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2 Features
The following list summarizes the key MPC860 features:

• Embedded single-issue, 32-bit core (implementing the Power Architecture technology) with 
thirty-two 32-bit general-purpose registers (GPRs)
— The core performs branch prediction with conditional prefetch without conditional execution.
— 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)

– 16-Kbyte instruction caches are four-way, set-associative with 256 sets; 4-Kbyte instruction 
caches are two-way, set-associative with 128 sets.

– 8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data caches are 
two-way, set-associative with 128 sets.

– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) 
cache blocks.

– Caches are physically addressed, implement a least recently used (LRU) replacement 
algorithm, and are lockable on a cache block basis.

— MMUs with 32-entry TLB, fully-associative instruction, and data TLBs
— MMUs support multiple page sizes of 4-, 16-, and 512-Kbytes, and 8-Mbytes; 16 virtual 

address spaces and 16 protection groups
— Advanced on-chip-emulation debug mode

• Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
• 32 address lines
• Operates at up to 80 MHz
• Memory controller (eight banks)

— Contains complete dynamic RAM (DRAM) controller
— Each bank can be a chip select or RAS to support a DRAM bank.
— Up to 15 wait states programmable per memory bank
— Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and other memory 

devices
— DRAM controller programmable to support most size and speed memory interfaces
— Four CAS lines, four WE lines, and one OE line
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
— Variable block sizes (32 Kbytes to 256 Mbytes)
— Selectable write protection
— On-chip bus arbitration logic

• General-purpose timers
— Four 16-bit timers or two 32-bit timers
— Gate mode can enable/disable counting
— Interrupt can be masked on reference match and event capture.
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7 Thermal Calculation and Measurement
For the following discussions, PD = (VDD × IDD) + PI/O, where PI/O is the power dissipation of the I/O 
drivers.

7.1 Estimation with Junction-to-Ambient Thermal Resistance
An estimation of the chip junction temperature, TJ, in ºC can be obtained from the equation:

TJ = TA + (RθJA × PD)

where:
TA = ambient temperature (ºC)
RθJA = package junction-to-ambient thermal resistance (ºC/W)
PD = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy 
estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated 
that errors of a factor of two (in the quantity TJ – TA) are possible.

7.2 Estimation with Junction-to-Case Thermal Resistance
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal 
resistance and a case-to-ambient thermal resistance:

RθJA = RθJC + RθCA

where:
RθJA = junction-to-ambient thermal resistance (ºC/W)
RθJC = junction-to-case thermal resistance (ºC/W)
RθCA = case-to-ambient thermal resistance (ºC/W)

RθJC is device related and cannot be influenced by the user. The user adjusts the thermal environment to 
affect the case-to-ambient thermal resistance, RθCA. For instance, the user can change the airflow around 
the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the 
thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful 
for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink 
to the ambient environment. For most packages, a better model is required.

7.3 Estimation with Junction-to-Board Thermal Resistance
A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a 
two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The 
junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial 
amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance 
describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has 
been observed that the thermal performance of most plastic packages, especially PBGA packages, is 
strongly dependent on the board temperature; see Figure 2.
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Figure 2. Effect of Board Temperature Rise on Thermal Behavior

If the board temperature is known, an estimate of the junction temperature in the environment can be made 
using the following equation:

TJ = TB + (RθJB × PD)

where:
RθJB = junction-to-board thermal resistance (ºC/W)
TB = board temperature (ºC)
PD = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, 
acceptable predictions of junction temperature can be made. For this method to work, the board and board 
mounting must be similar to the test board used to determine the junction-to-board thermal resistance, 
namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground 
plane.

7.4 Estimation Using Simulation
When the board temperature is not known, a thermal simulation of the application is needed. The simple 
two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and 
complex model of the package can be used in the thermal simulation.

7.5 Experimental Determination
To determine the junction temperature of the device in the application after prototypes are available, the 
thermal characterization parameter (ΨJT) can be used to determine the junction temperature with a 
measurement of the temperature at the top center of the package case using the following equation:

TJ = TT + (ΨJT × PD)
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where:
ΨJT = thermal characterization parameter
TT = thermocouple temperature on top of package
PD = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge 
type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned 
so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the 
thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is 
placed flat against the package case to avoid measurement errors caused by cooling effects of the 
thermocouple wire.

