NXP USA Inc. - KMPC860TZQ80D4 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	80MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	·
USB	·
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc860tzq80d4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Dissipation

5 **Power Dissipation**

Table 5 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1, where CPU frequency is twice the bus speed.

Die Revision	Frequency (MHz)	Typical ¹	Maximum ²	Unit
D.4	50	656	735	mW
(1:1 mode)	66	TBD	TBD	mW
D.4	66	722	762	mW
(2:1 mode)	80	851	909	mW

Table 5. Power Dissipation (PD)

¹ Typical power dissipation is measured at 3.3 V.

² Maximum power dissipation is measured at 3.5 V.

NOTE

Values in Table 5 represent V_{DDL} -based power dissipation and do not include I/O power dissipation over V_{DDH} . I/O power dissipation varies widely by application due to buffer current, depending on external circuitry.

6 DC Characteristics

Table 6 provides the DC electrical characteristics for the MPC860.

 Table 6. DC Electrical Specifications

Characteristic	Symbol	Min	Мах	Unit
Operating voltage at 40 MHz or less	V _{DDH} , V _{DDL} , V _{DDSYN}	3.0	3.6	V
	KAPWR (power-down mode)	2.0	3.6	V
	KAPWR (all other operating modes)	V _{DDH} – 0.4	V _{DDH}	V
Operating voltage greater than 40 MHz	V _{DDH} , V _{DDL} , KAPWR, V _{DDSYN}	3.135	3.465	V
	KAPWR (power-down mode)	2.0	3.6	V
	KAPWR (all other operating modes)	V _{DDH} – 0.4	V _{DDH}	V
Input high voltage (all inputs except EXTAL and EXTCLK)	V _{IH}	2.0	5.5	V
Input low voltage ¹	V _{IL}	GND	0.8	V
EXTAL, EXTCLK input high voltage	V _{IHC}	$0.7 imes (V_{DDH})$	V _{DDH} + 0.3	V
Input leakage current, $V_{in} = 5.5 \text{ V}$ (except TMS, TRST, DSCK, and DSDI pins)	l _{in}	_	100	μA

Layout Practices

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International	(415) 964-5111
805 East Middlefield Rd.	
Mountain View, CA 94043	
MIL-SPEC and EIA/JESD (JEDEC) Specifications	800-854-7179 or
(Available from Global Engineering Documents)	303-397-7956
JEDEC Specifications	http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

8 Layout Practices

Each V_{DD} pin on the MPC860 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1 µF-bypass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. A four-layer board employing two inner layers as V_{CC} and GND planes is recommended.

All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

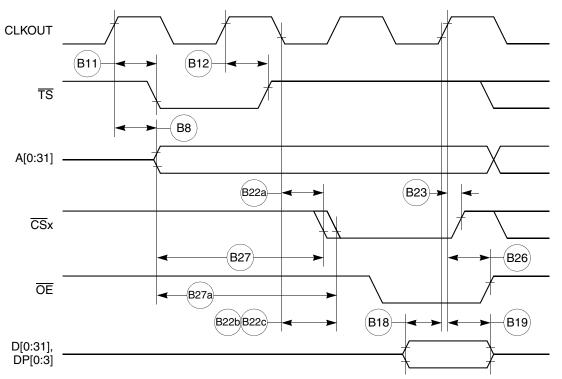


Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

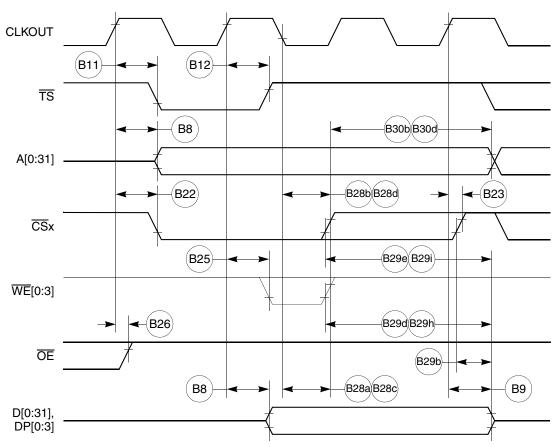


Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)

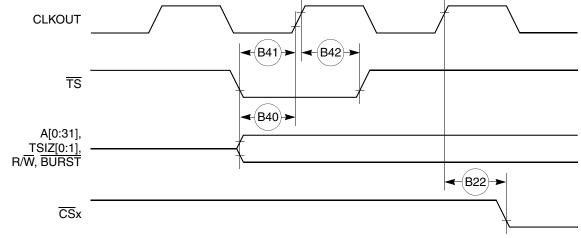


Figure 20 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 20. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 21 provides the timing for the asynchronous external master memory access controlled by the GPCM.

