



Welcome to **E-XFL.COM** 

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

## **Applications of Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

| Details                         |                                                                         |
|---------------------------------|-------------------------------------------------------------------------|
| Product Status                  | Obsolete                                                                |
| Core Processor                  | MPC8xx                                                                  |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                          |
| Speed                           | 80MHz                                                                   |
| Co-Processors/DSP               | Communications; CPM                                                     |
| RAM Controllers                 | DRAM                                                                    |
| Graphics Acceleration           | No                                                                      |
| Display & Interface Controllers | -                                                                       |
| Ethernet                        | 10Mbps (4)                                                              |
| SATA                            | -                                                                       |
| USB                             | -                                                                       |
| Voltage - I/O                   | 3.3V                                                                    |
| Operating Temperature           | 0°C ~ 95°C (TA)                                                         |
| Security Features               | -                                                                       |
| Package / Case                  | 357-BBGA                                                                |
| Supplier Device Package         | 357-PBGA (25x25)                                                        |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc860srvr80d4 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Overview

## 1 Overview

The MPC860 power quad integrated communications controller (PowerQUICC<sup>TM</sup>) is a versatile one-chip integrated microprocessor and peripheral combination designed for a variety of controller applications. It particularly excels in communications and networking systems. The PowerQUICC unit is referred to as the MPC860 in this hardware specification.

The MPC860 implements Power Architecture<sup>TM</sup> technology and contains a superset of Freescale's MC68360 quad integrated communications controller (QUICC), referred to here as the QUICC, RISC communications processor module (CPM). The CPU on the MPC860 is a 32-bit core built on Power Architecture technology that incorporates memory management units (MMUs) and instruction and data caches.. The CPM from the MC68360 QUICC has been enhanced by the addition of the inter-integrated controller (I<sup>2</sup>C) channel. The memory controller has been enhanced, enabling the MPC860 to support any type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket controller supports up to two sockets. A real-time clock has also been integrated.

Table 1 shows the functionality supported by the MPC860 family.

|          | Cache (              | (Kbytes)   | Ethe    | ernet  |     |     |                        |
|----------|----------------------|------------|---------|--------|-----|-----|------------------------|
| Part     | Instruction<br>Cache | Data Cache | 10T     | 10/100 | ATM | scc | Reference <sup>1</sup> |
| MPC860DE | 4                    | 4          | Up to 2 | _      | _   | 2   | 1                      |
| MPC860DT | 4                    | 4          | Up to 2 | 1      | Yes | 2   | 1                      |
| MPC860DP | 16                   | 8          | Up to 2 | 1      | Yes | 2   | 1                      |
| MPC860EN | 4                    | 4          | Up to 4 | _      | _   | 4   | 1                      |
| MPC860SR | 4                    | 4          | Up to 4 | _      | Yes | 4   | 1                      |
| MPC860T  | 4                    | 4          | Up to 4 | 1      | Yes | 4   | 1                      |
| MPC860P  | 16                   | 8          | Up to 4 | 1      | Yes | 4   | 1                      |
| MPC855T  | 4                    | 4          | 1       | 1      | Yes | 1   | 2                      |
|          |                      |            |         |        |     |     |                        |

**Table 1. MPC860 Family Functionality** 

Supporting documentation for these devices refers to the following:

<sup>1.</sup> MPC860 PowerQUICC Family User's Manual (MPC860UM, Rev. 3)

<sup>2.</sup> MPC855T User's Manual (MPC855TUM, Rev. 1)



#### **Features**

- System integration unit (SIU)
  - Bus monitor
  - Software watchdog
  - Periodic interrupt timer (PIT)
  - Low-power stop mode
  - Clock synthesizer
  - Decrementer, time base, and real-time clock (RTC)
  - Reset controller
  - IEEE 1149.1<sup>TM</sup> Std. test access port (JTAG)
- Interrupts
  - Seven external interrupt request (IRQ) lines
  - 12 port pins with interrupt capability
  - 23 internal interrupt sources
  - Programmable priority between SCCs
  - Programmable highest priority request
- 10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u® Standard (not available when using ATM over UTOPIA interface)
- ATM support compliant with ATM forum UNI 4.0 specification
  - Cell processing up to 50–70 Mbps at 50-MHz system clock
  - Cell multiplexing/demultiplexing
  - Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables OAM and software implementation of other protocols.
  - ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and unspecified bit rate (UBR) and providing control mechanisms enabling software support of available bit rate (ABR)
  - Physical interface support for UTOPIA (10/100-Mbps is not supported with this interface) and byte-aligned serial (for example, T1/E1/ADSL)
  - UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to four physical layer devices), connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system clock ratios of 1/2 or 1/3.
  - Serial-mode ATM connection supports transmission convergence (TC) function for T1/E1/ADSL lines, cell delineation, cell payload scrambling/descrambling, automatic idle/unassigned cell insertion/stripping, header error control (HEC) generation, checking, and statistics.
- Communications processor module (CPM)
  - RISC communications processor (CP)
  - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
  - Supports continuous mode transmission and reception on all serial channels