7.6 References
Semiconductor Equipment and Materials International (415) 964-5111
805 East Middlefield Rd.
Mountain View, CA 94043
MIL-SPEC and EIA/JESD (JEDEC) Specifications 800-854-7179 or 
(Available from Global Engineering Documents) 303-397-7956
JEDEC Specifications http://www.jedec.org
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an 

Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance 

and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, 
pp. 212–220. 

8 Layout Practices
Each VDD pin on the MPC860 should be provided with a low-impedance path to the board’s supply. Each 
GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive 
distinct groups of logic on the chip. The VDD power supply should be bypassed to ground using at least 
four 0.1 µF-bypass capacitors located as close as possible to the four sides of the package. The capacitor 
leads and associated printed circuit traces connecting to chip VDD and GND should be kept to less than half 
an inch per capacitor lead. A four-layer board employing two inner layers as VCC and GND planes is 
recommended.

All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection 
length should be minimized in order to minimize undershoot and reflections caused by these fast output 
switching times. This recommendation particularly applies to the address and data buses. Maximum PC 
trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as 
well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes 
especially critical in systems with higher capacitive loads because these loads create higher transient 
currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. 
Special care should be taken to minimize the noise levels on the PLL supply pins.
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9 Bus Signal Timing
Table 7 provides the bus operation timing for the MPC860 at 33, 40, 50, and 66 MHz.

The maximum bus speed supported by the MPC860 is 66 MHz. Higher-speed parts must be operated in 
half-speed bus mode (for example, an MPC860 used at 80 MHz must be configured for a 40-MHz bus).

The timing for the MPC860 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for 
minimum delays.

Table 7. Bus Operation Timings

Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz

Unit
Min Max Min Max Min Max Min Max

B1 CLKOUT period 30.30 30.30 25.00 30.30 20.00 30.30 15.15 30.30 ns

B1a EXTCLK to CLKOUT phase skew 
(EXTCLK > 15 MHz and MF <= 2) 

–0.90 0.90 –0.90 0.90 –0.90 0.90 –0.90 0.90 ns

B1b EXTCLK to CLKOUT phase skew 
(EXTCLK > 10 MHz and MF < 10)

–2.30 2.30 –2.30 2.30 –2.30 2.30 –2.30 2.30 ns

B1c CLKOUT phase jitter (EXTCLK > 15 MHz 
and MF <= 2)1

–0.60 0.60 –0.60 0.60 –0.60 0.60 –0.60 0.60 ns

B1d CLKOUT phase jitter1 –2.00 2.00 –2.00 2.00 –2.00 2.00 –2.00 2.00 ns

B1e CLKOUT frequency jitter (MF < 10)1 — 0.50 — 0.50 — 0.50 — 0.50 %

B1f CLKOUT frequency jitter (10 < MF < 500)1 — 2.00 — 2.00 — 2.00 — 2.00 %

B1g CLKOUT frequency jitter (MF > 500)1 — 3.00 — 3.00 — 3.00 — 3.00 %

B1h Frequency jitter on EXTCLK2 — 0.50 — 0.50 — 0.50 — 0.50 %

B2 CLKOUT pulse width low 12.12 — 10.00 — 8.00 — 6.06 — ns

B3 CLKOUT width high 12.12 — 10.00 — 8.00 — 6.06 — ns

B4 CLKOUT rise time3 — 4.00 — 4.00 — 4.00 — 4.00 ns

B533 CLKOUT fall time3 — 4.00 — 4.00 — 4.00 — 4.00 ns

B7 CLKOUT to A(0:31), BADDR(28:30), 
RD/WR, BURST, D(0:31), DP(0:3) invalid

7.58 — 6.25 — 5.00 — 3.80 — ns

B7a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3), 
BDIP, PTR invalid

7.58 — 6.25 — 5.00 — 3.80 — ns

B7b CLKOUT to BR, BG, FRZ, VFLS(0:1), 
VF(0:2) IWP(0:2), LWP(0:1), STS invalid 4

7.58 — 6.25 — 5.00 — 3.80 — ns

B8 CLKOUT to A(0:31), BADDR(28:30) 
RD/WR, BURST, D(0:31), DP(0:3) valid

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns

B8a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3) 
BDIP, PTR valid

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns

B8b CLKOUT to BR, BG, VFLS(0:1), VF(0:2), 
IWP(0:2), FRZ, LWP(0:1), STS valid 4

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
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B23 CLKOUT rising edge to CS negated GPCM 
read access, GPCM write access ACS = 00, 
TRLX = 0, and CSNT = 0