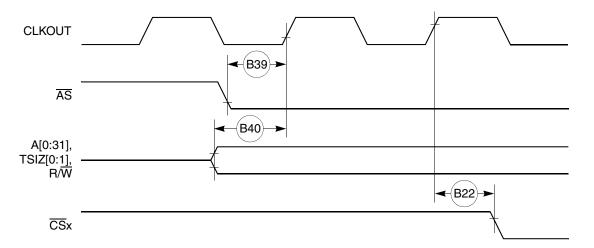


Figure 22 provides the timing for the asynchronous external master control signals negation.

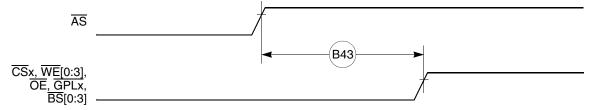


Figure 22. Asynchronous External Master—Control Signals Negation Timing

1

Table 8 provides interrupt timing for the MPC860.

Table 8. Interrupt Timing

Num	Characteristic ¹	All Frequencies		- Unit
	Characteristic	Min Max		
139	IRQx valid to CLKOUT rising edge (setup time)	6.00	—	ns
140	IRQx hold time after CLKOUT	2.00	—	ns
141	IRQx pulse width low	3.00	—	ns
142	IRQx pulse width high	3.00	—	ns
143	IRQx edge-to-edge time	$4 \times T_{CLOCKOUT}$	—	—

The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level-sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC860 is able to support.

Figure 23 provides the interrupt detection timing for the external level-sensitive lines.

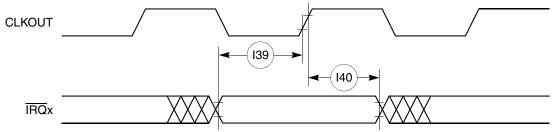


Figure 23. Interrupt Detection Timing for External Level Sensitive Lines

Figure 24 provides the interrupt detection timing for the external edge-sensitive lines.

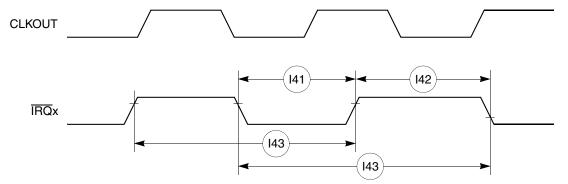


Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines

Table 11 shows the debug port timing for the MPC860.

Table 11. Debug Port Timing

Num	Characteristic	All Frequencies				Unit
Num	Characteristic	Min	Мах	Unit		
P61	DSCK cycle time	3 × T _{CLOCKOUT}	_	—		
P62	DSCK clock pulse width	$1.25 \times T_{CLOCKOUT}$	_	—		
P63	DSCK rise and fall times	0.00	3.00	ns		
P64	DSDI input data setup time	8.00	_	ns		
P65	DSDI data hold time	5.00	_	ns		
P66	DSCK low to DSDO data valid	0.00	15.00	ns		
P67	DSCK low to DSDO invalid	0.00	2.00	ns		

Figure 30 provides the input timing for the debug port clock.

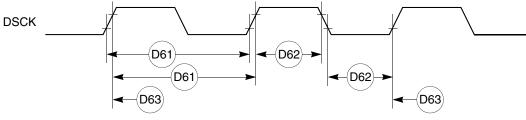


Figure 30. Debug Port Clock Input Timing

Figure 31 provides the timing for the debug port.

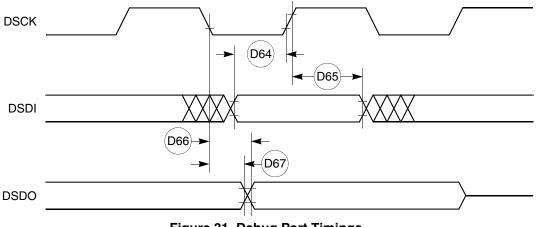


Figure 31. Debug Port Timings

Figure 32 shows the reset timing for the data bus configuration.

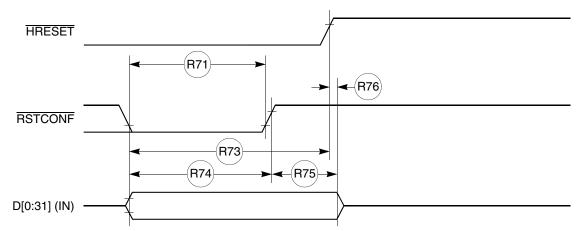


Figure 32. Reset Timing—Configuration from Data Bus

Figure 33 provides the reset timing for the data bus weak drive during configuration.

