHz   | 50 MHz |       | 66 MHz |       |      |      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|-------|--------|-------|--------|-------|------|------|
| Num  | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                       | Min           | Max  | Min   | Max    | Min   | Max    | Min   | Max  | Unit |
| B29d | $\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z<br>GPCM write access, TRLX = 1, CSNT = 1,<br>EBDF = 0                                                                                                                                                                                                                                                                                                        | 43.45         |      | 35.5  |        | 28.00 |        | 20.73 |      | ns   |
| B29e | $\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z<br>GPCM write access, TRLX = 1, CSNT = 1,<br>ACS = 10, or ACS = 11, EBDF = 0                                                                                                                                                                                                                                                                               | 43.45         | _    | 35.5  | _      | 28.00 |        | 29.73 | _    | ns   |
| B29f | $\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z<br>GPCM write access, TRLX = 0, CSNT = 1,<br>EBDF = 1                                                                                                                                                                                                                                                                                                        | 8.86          |      | 6.88  |        | 5.00  |        | 3.18  |      | ns   |
| B29g | $\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z<br>GPCM write access, TRLX = 0, CSNT = 1,<br>ACS = 10, or ACS = 11, EBDF = 1                                                                                                                                                                                                                                                                               | 8.86          |      | 6.88  |        | 5.00  |        | 3.18  |      | ns   |
| B29h | $\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z<br>GPCM write access, TRLX = 1, CSNT = 1,<br>EBDF = 1                                                                                                                                                                                                                                                                                                        | 38.67         |      | 31.38 |        | 24.50 |        | 17.83 |      | ns   |
| B29i | $\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z<br>GPCM write access, TRLX = 1, CSNT = 1,<br>ACS = 10, or ACS = 11, EBDF = 1                                                                                                                                                                                                                                                                               | 38.67         |      | 31.38 |        | 24.50 |        | 17.83 |      | ns   |
| B30  | $\overline{CS}$ , $\overline{WE}$ (0:3) negated to A(0:31),<br>BADDR(28:30) invalid GPCM write access <sup>8</sup>                                                                                                                                                                                                                                                                                                   | 5.58          | —    | 4.25  | —      | 3.00  | —      | 1.79  | —    | ns   |
| B30a | $\overline{\text{WE}}(0:3)$ negated to A(0:31), BADDR(28:30)<br>invalid GPCM, write access, TRLX = 0,<br>CSNT = 1, $\overline{\text{CS}}$ negated to A(0:31) invalid<br>GPCM write access, TRLX = 0, CSNT = 1<br>ACS = 10, or ACS = 11, EBDF = 0                                                                                                                                                                     | 13.15         | _    | 10.50 | _      | 8.00  | _      | 5.58  | _    | ns   |
| B30b | $\label{eq:weighted} \hline \hline WE(0:3) \ negated to \ A(0:31), \ invalid \ GPCM \\ BADDR(28:30) \ invalid \ GPCM \ write \ access, \\ TRLX = 1, \ CSNT = 1. \ \overline{CS} \ negated to \\ A(0:31), \ Invalid \ GPCM, \ write \ access, \\ TRLX = 1, \ CSNT = 1, \ ACS = 10, \ or \\ ACS = 11, \ EBDF = 0 \\ \hline \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                              | 43.45         | _    | 35.50 | _      | 28.00 |        | 20.73 | _    | ns   |
| B30c | $\label{eq:weighted_states} \begin{array}{ c c c c c } \hline \hline WE(0:3) \mbox{ negated to } A(0:31), \mbox{ BADDR}(28:30) \\ \hline \mbox{ invalid GPCM write access, TRLX = 0, } \\ \hline CSNT = 1. \end{tabular} \begin{array}{ c c c c } \hline CS \mbox{ negated to } A(0:31) \mbox{ invalid } \\ \hline GPCM \mbox{ write access, TRLX = 0, } \\ \hline ACS = 10, \mbox{ ACS = 11, EBDF = 1} \end{array}$ | 8.36          | _    | 6.38  | _      | 4.50  | _      | 2.68  | _    | ns   |
| B30d | $\overline{WE}(0:3)$ negated to A(0:31), BADDR(28:30)<br>invalid GPCM write access, TRLX = 1,<br>CSNT =1. $\overline{CS}$ negated to A(0:31) invalid<br>GPCM write access TRLX = 1, CSNT = 1,<br>ACS = 10, or ACS = 11, EBDF = 1                                                                                                                                                                                     | 38.67         | _    | 31.38 | _      | 24.50 | _      | 17.83 | _    | ns   |
| B31  | CLKOUT falling edge to $\overline{CS}$ valid—as requested by control bit CST4 in the corresponding word in UPM                                                                                                                                                                                                                                                                                                       | 1.50          | 6.00 | 1.50  | 6.00   | 1.50  | 6.00   | 1.50  | 6.00 | ns   |