#### **Features**

- Allows dynamic changes
- Can be internally connected to six serial channels (four SCCs and two SMCs)
- Parallel interface port (PIP)
  - Centronics interface support
  - Supports fast connection between compatible ports on the MPC860 or the MC68360
- PCMCIA interface
  - Master (socket) interface, release 2.1 compliant
  - Supports two independent PCMCIA sockets
  - Supports eight memory or I/O windows
- Low power support
  - Full on—all units fully powered
  - Doze—core functional units disabled except time base decrementer, PLL, memory controller, RTC, and CPM in low-power standby
  - Sleep—all units disabled except RTC and PIT, PLL active for fast wake up
  - Deep sleep—all units disabled including PLL except RTC and PIT
  - Power down mode—all units powered down except PLL, RTC, PIT, time base, and decrementer
- Debug interface
  - Eight comparators: four operate on instruction address, two operate on data address, and two operate on data
  - Supports conditions:  $= \neq < >$
  - Each watchpoint can generate a break-point internally.
- 3.3-V operation with 5-V TTL compatibility except EXTAL and EXTCLK
- 357-pin ball grid array (BGA) package



### Table 4 shows the thermal characteristics for the MPC860.

Table 4. MPC860 Thermal Resistance Data

| Rating                           | Env                  | Environment             |                    |      | ZQ / VR<br>MPC860P | Unit |
|----------------------------------|----------------------|-------------------------|--------------------|------|--------------------|------|
| Mold Compound Thickness          |                      |                         |                    | 0.85 | 1.15               | mm   |
| Junction-to-ambient <sup>1</sup> | Natural convection   | Single-layer board (1s) | $R_{\theta JA}^2$  | 34   | 34                 | °C/W |
|                                  |                      | Four-layer board (2s2p) | $R_{\theta JMA}^3$ | 22   | 22                 |      |
|                                  | Airflow (200 ft/min) | Single-layer board (1s) | $R_{\theta JMA}^3$ | 27   | 27                 |      |
|                                  |                      | Four-layer board (2s2p) | $R_{\theta JMA}^3$ | 18   | 18                 |      |
| Junction-to-board 4              |                      | •                       | $R_{\theta JB}$    | 14   | 13                 |      |
| Junction-to-case <sup>5</sup>    |                      |                         | $R_{\theta JC}$    | 6    | 8                  |      |
| Junction-to-package top 6        | Natural convection   |                         | $\Psi_{JT}$        | 2    | 2                  |      |

Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance

<sup>&</sup>lt;sup>2</sup> Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

<sup>&</sup>lt;sup>3</sup> Per JEDEC JESD51-6 with the board horizontal.

<sup>&</sup>lt;sup>4</sup> Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.

<sup>&</sup>lt;sup>6</sup> Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2.



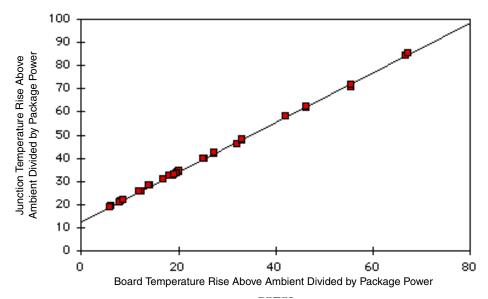



Figure 2. Effect of Board Temperature Rise on Thermal Behavior

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_I = T_B + (R_{\theta IB} \times P_D)$$

where:

 $R_{\theta JB}$  = junction-to-board thermal resistance (°C/W)

 $T_B$  = board temperature (°C)

 $P_D$  = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

# 7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

## 7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter ( $\Psi_{JT}$ ) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_{J} = T_{T} + (\Psi_{JT} \times P_{D})$$