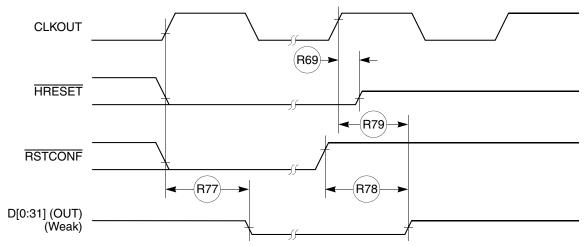


Figure 33. Reset Timing—Data Bus Weak Drive During Configuration

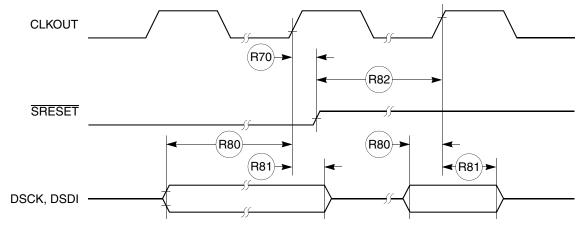


Figure 34 provides the reset timing for the debug port configuration.

Figure 34. Reset Timing—Debug Port Configuration

10 IEEE 1149.1 Electrical Specifications

Table 13 provides the JTAG timings for the MPC860 shown in Figure 35 through Figure 38.

Num	Characteristic	All Frequencies		Unit
Num	Characteristic	Min	Мах	Unit
J82	TCK cycle time	100.00		ns
J83	TCK clock pulse width measured at 1.5 V	40.00	—	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	—	ns
J86	TMS, TDI data hold time	25.00	—	ns
J87	TCK low to TDO data valid	_	27.00	ns
J88	TCK low to TDO data invalid	0.00	—	ns
J89	TCK low to TDO high impedance	_	20.00	ns
J90	TRST assert time	100.00	—	ns
J91	TRST setup time to TCK low	40.00	—	ns
J92	TCK falling edge to output valid	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	ns
J94	TCK falling edge to output high impedance	—	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	—	ns
J96	TCK rising edge to boundary scan input invalid	50.00	—	ns

Table 13. JTAG Timing

11 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC860.

11.1 PIP/PIO AC Electrical Specifications

Table 14 provides the PIP/PIO AC timings as shown in Figure 39 through Figure 43.

Table 14. PIP/PIO Timing

Num	Characteristic	All Frequencies Min Max		es Unit	
Num	Characteristic				
21	Data-in setup time to STBI low	0	_	ns	
22	Data-in hold time to STBI high	2.5 – t3 ¹	—	CLK	
23	STBI pulse width	1.5	_	CLK	
24	STBO pulse width	1 CLK – 5 ns	_	ns	
25	Data-out setup time to STBO low	2	_	CLK	
26	Data-out hold time from STBO high	5	_	CLK	
27	STBI low to STBO low (Rx interlock)	—	2	CLK	
28	STBI low to STBO high (Tx interlock)	2	_	CLK	
29	Data-in setup time to clock high	15	_	ns	
30	Data-in hold time from clock high	7.5	_	ns	
31	Clock low to data-out valid (CPU writes data, control, or direction)	—	25	ns	

¹ t3 = Specification 23.