### Table 7. Bus Operation Timings (continued)



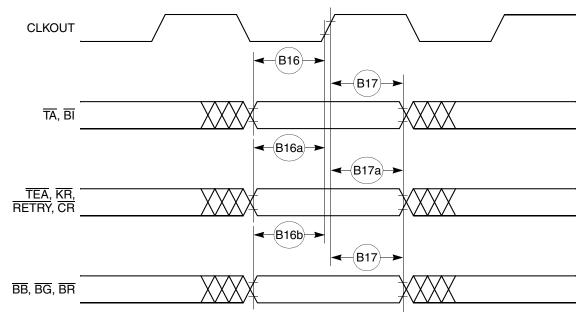



Figure 7 provides the timing for the synchronous input signals.



Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.



Figure 8. Input Data Timing in Normal Case



Figure 14 through Figure 16 provide the timing for the external bus write controlled by various GPCM factors.

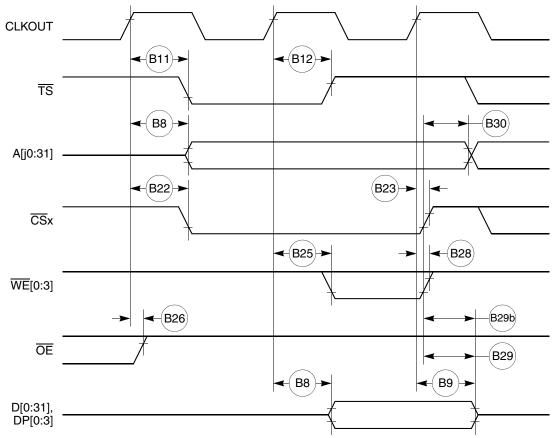



Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)





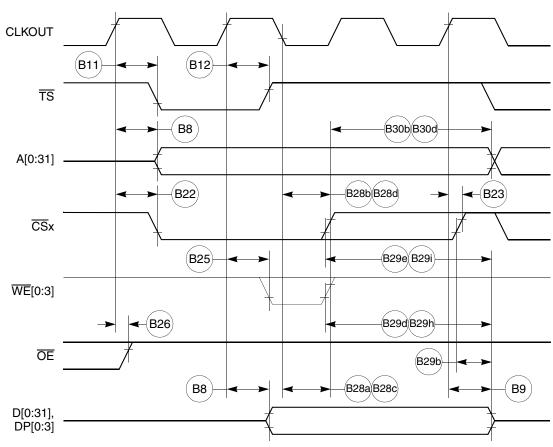



Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)



Figure 18 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

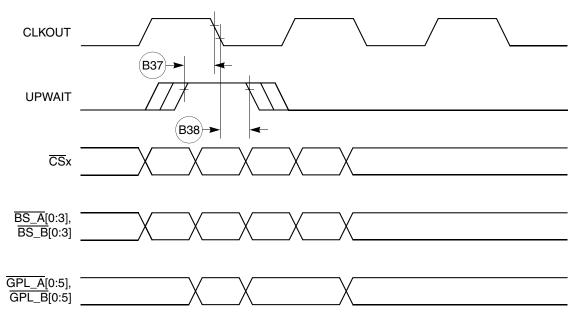



Figure 18. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Figure 19 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

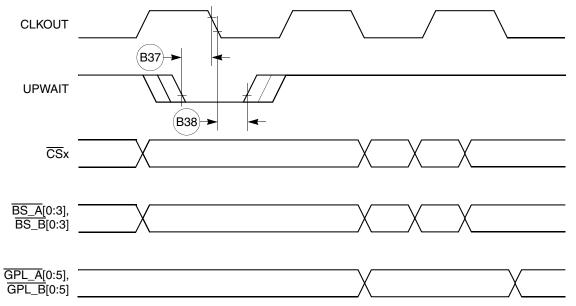



Figure 19. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing



**Bus Signal Timing** 



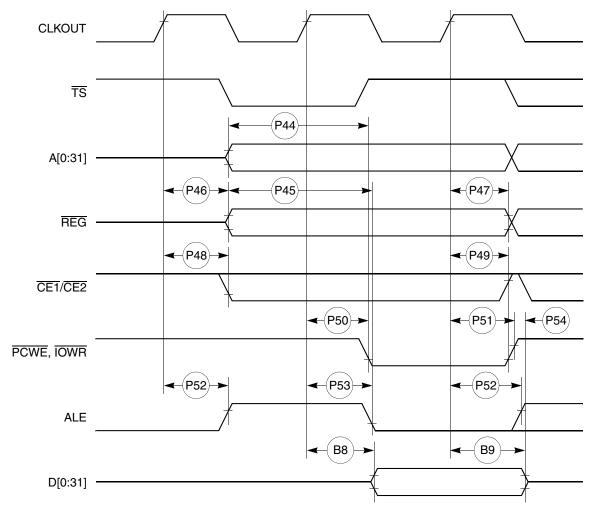



Figure 26. PCMCIA Access Cycle Timing External Bus Write

Figure 27 provides the PCMCIA  $\overline{WAIT}$  signal detection timing.