#### **Table 7. Bus Operation Timings (continued)**

| Nivers | Obava ataviatia                                                                                                         | 33 1                            | ИНz | 40 I  | ИНz | 50 1  | ИНz | 66 I | ИНz | 11   |
|--------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----|-------|-----|-------|-----|------|-----|------|
| Num    | Characteristic                                                                                                          | Min                             | Max | Min   | Max | Min   | Max | Min  | Max | Unit |
| B35    | A(0:31), BADDR(28:30) to $\overline{\text{CS}}$ valid—as requested by control bit BST4 in the corresponding word in UPM |                                 | _   | 4.25  | _   | 3.00  | _   | 1.79 | _   | ns   |
| B35a   | A(0:31), BADDR(28:30), and D(0:31) to BS valid—as requested by control bit BST1 in the corresponding word in UPM        | equested by control bit BST1 in |     | 5.58  | _   | ns    |     |      |     |      |
| B35b   | A(0:31), BADDR(28:30), and D(0:31) to BS valid—as requested by control bit BST2 in the corresponding word in UPM        | 20.73                           | _   | 16.75 | _   | 13.00 |     | 9.36 | _   | ns   |
| B36    | A(0:31), BADDR(28:30), and D(0:31) to GPL valid—as requested by control bit GxT4 in the corresponding word in UPM       | 5.58                            | _   | 4.25  | _   | 3.00  | _   | 1.79 | _   | ns   |
| B37    | UPWAIT valid to CLKOUT falling edge <sup>9</sup>                                                                        | 6.00                            | _   | 6.00  | _   | 6.00  | _   | 6.00 | _   | ns   |
| B38    | CLKOUT falling edge to UPWAIT valid <sup>9</sup>                                                                        | 1.00                            | _   | 1.00  | _   | 1.00  | _   | 1.00 | _   | ns   |
| B39    | AS valid to CLKOUT rising edge <sup>10</sup>                                                                            | 7.00                            | _   | 7.00  | _   | 7.00  | _   | 7.00 | _   | ns   |
| B40    | A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge                                                           | 7.00                            | _   | 7.00  | _   | 7.00  | _   | 7.00 | _   | ns   |
| B41    | TS valid to CLKOUT rising edge (setup time)                                                                             | 7.00                            | _   | 7.00  | _   | 7.00  | _   | 7.00 | _   | ns   |
| B42    | CLKOUT rising edge to TS valid (hold time)                                                                              | 2.00                            | _   | 2.00  | _   | 2.00  | _   | 2.00 | _   | ns   |
| B43    | AS negation to memory controller signals negation                                                                       | _                               | TBD | _     | TBD | _     | TBD | _    | TBD | ns   |

<sup>&</sup>lt;sup>1</sup> Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.

<sup>&</sup>lt;sup>2</sup> If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.

<sup>&</sup>lt;sup>3</sup> The timings specified in B4 and B5 are based on full strength clock.

<sup>&</sup>lt;sup>4</sup> The timing for  $\overline{BR}$  output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for  $\overline{BG}$  output is relevant when the MPC860 is selected to work with internal bus arbiter.

<sup>&</sup>lt;sup>5</sup> The timing required for  $\overline{BR}$  input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing for  $\overline{BG}$  input is relevant when the MPC860 is selected to work with external bus arbiter.

<sup>&</sup>lt;sup>6</sup> The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.

<sup>&</sup>lt;sup>7</sup> The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

<sup>&</sup>lt;sup>8</sup> The timing B30 refers to  $\overline{CS}$  when ACS = 00 and to  $\overline{WE}$ (0:3) when CSNT = 0.

<sup>&</sup>lt;sup>9</sup> The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 18.

<sup>&</sup>lt;sup>10</sup> The  $\overline{\text{AS}}$  signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 21.



Figure 5 provides the timing for the synchronous output signals.

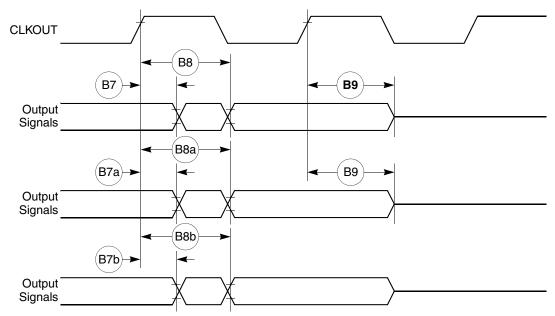



Figure 5. Synchronous Output Signals Timing

Figure 6 provides the timing for the synchronous active pull-up and open-drain output signals.

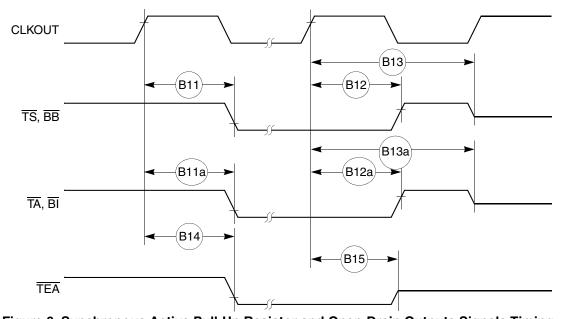



Figure 6. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing



Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

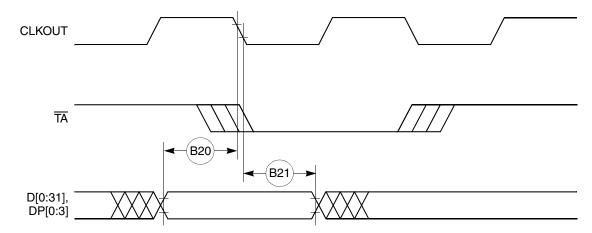



Figure 9. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM factors.