2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00 ns

B24 A(0:31) and BADDR(28:30) to CS asserted 
GPCM ACS = 10, TRLX = 0

5.58 — 4.25 — 3.00 — 1.79 — ns

B24a A(0:31) and BADDR(28:30) to CS asserted 
GPCM ACS = 11, TRLX = 0

13.15 — 10.50 — 8.00 — 5.58 — ns

B25 CLKOUT rising edge to OE, WE(0:3) 
asserted

— 9.00 — 9.00 — 9.00 — 9.00 ns

B26 CLKOUT rising edge to OE negated 2.00 9.00 2.00 9.00 2.00 9.00 2.00 9.00 ns

B27 A(0:31) and BADDR(28:30) to CS asserted 
GPCM ACS = 10, TRLX = 1

35.88 — 29.25 — 23.00 — 16.94 — ns

B27a A(0:31) and BADDR(28:30) to CS asserted 
GPCM ACS = 11, TRLX = 1

43.45 — 35.50 — 28.00 — 20.73 — ns

B28 CLKOUT rising edge to WE(0:3) negated 
GPCM write access CSNT = 0

— 9.00 — 9.00 — 9.00 — 9.00 ns

B28a CLKOUT falling edge to WE(0:3) negated 
GPCM write access TRLX = 0, 1, CSNT = 1, 
EBDF = 0

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns

B28b CLKOUT falling edge to CS negated GPCM 
write access TRLX = 0, 1, CSNT = 1, 
ACS = 10, or ACS = 11, EBDF = 0

— 14.33 — 13.00 — 11.75 — 10.54 ns

B28c CLKOUT falling edge to WE(0:3) negated 
GPCM write access TRLX = 0, 1, CSNT = 1 
write access TRLX = 0, CSNT = 1, 
EBDF = 1

10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns

B28d CLKOUT falling edge to CS negated GPCM 
write access TRLX = 0, 1, CSNT = 1, 
ACS = 10, or ACS = 11, EBDF = 1

— 17.99 — 16.00 — 14.13 — 12.31 ns

B29 WE(0:3) negated to D(0:31), DP(0:3) High-Z 
GPCM write access CSNT = 0, EBDF = 0

5.58 — 4.25 — 3.00 — 1.79 — ns

B29a WE(0:3) negated to D(0:31), DP(0:3) High-Z 
GPCM write access, TRLX = 0, CSNT = 1, 
EBDF = 0

13.15 — 10.5 — 8.00 — 5.58 — ns

B29b CS negated to D(0:31), DP(0:3), High-Z 
GPCM write access, ACS = 00, TRLX = 0, 1, 
and CSNT = 0

5.58 — 4.25 — 3.00 — 1.79 — ns

B29c CS negated to D(0:31), DP(0:3) High-Z 
GPCM write access, TRLX = 0, CSNT = 1, 
ACS = 10, or ACS = 11, EBDF = 0

13.15 — 10.5 — 8.00 — 5.58 — ns

Table 7. Bus Operation Timings (continued)

Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz

Unit
Min Max Min Max Min Max Min Max
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B31a CLKOUT falling edge to CS valid—as 
requested by control bit CST1 in the 
corresponding word in UPM

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns

B31b CLKOUT rising edge to CS valid—as 
requested by control bit CST2 in the 
corresponding word in UPM

1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns

B31c CLKOUT rising edge to CS valid—as 
requested by control bit CST3 in the 
corresponding word in UPM

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns

B31d CLKOUT falling edge to CS valid—as 
requested by control bit CST1 in the 
corresponding word in UPM, EBDF = 1

13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns

B32 CLKOUT falling edge to BS valid—as 
requested by control bit BST4 in the 
corresponding word in UPM

1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns

B32a CLKOUT falling edge to BS valid—as 
requested by control bit BST1 in the 
corresponding word in UPM, EBDF = 0

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns

B32b CLKOUT rising edge to BS valid—as 
requested by control bit BST2 in the 
corresponding word in UPM