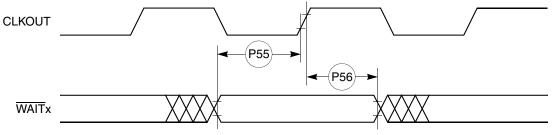



Figure 27. PCMCIA WAIT Signal Detection Timing



#### **Bus Signal Timing**

Figure 32 shows the reset timing for the data bus configuration.

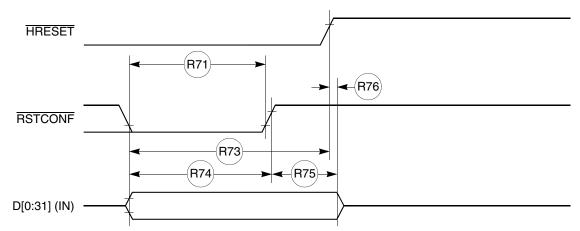



Figure 32. Reset Timing—Configuration from Data Bus

Figure 33 provides the reset timing for the data bus weak drive during configuration.

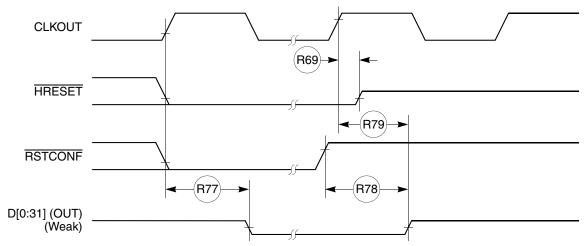
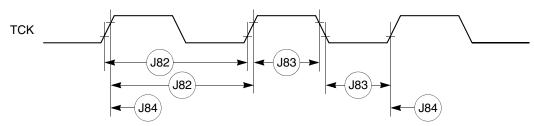




Figure 33. Reset Timing—Data Bus Weak Drive During Configuration



#### **IEEE 1149.1 Electrical Specifications**



### Figure 35. JTAG Test Clock Input Timing

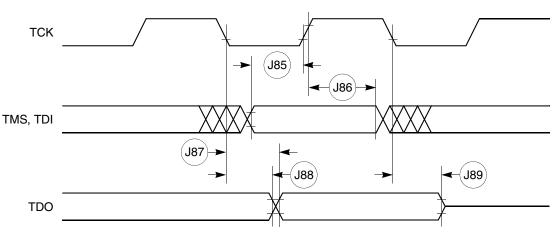



Figure 36. JTAG Test Access Port Timing Diagram

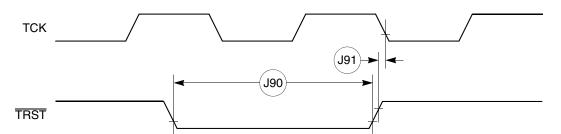
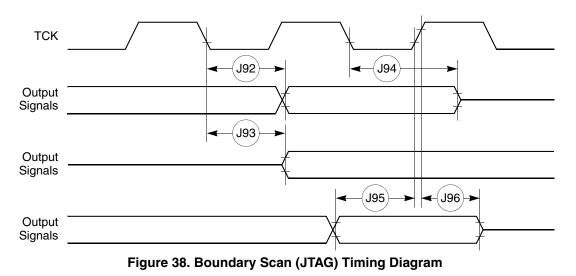
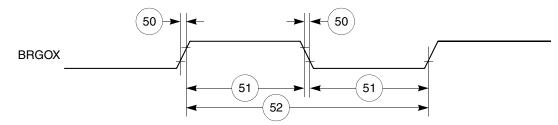




Figure 37. JTAG TRST Timing Diagram






**CPM Electrical Characteristics** 

## 11.4 Baud Rate Generator AC Electrical Specifications

Table 17 provides the baud rate generator timings as shown in Figure 49.