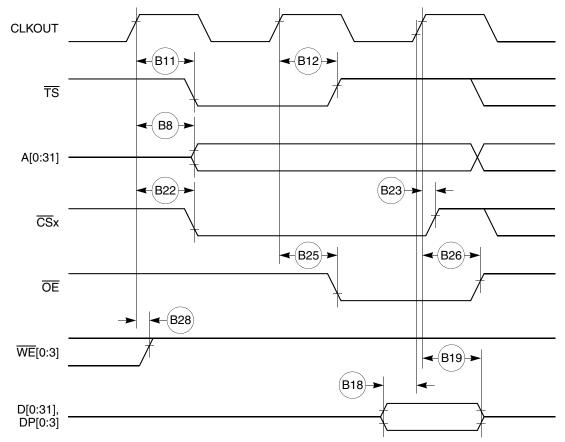



Figure 10. External Bus Read Timing (GPCM Controlled—ACS = 00)



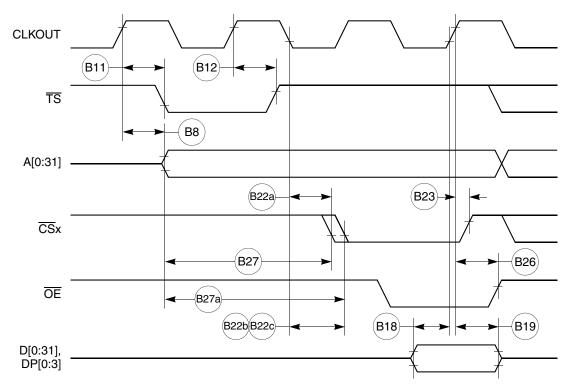



Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)



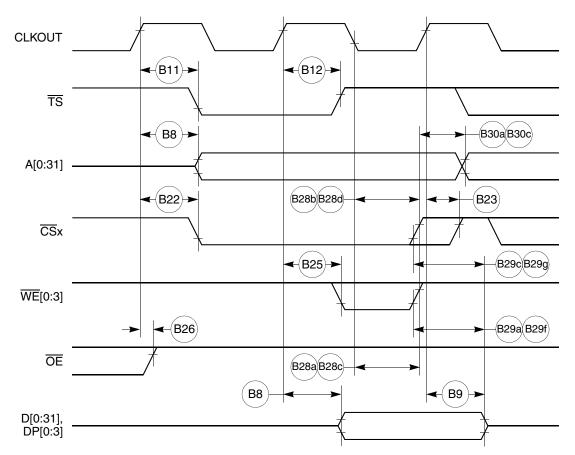



Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)



Figure 17 provides the timing for the external bus controlled by the UPM.

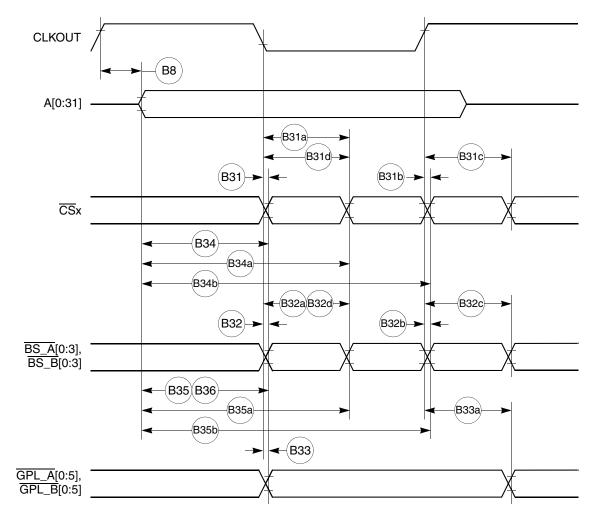



Figure 17. External Bus Timing (UPM Controlled Signals)



Table 9 shows the PCMCIA timing for the MPC860.