1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns

B32c CLKOUT rising edge to BS valid—as 
requested by control bit BST3 in the 
corresponding word in UPM

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns

B32d CLKOUT falling edge to BS valid—as 
requested by control bit BST1 in the 
corresponding word in UPM, EBDF = 1

13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns

B33 CLKOUT falling edge to GPL valid—as 
requested by control bit GxT4 in the 
corresponding word in UPM

1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns

B33a CLKOUT rising edge to GPL valid—as 
requested by control bit GxT3 in the 
corresponding word in UPM

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns

B34 A(0:31), BADDR(28:30), and D(0:31) to CS 
valid—as requested by control bit CST4 in 
the corresponding word in UPM

5.58 — 4.25 — 3.00 — 1.79 — ns

B34a A(0:31), BADDR(28:30), and D(0:31) to CS 
valid—as requested by control bit CST1 in 
the corresponding word in UPM

13.15 — 10.50 — 8.00 — 5.58 — ns

B34b A(0:31), BADDR(28:30), and D(0:31) to CS 
valid—as requested by control bit CST2 in 
the corresponding word in UPM

20.73 — 16.75 — 13.00 — 9.36 — ns

Table 7. Bus Operation Timings (continued)

Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz

Unit
Min Max Min Max Min Max Min Max



MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

Freescale Semiconductor 25
 

Bus Signal Timing

Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)

Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)
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Figure 20 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 20. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 21 provides the timing for the asynchronous external master memory access controlled by the 
GPCM.

Figure 21. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)

Figure 22 provides the timing for the asynchronous external master control signals negation.

Figure 22. Asynchronous External Master—Control Signals Negation Timing
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Figure 35. JTAG Test Clock Input Timing

Figure 36. JTAG Test Access Port Timing Diagram

Figure 37. JTAG TRST Timing Diagram

Figure 38. Boundary Scan (JTAG) Timing Diagram
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11 CPM Electrical Characteristics
This section provides the AC and DC electrical specifications for the communications processor module 
(CPM) of the MPC860.

11.1 PIP/PIO AC Electrical Specifications
Table 14 provides the PIP/PIO AC timings as shown in Figure 39 through Figure 43.

Figure 39. PIP Rx (Interlock Mode) Timing Diagram

Table 14. PIP/PIO Timing

Num Characteristic
All Frequencies

Unit
Min Max

21 Data-in setup time to STBI low 0 — ns

22 Data-in hold time to STBI high 2.5 – t31

1 t3 = Specification 23.

— CLK

23 STBI pulse width 1.5 — CLK

24 STBO pulse width 1 CLK – 5 ns — ns

25 Data-out setup time to STBO low 2 — CLK

26 Data-out hold time from STBO high 5 — CLK

27 STBI low to STBO low (Rx interlock) — 2 CLK

28 STBI low to STBO high (Tx interlock) 2 — CLK

29 Data-in setup time to clock high 15 — ns

30 Data-in hold time from clock high 7.5 — ns

31 Clock low to data-out valid (CPU writes data, control, or direction) — 25 ns

DATA-IN

STBI

23

24

22

STBO

27

21
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Figure 40. PIP Tx (Interlock Mode) Timing Diagram

Figure 41. PIP Rx (Pulse Mode) Timing Diagram

Figure 42. PIP TX (Pulse Mode) Timing Diagram
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Figure 45. IDMA External Requests Timing Diagram

Figure 46. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

42 SDACK assertion delay from clock high — 12 ns

43 SDACK negation delay from clock low — 12 ns

44 SDACK negation delay from TA low — 20 ns

45 SDACK negation delay from clock high — 15 ns

46 TA assertion to rising edge of the clock setup time (applies to external TA) 7 — ns

Table 16. IDMA Controller Timing (continued)

Num Characteristic
All Frequencies

Unit
Min Max

41

40

DREQ
(Input)

CLKO
(Output)

DATA

42

46

43

CLKO
(Output)

TS
(Output)

R/W
(Output)

SDACK

TA
(Input)
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Figure 51. SI Receive Timing Diagram with Normal Clocking (DSC = 0)

84 L1CLK edge to L1CLKO valid (DSC = 1) — 30.00 ns

85 L1RQ valid before falling edge of L1TSYNC4 1.00 — L1TCL
K

86 L1GR setup time2 42.00 — ns

87 L1GR hold time 42.00 — ns

88 L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0) — 0.00 ns

1 The ratio SYNCCLK/L1RCLK must be greater than 2.5/1.
2 These specs are valid for IDL mode only.
3 Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.
4 These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes later.