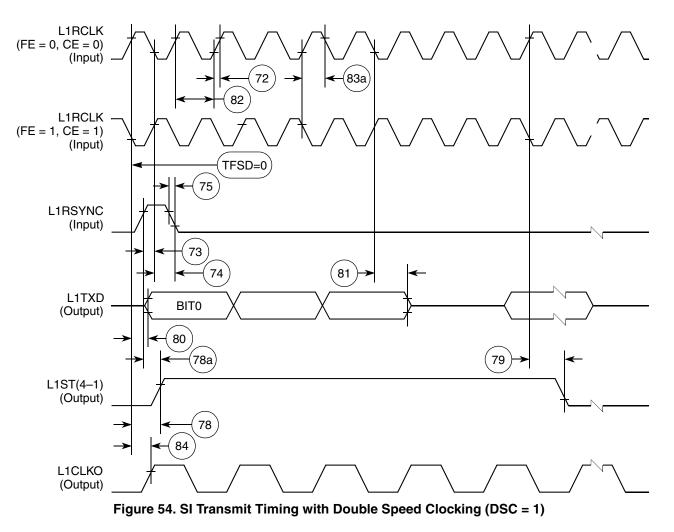
### Table 17. Baud Rate Generator Timing

| Num | Characteristic          | All Freq | Unit |      |
|-----|-------------------------|----------|------|------|
| Num | Characteristic          | Min      | Max  | Unit |
| 50  | BRGO rise and fall time | _        | 10   | ns   |
| 51  | BRGO duty cycle         | 40       | 60   | %    |
| 52  | BRGO cycle              | 40       | _    | ns   |



### Figure 49. Baud Rate Generator Timing Diagram

## **11.5 Timer AC Electrical Specifications**


Table 18 provides the general-purpose timer timings as shown in Figure 50.

### Table 18. Timer Timing

| Num | Characteristic               | All Freq | 11  |      |
|-----|------------------------------|----------|-----|------|
|     | Characteristic               | Min      | Мах | Unit |
| 61  | TIN/TGATE rise and fall time | 10       |     | ns   |
| 62  | TIN/TGATE low time           | 1        | _   | CLK  |
| 63  | TIN/TGATE high time          | 2        | —   | CLK  |
| 64  | TIN/TGATE cycle time         | 3        | —   | CLK  |
| 65  | CLKO low to TOUT valid       | 3        | 25  | ns   |



**CPM Electrical Characteristics** 



MPC860 PowerQUICC Family Hardware Specifications, Rev. 10



#### SCC in NMSI Mode Electrical Specifications 11.7

Table 20 provides the NMSI external clock timing.

| News | Ok ava stavistis                                     | All Freq      | All Frequencies |      |  |
|------|------------------------------------------------------|---------------|-----------------|------|--|
| Num  | Characteristic                                       | Min           | Мах             | Unit |  |
| 100  | RCLK1 and TCLK1 width high <sup>1</sup>              | 1/SYNCCLK     | _               | ns   |  |
| 101  | RCLK1 and TCLK1 width low                            | 1/SYNCCLK + 5 | _               | ns   |  |
| 102  | RCLK1 and TCLK1 rise/fall time                       | —             | 15.00           | ns   |  |
| 103  | TXD1 active delay (from TCLK1 falling edge)          | 0.00          | 50.00           | ns   |  |
| 104  | RTS1 active/inactive delay (from TCLK1 falling edge) | 0.00          | 50.00           | ns   |  |
| 105  | CTS1 setup time to TCLK1 rising edge                 | 5.00          | —               | ns   |  |
| 106  | RXD1 setup time to RCLK1 rising edge                 | 5.00          | _               | ns   |  |
| 107  | RXD1 hold time from RCLK1 rising edge <sup>2</sup>   | 5.00          | —               | ns   |  |
| 108  | CD1 setup Time to RCLK1 rising edge                  | 5.00          | _               | ns   |  |

<sup>1</sup> The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.
 <sup>2</sup> Also applies to CD and CTS hold time when they are used as external sync signals.

### Table 21 provides the NMSI internal clock timing.

### Table 21. NMSI Internal Clock Timing

| Num | Characteristic                                       | All Freq | Unit      |      |
|-----|------------------------------------------------------|----------|-----------|------|
| num | Characteristic                                       | Min      | Мах       | Unit |
| 100 | RCLK1 and TCLK1 frequency <sup>1</sup>               | 0.00     | SYNCCLK/3 | MHz  |
| 102 | RCLK1 and TCLK1 rise/fall time                       | _        | —         | ns   |
| 103 | TXD1 active delay (from TCLK1 falling edge)          | 0.00     | 30.00     | ns   |
| 104 | RTS1 active/inactive delay (from TCLK1 falling edge) | 0.00     | 30.00     | ns   |
| 105 | CTS1 setup time to TCLK1 rising edge                 | 40.00    | —         | ns   |
| 106 | RXD1 setup time to RCLK1 rising edge                 | 40.00    | —         | ns   |
| 107 | RXD1 hold time from RCLK1 rising edge <sup>2</sup>   | 0.00     | —         | ns   |
| 108 | CD1 setup time to RCLK1 rising edge                  | 40.00    | _         | ns   |

<sup>1</sup> The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 3/1.