## **Table 9. PCMCIA Timing**

| Norma | Chavastavistis                                                                   | 33 I  | ИНz   | 40 I  | ИНz   | 50 I  | ИНz   | 66 MHz |       | Unit |
|-------|----------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|-------|------|
| Num   | Characteristic                                                                   | Min   | Max   | Min   | Max   | Min   | Max   | Min    | Max   | Unit |
| P44   | A(0:31), REG valid to PCMCIA Strobe asserted <sup>1</sup>                        |       | _     | 16.75 | _     | 13.00 | _     | 9.36   | _     | ns   |
| P45   | A(0:31), REG valid to ALE negation <sup>1</sup>                                  | 28.30 | _     | 23.00 | _     | 18.00 | _     | 13.15  | _     | ns   |
| P46   | CLKOUT to REG valid                                                              | 7.58  | 15.58 | 6.25  | 14.25 | 5.00  | 13.00 | 3.79   | 11.84 | ns   |
| P47   | CLKOUT to REG invalid                                                            | 8.58  | _     | 7.25  | _     | 6.00  | _     | 4.84   | _     | ns   |
| P48   | CLKOUT to CE1, CE2 asserted 7.58 15.58 6.25 14.25 5.00 13.00                     |       | 13.00 | 3.79  | 11.84 | ns    |       |        |       |      |
| P49   | CLKOUT to CE1, CE2 negated         7.58         15.58         6.25         14.25 |       | 5.00  | 13.00 | 3.79  | 11.84 | ns    |        |       |      |
| P50   | CLKOUT to PCOE, IORD, PCWE, IOWR assert time                                     | _     | 11.00 |       | 11.00 | _     | 11.00 | _      | 11.00 | ns   |
| P51   | CLKOUT to PCOE, IORD, PCWE, IOWR negate time                                     | 2.00  | 11.00 | 2.00  | 11.00 | 2.00  | 11.00 | 2.00   | 11.00 | ns   |
| P52   | CLKOUT to ALE assert time                                                        | 7.58  | 15.58 | 6.25  | 14.25 | 5.00  | 13.00 | 3.79   | 10.04 | ns   |
| P53   | CLKOUT to ALE negate time                                                        | _     | 15.58 |       | 14.25 | _     | 13.00 | _      | 11.84 | ns   |
| P54   | PCWE, IOWR negated to D(0:31) invalid <sup>1</sup>                               | 5.58  | _     | 4.25  | _     | 3.00  | _     | 1.79   | _     | ns   |
| P55   | WAITA and WAITB valid to CLKOUT rising edge <sup>1</sup>                         |       | _     | 8.00  | _     | 8.00  | _     | 8.00   | _     | ns   |
| P56   | CLKOUT rising edge to WAITA and WAITB invalid <sup>1</sup>                       | 2.00  | _     | 2.00  | _     | 2.00  | _     | 2.00   | _     | ns   |

<sup>1</sup> PSST = 1. Otherwise add PSST times cycle time. PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the  $\overline{WAITx}$  signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The  $\overline{\text{WAITx}}$  assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See Chapter 16, "PCMCIA Interface," in the MPC860 PowerQUICC<sup>TM</sup> Family User's Manual.

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10 34 Freescale Semiconductor



Figure 25 provides the PCMCIA access cycle timing for the external bus read.

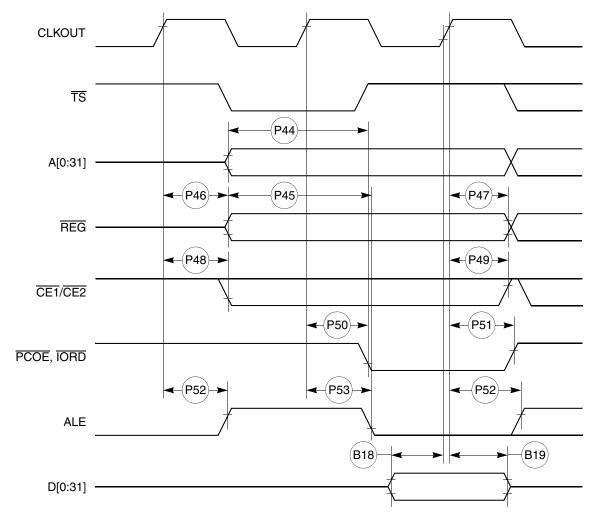



Figure 25. PCMCIA Access Cycle Timing External Bus Read



# Table 12 shows the reset timing for the MPC860.

## **Table 12. Reset Timing**

|     | Observation to the                                                                   | 33 N   | 1Hz   | 40 N   | 1Hz   | 50 N   | 1Hz   | 66 MHz |       |      |
|-----|--------------------------------------------------------------------------------------|--------|-------|--------|-------|--------|-------|--------|-------|------|
| Num | Characteristic                                                                       | Min    | Max   | Min    | Max   | Min    | Max   | Min    | Max   | Unit |
| R69 | CLKOUT to HRESET high impedance                                                      | _      | 20.00 | _      | 20.00 | _      | 20.00 | _      | 20.00 | ns   |
| R70 | CLKOUT to SRESET high impedance                                                      | _      | 20.00 | _      | 20.00 | _      | 20.00 | _      | 20.00 | ns   |
| R71 | RSTCONF pulse width                                                                  | 515.15 | _     | 425.00 |       | 340.00 | _     | 257.58 | _     | ns   |
| R72 |                                                                                      | _      | _     | _      | _     | _      | _     | _      | _     |      |
| R73 | Configuration data to HRESET rising edge setup time                                  | 504.55 | _     | 425.00 | _     | 350.00 | _     | 277.27 | _     | ns   |
| R74 | Configuration data to RSTCONF rising edge setup time                                 |        | _     | 350.00 | _     | 350.00 | _     | 350.00 | _     | ns   |
| R75 | Configuration data hold time after RSTCONF negation                                  | 0.00   | _     | 0.00   | _     | 0.00   | _     | 0.00   | _     | ns   |
| R76 | Configuration data hold time after HRESET negation                                   | 0.00   | _     | 0.00   | _     | 0.00   | _     | 0.00   | _     | ns   |
| R77 | HRESET and RSTCONF asserted to data out drive                                        | _      | 25.00 |        | 25.00 | _      | 25.00 | _      | 25.00 | ns   |
| R78 | RSTCONF negated to data out high impedance                                           | _      | 25.00 | _      | 25.00 | _      | 25.00 | _      | 25.00 | ns   |
| R79 | CLKOUT of last rising edge before chip three-state HRESET to data out high impedance |        | 25.00 | _      | 25.00 | _      | 25.00 | _      | 25.00 | ns   |
| R80 | DSDI, DSCK setup 90.91 —                                                             |        | _     | 75.00  | _     | 60.00  | _     | 45.45  | _     | ns   |
| R81 | DSDI, DSCK hold time                                                                 | 0.00   | _     | 0.00   | _     | 0.00   | _     | 0.00   | _     | ns   |
| R82 | SRESET negated to CLKOUT rising edge for DSDI and DSCK sample                        | 242.42 |       | 200.00 |       | 160.00 | _     | 121.21 | _     | ns   |