Table 19. SI Timing (continued)

Num Characteristic
All Frequencies

Unit
 Min Max

L1RXD
(Input)

L1RCLK
(FE = 0, CE = 0)

(Input)

L1RCLK
(FE = 1, CE = 1)

(Input)

L1RSYNC
(Input)

L1ST(4–1)
(Output)

71

72

70 71a

RFSD=1

75

73

74 77

78

76

79

BIT0
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Figure 52. SI Receive Timing with Double-Speed Clocking (DSC = 1)
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Figure 55. IDL Timing
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Figure 58. HDLC Bus Timing Diagram

11.8 Ethernet Electrical Specifications
Table 22 provides the Ethernet timings as shown in Figure 59 through Figure 63.

Table 22. Ethernet Timing

Num Characteristic
All Frequencies

Unit
Min Max

120 CLSN width high 40 — ns

121 RCLK1 rise/fall time — 15 ns

122 RCLK1 width low 40 — ns

123 RCLK1 clock period1 80 120 ns

124 RXD1 setup time 20 — ns

125 RXD1 hold time 5 — ns

126 RENA active delay (from RCLK1 rising edge of the last data bit) 10 — ns

127 RENA width low 100 — ns

128 TCLK1 rise/fall time — 15 ns

129 TCLK1 width low 40 — ns

130 TCLK1 clock period1 99 101 ns

131 TXD1 active delay (from TCLK1 rising edge) 10 50 ns

132 TXD1 inactive delay (from TCLK1 rising edge) 10 50 ns

133 TENA active delay (from TCLK1 rising edge) 10 50 ns

134 TENA inactive delay (from TCLK1 rising edge) 10 50 ns

TCLK1

CTS1
(Echo Input)

102

100

104

TxD1
(Output)

102 101

RTS1
 (Output)

103

104107

105
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Figure 61. Ethernet Transmit Timing Diagram

Figure 62. CAM Interface Receive Start Timing Diagram

Figure 63. CAM Interface REJECT Timing Diagram
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128

TENA(RTS1)
 (Input)

Notes:
Transmit clock invert (TCI) bit in GSMR is set.
If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in
the buffer descriptor at the end of the frame transmission.

1.
2.

RENA(CD1)
 (Input)

133 134
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13.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN, 
MII_TX_ER, MII_TX_CLK)

The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is 
no minimum frequency requirement. In addition, the processor clock frequency must exceed the 
MII_TX_CLK frequency – 1%.

Table 30 provides information on the MII transmit signal timing.

Figure 73 shows the MII transmit signal timing diagram.

Figure 73. MII Transmit Signal Timing Diagram

Table 30. MII Transmit Signal Timing

Num Characteristic Min Max Unit

M5 MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid 5 — ns

M6 MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid — 25

M7 MII_TX_CLK pulse width high 35 65% MII_TX_CLK 
period

M8 MII_TX_CLK pulse width low 35% 65% MII_TX_CLK 
period

M6

MII_TX_CLK (Input)

MII_TXD[3:0] (Outputs)
MII_TX_EN
MII_TX_ER

M5

M7

M8

RMII_REFCLK
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14.3 Mechanical Dimensions of the PBGA Package
Figure 77 shows the mechanical dimensions of the ZP PBGA package.

Figure 77. Mechanical Dimensions and Bottom Surface Nomenclature of the ZP PBGA Package
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NOTE
1. Dimensions and tolerance per ASME Y14.5M, 1994.

2. Dimensions in millimeters.

3. Dimension b is the maximum solder ball diameter 
measured parallel to data C.

DIM MIN MAX
MILLIMETERS

A --- 2.05
0.50 0.70

A2 0.95 1.35
A3 0.70 0.90
b 0.60 0.90
D 25.00 BSC

D1 22.86 BSC
D2 22.40 22.60
e 1.27 BSC
E 25.00 BSC

E1 22.86 BSC
E2 22.40 22.60

A1