<sup>2</sup> Also applies to  $\overline{CD}$  and  $\overline{CTS}$  hold time when they are used as external sync signals.



**CPM Electrical Characteristics** 

# 11.12 I<sup>2</sup>C AC Electrical Specifications

Table 26 provides the  $I^2C$  (SCL < 100 kHz) timings.

## Table 26. I<sup>2</sup>C Timing (SCL < 100 kHz)

| Num | Characteristic                            | All Frequencies |     | Unit |
|-----|-------------------------------------------|-----------------|-----|------|
| Num | Characteristic                            | Min             | Max | Onit |
| 200 | SCL clock frequency (slave)               | 0               | 100 | kHz  |
| 200 | SCL clock frequency (master) <sup>1</sup> | 1.5             | 100 | kHz  |
| 202 | Bus free time between transmissions       | 4.7             | _   | μS   |
| 203 | Low period of SCL                         | 4.7             | —   | μS   |
| 204 | High period of SCL                        | 4.0             | —   | μS   |
| 205 | Start condition setup time                | 4.7             | —   | μS   |
| 206 | Start condition hold time                 | 4.0             | —   | μS   |
| 207 | Data hold time                            | 0               | —   | μS   |
| 208 | Data setup time                           | 250             | —   | ns   |
| 209 | SDL/SCL rise time                         | —               | 1   | μS   |
| 210 | SDL/SCL fall time                         | —               | 300 | ns   |
| 211 | Stop condition setup time                 | 4.7             | —   | μS   |

SCL frequency is given by SCL = BRGCLK\_frequency / ((BRG register + 3 × pre\_scaler × 2). The ratio SYNCCLK/(BRGCLK/pre\_scaler) must be greater than or equal to 4/1.

## Table 27 provides the $I^2C$ (SCL > 100 kHz) timings.

## Table 27. . I<sup>2</sup>C Timing (SCL > 100 kHz)

| Num | Characteristic                            | Expression | All Freq        | Unit          |      |
|-----|-------------------------------------------|------------|-----------------|---------------|------|
| Num | Gharacteristic                            | Expression | Min             | Мах           | Onit |
| 200 | SCL clock frequency (slave)               | fSCL       | 0               | BRGCLK/48     | Hz   |
| 200 | SCL clock frequency (master) <sup>1</sup> | fSCL       | BRGCLK/16512    | BRGCLK/48     | Hz   |
| 202 | Bus free time between transmissions       |            | 1/(2.2 * fSCL)  | —             | s    |
| 203 | Low period of SCL                         |            | 1/(2.2 * fSCL)  | —             | s    |
| 204 | High period of SCL                        |            | 1/(2.2 * fSCL)  | _             | S    |
| 205 | Start condition setup time                |            | 1/(2.2 * fSCL)  | —             | S    |
| 206 | Start condition hold time                 |            | 1/(2.2 * fSCL)  | —             | S    |
| 207 | Data hold time                            |            | 0               | _             | S    |
| 208 | Data setup time                           |            | 1/(40 * fSCL)   | _             | S    |
| 209 | SDL/SCL rise time                         |            | —               | 1/(10 * fSCL) | s    |
| 210 | SDL/SCL fall time                         |            | —               | 1/(33 * fSCL) | S    |
| 211 | Stop condition setup time                 |            | 1/2(2.2 * fSCL) |               | S    |

SCL frequency is given by SCL = BRGCLK\_frequency / ((BRG register + 3) × pre\_scaler × 2). The ratio SYNCCLK/(BRGCLK / pre\_scaler) must be greater than or equal to 4/1.



#### **UTOPIA AC Electrical Specifications**

Figure 70 shows signal timings during UTOPIA receive operations.



Figure 71 shows signal timings during UTOPIA transmit operations.

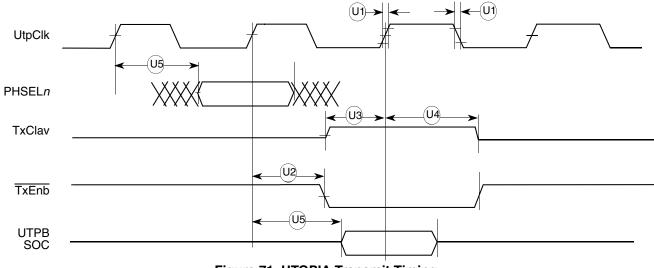



Figure 71. UTOPIA Transmit Timing



**FEC Electrical Characteristics** 

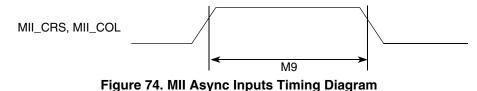

## 13.3 MII Async Inputs Signal Timing (MII\_CRS, MII\_COL)

Table 31 provides information on the MII async inputs signal timing.