#### **IEEE 1149.1 Electrical Specifications**

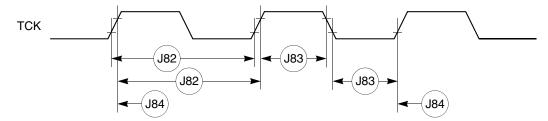



Figure 35. JTAG Test Clock Input Timing

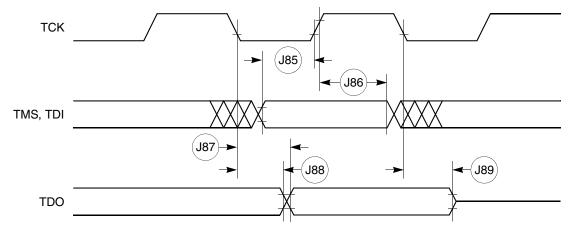



Figure 36. JTAG Test Access Port Timing Diagram

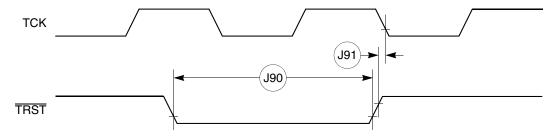



Figure 37. JTAG TRST Timing Diagram

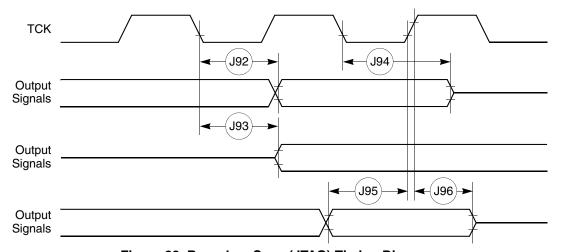



Figure 38. Boundary Scan (JTAG) Timing Diagram

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10



**CPM Electrical Characteristics** 

# 11.4 Baud Rate Generator AC Electrical Specifications

Table 17 provides the baud rate generator timings as shown in Figure 49.

**Table 17. Baud Rate Generator Timing** 

| Num   | Characteristic          | All Freq | Unit |      |
|-------|-------------------------|----------|------|------|
| Nulli | Characteristic          | Min      | Max  | Onit |
| 50    | BRGO rise and fall time | _        | 10   | ns   |
| 51    | BRGO duty cycle         | 40       | 60   | %    |
| 52    | BRGO cycle              | 40       | _    | ns   |

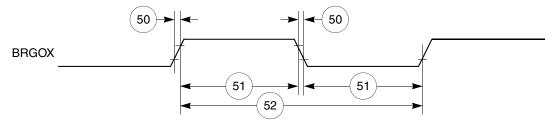



Figure 49. Baud Rate Generator Timing Diagram

# 11.5 Timer AC Electrical Specifications

Table 18 provides the general-purpose timer timings as shown in Figure 50.

**Table 18. Timer Timing** 

| Num   | Characteristic               | All Freq | Unit |       |
|-------|------------------------------|----------|------|-------|
| Nulli | Characteristic               | Min      | Max  | Oilit |
| 61    | TIN/TGATE rise and fall time | 10       | _    | ns    |
| 62    | TIN/TGATE low time           | 1        | _    | CLK   |
| 63    | TIN/TGATE high time          | 2        | _    | CLK   |
| 64    | TIN/TGATE cycle time         | 3        | _    | CLK   |
| 65    | CLKO low to TOUT valid       | 3        | 25   | ns    |



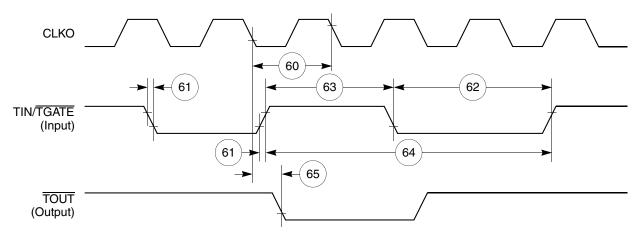



Figure 50. CPM General-Purpose Timers Timing Diagram

# 11.6 Serial Interface AC Electrical Specifications

Table 19 provides the serial interface timings as shown in Figure 51 through Figure 55.