Table 31. MII Async Inputs Signal Timing

| Num | Characteristic                       | Min | Max | Unit                 |
|-----|--------------------------------------|-----|-----|----------------------|
| M9  | MII_CRS, MII_COL minimum pulse width | 1.5 | _   | MII_TX_CLK<br>period |

Figure 74 shows the MII asynchronous inputs signal timing diagram.



## 13.4 MII Serial Management Channel Timing (MII\_MDIO, MII\_MDC)

Table 32 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

| Num | Characteristic                                                              | Min | Max | Unit              |
|-----|-----------------------------------------------------------------------------|-----|-----|-------------------|
| M10 | MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay) | 0   | _   | ns                |
| M11 | MII_MDC falling edge to MII_MDIO output valid (max prop delay)              | _   | 25  | ns                |
| M12 | MII_MDIO (input) to MII_MDC rising edge setup                               | 10  | _   | ns                |
| M13 | MII_MDIO (input) to MII_MDC rising edge hold                                | 0   | _   | ns                |
| M14 | MII_MDC pulse width high                                                    | 40% | 60% | MII_MDC<br>period |
| M15 | MII_MDC pulse width low                                                     | 40% | 60% | MII_MDC<br>period |

### Table 32. MII Serial Management Channel Timing



#### Mechanical Data and Ordering Information

Figure 75 shows the MII serial management channel timing diagram.

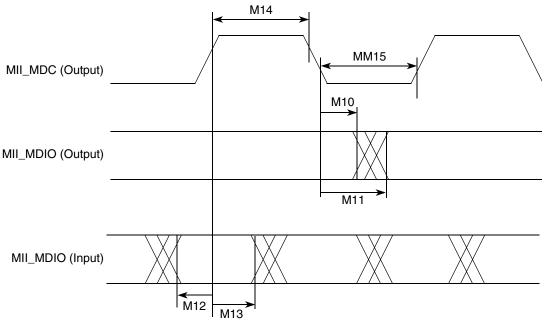



Figure 75. MII Serial Management Channel Timing Diagram

## 14 Mechanical Data and Ordering Information

## 14.1 Ordering Information

Table 33 provides information on the MPC860 Revision D.4 derivative devices.

| Device   | Number of<br>SCCs <sup>1</sup> | Ethernet Support <sup>2</sup><br>(Mbps) | Multichannel<br>HDLC Support | ATM<br>Support |
|----------|--------------------------------|-----------------------------------------|------------------------------|----------------|
| MPC855T  | 1                              | 10/100                                  | Yes                          | Yes            |
| MPC860DE | 2                              | 10                                      | N/A                          | N/A            |
| MPC860DT |                                | 10/100                                  | Yes                          | Yes            |
| MPC860DP |                                | 10/100                                  | Yes                          | Yes            |
| MPC860EN | 4                              | 10                                      | N/A                          | N/A            |
| MPC860SR |                                | 10                                      | Yes                          | Yes            |
| MPC860T  |                                | 10/100                                  | Yes                          | Yes            |
| MPC860P  |                                | 10/100                                  | Yes                          | Yes            |

Table 33. MPC860 Family Revision D.4 Derivatives

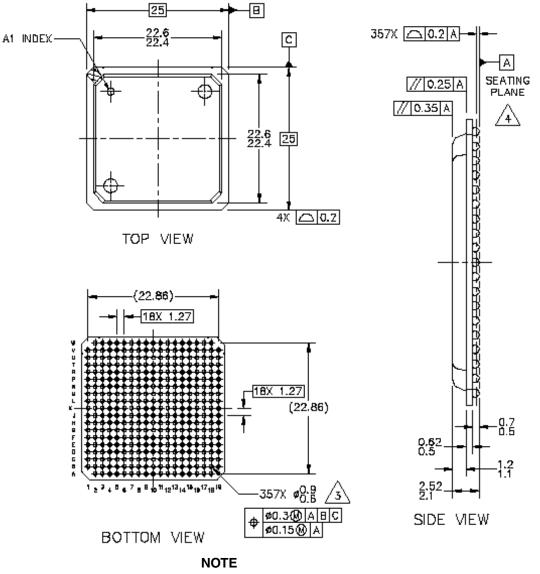
<sup>1</sup> Serial communications controller (SCC)

<sup>2</sup> Up to 4 channels at 40 MHz or 2 channels at 25 MHz



## 14.2 Pin Assignments

Figure 76 shows the top view pinout of the PBGA package. For additional information, see the MPC860 PowerQUICC User's Manual, or the MPC855T User's Manual.


| (         |           |           |           |                        |            |            |            |                           |            |            |            |            |            |           |                        |               |             |              |         |
|-----------|-----------|-----------|-----------|------------------------|------------|------------|------------|---------------------------|------------|------------|------------|------------|------------|-----------|------------------------|---------------|-------------|--------------|---------|
|           | O<br>PD10 | O<br>PD8  | O<br>PD3  |                        | )<br>D0    | O<br>D4    | ()<br>D1   | ()<br>D2                  | ()<br>D3   | )<br>D5    |            | )<br>D6    | ()<br>D7   | )<br>D29  | O<br>DP2               |               |             |              | w       |
| O<br>PD14 | O<br>PD13 | O<br>PD9  | O<br>PD6  | ⊖<br>M_Tx_             |            | O<br>D13   | ()<br>D27  | 〇<br>D10                  | )<br>D14   | )<br>D18   | )<br>D20   | 0<br>D24   | ()<br>D28  | O<br>DP1  | O<br>DP3               |               | ()<br>N/C \ |              | V       |
| 0<br>PA0  | O<br>PB14 | O<br>PD15 | O<br>PD4  | O<br>PD5               |            | ()<br>D8   | ()<br>D23  | ()<br>D11                 | 〇<br>D16   | )<br>D19   | ()<br>D21  | 0<br>D26   | )<br>D30   | O<br>IPA5 | )<br>IPA4              | O<br>IPA2     | ⊖<br>N/C    |              | U       |
| O<br>PA1  | O<br>PC5  | O<br>PC4  | O<br>PD11 | O<br>PD7               |            | 0<br>1 D12 | 0<br>D17   | O<br>D9                   | )<br>D15   | 0<br>D22   | 0<br>D25   | O<br>D31   | O<br>IPA6  |           | )<br>IPA1              | O<br>IPA7     | ⊖<br>xfc    |              | т       |
| <br>₽C6   | 0<br>PA2  | O<br>PB15 | O<br>PD12 | $\left( \circ \right)$ |            | 0          | 0          | 0                         | 0          | 0          | 0          | $\bigcirc$ | 0          |           |                        |               |             |              | R<br>VR |
| O<br>PA4  | О<br>РВ17 | O<br>PA3  |           | 0                      |            |            | 0          | $\bigcirc$                | $\bigcirc$ | 0          | $\bigcirc$ | $\bigcirc$ |            | $\circ$   |                        |               |             | C<br>T XTAL  | Р       |
| O<br>PB19 | O<br>PA5  | O<br>PB18 | 〇<br>PB16 | 0                      | $\circ$    | $\bigcirc$ | $\bigcirc$ | $\bigcirc$                | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0         |                        |               |             |              | N       |
| 0<br>PA7  | 0<br>PC8  | 0<br>PA6  | O<br>PC7  | 0                      | $\circ$    | $\bigcirc$ | $\bigcirc$ | $\bigcirc$                | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0         |                        | BADDR28       | O<br>BADD   | O<br>R29 VDD | M<br>L  |
| O<br>PB22 | O<br>PC9  | 0<br>PA8  | О<br>РВ20 | 0                      | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$                | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0         | 0<br>0P0               | $\bigcirc$ AS | O<br>OP1    |              | L       |
| O<br>PC10 | 0<br>PA9  | O<br>PB23 | O<br>PB21 | 0                      | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$                | O<br>GND   | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0         |                        | 0<br>130 IPB6 |             |              | к       |
| O<br>PC11 | O<br>PB24 | 〇<br>PA10 | O<br>PB25 | 0                      | $\circ$    | $\bigcirc$ | $\bigcirc$ | $\bigcirc$                | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0         | O<br>IPB5              | O<br>IPB1     |             | O            | J       |
|           |           |           | О<br>тск  | 0                      | 0          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$                | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0         | O<br>M_COI             |               |             |              | н       |
|           | O<br>TMS  | O<br>TDO  | O<br>PA11 | 0                      | 0          | )<br>GND   | $\bigcirc$ | $\bigcirc$                | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O<br>GND   | 0         |                        |               |             | O<br>IPB3    | G       |
| O<br>PB26 | O<br>PC12 | 〇<br>PA12 |           | 0                      |            |            | 0          | 0                         | 0          | 0          | 0          | 0          |            |           |                        | ⊖<br>⊤s       |             |              | F       |
| O<br>PB27 | O<br>PC13 | 〇<br>PA13 | O<br>PB29 | $\bigcirc$             | 0          | 0          | 0          | 0                         | 0          | 0          | 0          | 0          | 0          | 0         | $\frac{\bigcirc}{CS3}$ |               |             |              | Е       |
| O<br>PB28 | O<br>PC14 | O<br>PA14 | O<br>PC15 | ()<br>A8               | O<br>N/C   | O<br>N/C   | ()<br>A15  | 〇<br>A19                  | ()<br>A25  | )<br>A18   |            |            | O<br>N/C   |           | $\frac{\bigcirc}{CS2}$ |               |             |              | D       |
| O<br>PB30 | O<br>PA15 | O<br>PB31 | ()<br>A3  | ()<br>A9               | ()<br>A12  | 〇<br>A16   | ()<br>A20  | ()<br>A24                 | ()<br>A26  |            |            |            |            |           |                        |               |             |              | с       |
| ()<br>A0  | ()<br>A1  | ()<br>A4  | 0<br>A6   | )<br>A10               | 〇<br>A13   | ()<br>A17  | ()<br>A21  | ()<br>A23                 | 0<br>A22   |            | $\bigcirc$ |            |            |           | $\frac{\bigcirc}{CS5}$ |               |             |              | в       |
|           | 0<br>A2   | 0<br>A5   | 0<br>A7   | 0<br>A11               | 0<br>A14   | 0<br>A27   | 0<br>A29   | )<br>()<br>()<br>()<br>() | 0<br>A28   | <br>A31    | VDDL       |            |            |           |                        |               |             |              | А       |
| 19        | 18        | 17        | 16        | 15                     | 14         | 13         | 12         | 11                        | 10         | 9          | 8          | 7          | 6          | 5         | 4                      | 3             | 2           | 1            | ر       |