**Table 19. SI Timing** 

| Num | Characteristic                                           | All Freq | luencies              | Unit |
|-----|----------------------------------------------------------|----------|-----------------------|------|
| Num | Characteristic                                           | Min      | Max                   | Unit |
| 70  | L1RCLK, L1TCLK frequency (DSC = 0) <sup>1, 2</sup>       | _        | SYNCCLK/2.5           | MHz  |
| 71  | L1RCLK, L1TCLK width low (DSC = 0) <sup>2</sup>          | P + 10   | _                     | ns   |
| 71a | L1RCLK, L1TCLK width high (DSC = 0) <sup>3</sup>         | P + 10   | _                     | ns   |
| 72  | L1TXD, L1ST(1-4), L1RQ, L1CLKO rise/fall time            | _        | 15.00                 | ns   |
| 73  | L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)   | 20.00    | _                     | ns   |
| 74  | L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time) | 35.00    | _                     | ns   |
| 75  | L1RSYNC, L1TSYNC rise/fall time                          | _        | 15.00                 | ns   |
| 76  | L1RXD valid to L1CLK edge (L1RXD setup time)             | 17.00    | _                     | ns   |
| 77  | L1CLK edge to L1RXD invalid (L1RXD hold time)            | 13.00    | _                     | ns   |
| 78  | L1CLK edge to L1ST(1-4) valid <sup>4</sup>               | 10.00    | 45.00                 | ns   |
| 78A | L1SYNC valid to L1ST(1-4) valid                          | 10.00    | 45.00                 | ns   |
| 79  | L1CLK edge to L1ST(1-4) invalid                          | 10.00    | 45.00                 | ns   |
| 80  | L1CLK edge to L1TXD valid                                | 10.00    | 55.00                 | ns   |
| 80A | L1TSYNC valid to L1TXD valid <sup>4</sup>                | 10.00    | 55.00                 | ns   |
| 81  | L1CLK edge to L1TXD high impedance                       | 0.00     | 42.00                 | ns   |
| 82  | L1RCLK, L1TCLK frequency (DSC =1 )                       | _        | 16.00 or<br>SYNCCLK/2 | MHz  |
| 83  | L1RCLK, L1TCLK width low (DSC = 1)                       | P + 10   | _                     | ns   |
| 83a | L1RCLK, L1TCLK width high (DSC = 1) <sup>3</sup>         | P + 10   | _                     | ns   |



#### **SCC in NMSI Mode Electrical Specifications** 11.7

Table 20 provides the NMSI external clock timing.

**Table 20. NMSI External Clock Timing** 

| Neves | Ohawaatawiatia                                       | All Freq      | uencies | I I m i t |
|-------|------------------------------------------------------|---------------|---------|-----------|
| Num   | Characteristic                                       | Min           | Max     | Unit      |
| 100   | RCLK1 and TCLK1 width high <sup>1</sup>              | 1/SYNCCLK     | _       | ns        |
| 101   | RCLK1 and TCLK1 width low                            | 1/SYNCCLK + 5 | _       | ns        |
| 102   | RCLK1 and TCLK1 rise/fall time                       | _             | 15.00   | ns        |
| 103   | TXD1 active delay (from TCLK1 falling edge)          | 0.00          | 50.00   | ns        |
| 104   | RTS1 active/inactive delay (from TCLK1 falling edge) | 0.00          | 50.00   | ns        |
| 105   | CTS1 setup time to TCLK1 rising edge                 | 5.00          | _       | ns        |
| 106   | RXD1 setup time to RCLK1 rising edge                 | 5.00          | _       | ns        |
| 107   | RXD1 hold time from RCLK1 rising edge <sup>2</sup>   | 5.00          | _       | ns        |
| 108   | CD1 setup Time to RCLK1 rising edge                  | 5.00          | _       | ns        |

Table 21 provides the NMSI internal clock timing.