**NOTE:** This is the top view of the device.

Figure 76. Pinout of the PBGA Package



Figure 78 shows the mechanical dimensions of the ZQ PBGA package.



- 1. All Dimensions in millimeters.
- 2. Dimensions and tolerance per ASME Y14.5M, 1994.
- 3. Maximum Solder Ball Diameter measured parallel to Datum A.
- 4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.

Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the ZQ PBGA Package



Document Revision History

# **15 Document Revision History**

Table 35 lists significant changes between revisions of this hardware specification.

| Revision | Date    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 10       | 09/2015 | In Table 34, moved MPC855TCVR50D4 and MPC855TCVR66D4 under the extended temperature (-40° to 95°C) and removed MC860ENCVR50D4R2 from the normal temperature Tape and Reel.                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 9        | 10/2011 | Updated orderable part numbers in Table 34, "MPC860 Family Package/Frequency Availability."                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 8        | 08/2007 | <ul> <li>Updated template.</li> <li>On page 1, added a second paragraph.</li> <li>After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 1) and renumbered the rest of the figures.</li> <li>In Figure 3, changed all reference voltage measurement points from 0.2 and 0.8 V to 50% level.</li> <li>In Table 16, changed num 46 description to read, "TA assertion to rising edge"</li> <li>In Figure 46, changed TA to reflect the rising edge of the clock.</li> </ul> |  |  |  |  |  |  |  |
| 7.0      | 9/2004  | <ul> <li>Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL Max of the I2C Standard</li> <li>Replaced the thermal characteristics in Table 4 by the ZQ package</li> <li>Add the new parts to the Ordering and Availablity Chart in Table 34</li> <li>Added the mechanical spec of the ZQ package in Figure 78</li> <li>Removed all of the old revisions from Table 5</li> </ul>                                                                                         |  |  |  |  |  |  |  |
| 6.3      | 9/2003  | Added Section 11.2 on the Port C interrupt pins     Nontechnical reformatting                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| 6.2      | 8/2003  | <ul> <li>Changed B28a through B28d and B29d to show that TRLX can be 0 or 1</li> <li>Changed reference documentation to reflect the Rev 2 MPC860 PowerQUICC Family<br/>Users Manual</li> <li>Nontechnical reformatting</li> </ul>                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 6.1      | 11/2002 | <ul> <li>Corrected UTOPIA RXenb* and TXenb* timing values</li> <li>Changed incorrect usage of Vcc to Vdd</li> <li>Corrected dual port RAM to 8 Kbytes</li> </ul>                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| 6        | 10/2002 | Added the MPC855T. Corrected Figure 26 on page -36.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| 5.1      | 11/2001 | Revised template format, removed references to MAC functionality, changed Table 7     B23 max value @ 66 MHz from 2ns to 8ns, added this revision history table                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |

### Table 35. Document Revision History