**Table 21. NMSI Internal Clock Timing** 

| Num | Characteristic                                       | All Freq | Heit      |      |
|-----|------------------------------------------------------|----------|-----------|------|
| Num | Characteristic                                       | Min      | Max       | Unit |
| 100 | RCLK1 and TCLK1 frequency <sup>1</sup>               | 0.00     | SYNCCLK/3 | MHz  |
| 102 | RCLK1 and TCLK1 rise/fall time                       | _        | _         | ns   |
| 103 | TXD1 active delay (from TCLK1 falling edge)          | 0.00     | 30.00     | ns   |
| 104 | RTS1 active/inactive delay (from TCLK1 falling edge) | 0.00     | 30.00     | ns   |
| 105 | CTS1 setup time to TCLK1 rising edge                 | 40.00    | _         | ns   |
| 106 | RXD1 setup time to RCLK1 rising edge                 | 40.00    | _         | ns   |
| 107 | RXD1 hold time from RCLK1 rising edge <sup>2</sup>   | 0.00     | _         | ns   |
| 108 | CD1 setup time to RCLK1 rising edge                  | 40.00    | _         | ns   |

<sup>&</sup>lt;sup>1</sup> The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 3/1.

The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.
 Also applies to CD and CTS hold time when they are used as external sync signals.

 $<sup>^2</sup>$  Also applies to  $\overline{\text{CD}}$  and  $\overline{\text{CTS}}$  hold time when they are used as external sync signals.



#### **UTOPIA AC Electrical Specifications**

Figure 70 shows signal timings during UTOPIA receive operations.

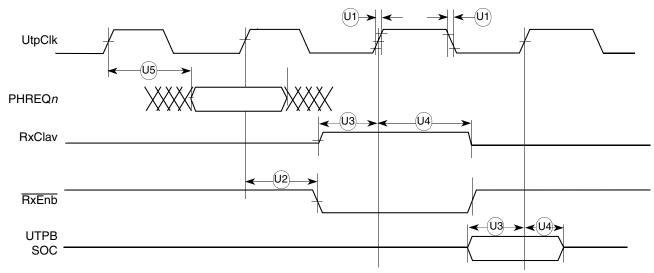



Figure 70. UTOPIA Receive Timing

Figure 71 shows signal timings during UTOPIA transmit operations.

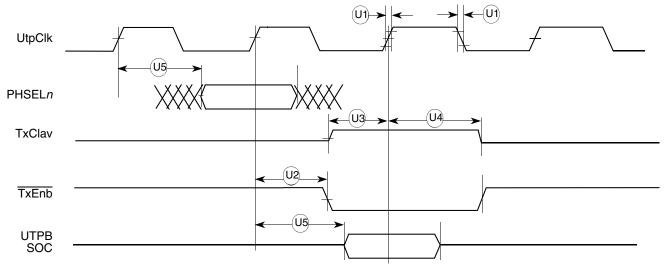



Figure 71. UTOPIA Transmit Timing

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10



**Document Revision History** 

# 15 Document Revision History

Table 35 lists significant changes between revisions of this hardware specification.

**Table 35. Document Revision History** 

| Revision | Date    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10       | 09/2015 | In Table 34, moved MPC855TCVR50D4 and MPC855TCVR66D4 under the extended temperature (–40° to 95°C) and removed MC860ENCVR50D4R2 from the normal temperature Tape and Reel.                                                                                                                                                                                                                                                                                                                               |
| 9        | 10/2011 | Updated orderable part numbers in Table 34, "MPC860 Family Package/Frequency Availability."                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8        | 08/2007 | <ul> <li>Updated template.</li> <li>On page 1, added a second paragraph.</li> <li>After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 1) and renumbered the rest of the figures.</li> <li>In Figure 3, changed all reference voltage measurement points from 0.2 and 0.8 V to 50% level.</li> <li>In Table 16, changed num 46 description to read, "TA assertion to rising edge"</li> <li>In Figure 46, changed TA to reflect the rising edge of the clock.</li> </ul> |
| 7.0      | 9/2004  | <ul> <li>Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL Max of the I2C Standard</li> <li>Replaced the thermal characteristics in Table 4 by the ZQ package</li> <li>Add the new parts to the Ordering and Availablity Chart in Table 34</li> <li>Added the mechanical spec of the ZQ package in Figure 78</li> <li>Removed all of the old revisions from Table 5</li> </ul>                                                                                         |
| 6.3      | 9/2003  | Added Section 11.2 on the Port C interrupt pins     Nontechnical reformatting                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.2      | 8/2003  | Changed B28a through B28d and B29d to show that TRLX can be 0 or 1     Changed reference documentation to reflect the Rev 2 MPC860 PowerQUICC Family Users Manual     Nontechnical reformatting                                                                                                                                                                                                                                                                                                          |
| 6.1      | 11/2002 | <ul> <li>Corrected UTOPIA RXenb* and TXenb* timing values</li> <li>Changed incorrect usage of Vcc to Vdd</li> <li>Corrected dual port RAM to 8 Kbytes</li> </ul>                                                                                                                                                                                                                                                                                                                                         |
| 6        | 10/2002 | Added the MPC855T. Corrected Figure 26 on page -36.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.1      | 11/2001 | Revised template format, removed references to MAC functionality, changed Table 7 B23 max value @ 66 MHz from 2ns to 8ns, added this revision history table                                                                                                                                                                                                                                                                                                                                              |

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10