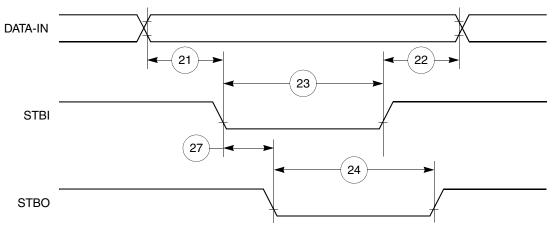


Figure 39. PIP Rx (Interlock Mode) Timing Diagram

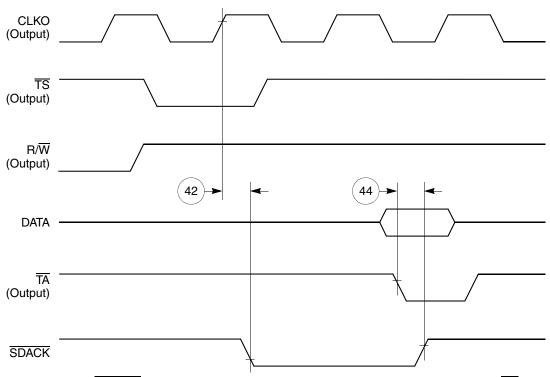


Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

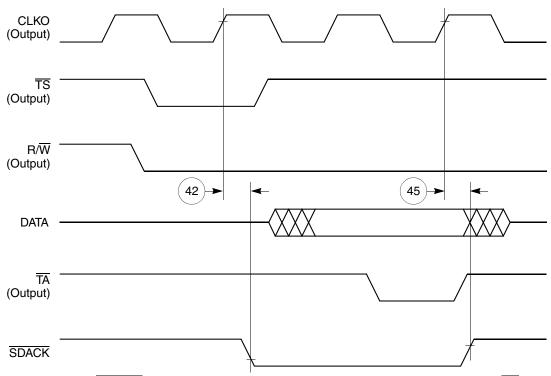


Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

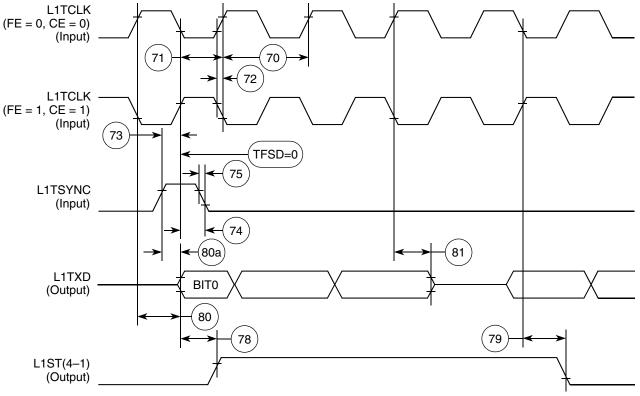
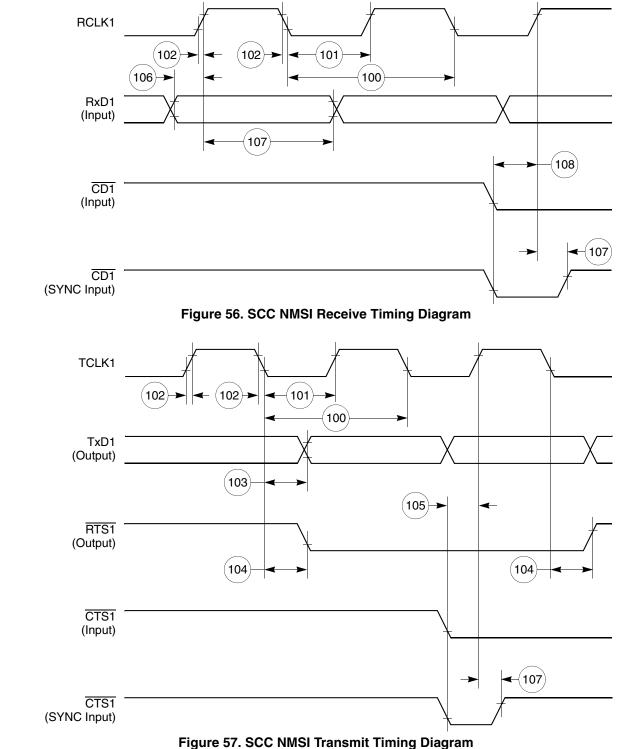
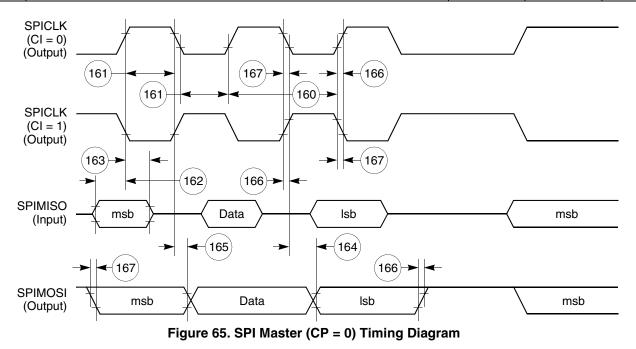



Figure 56 through Figure 58 show the NMSI timings.

rigure 57. See NMSF fransline finning Diagram



11.10 SPI Master AC Electrical Specifications

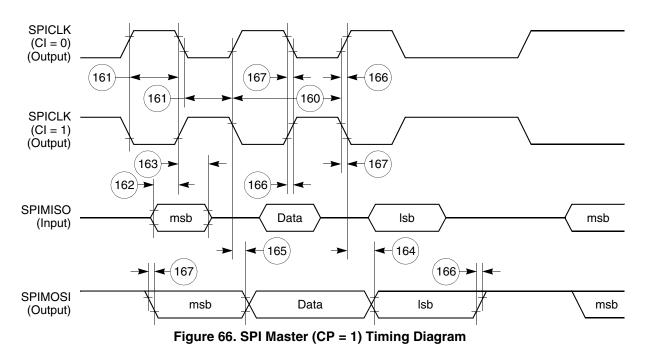

Table 24 provides the SPI master timings as shown in Figure 65 and Figure 66.

Table 24. SPI Master Timing

Num	Characteristic	All Frequencies Min Max	uencies	Unit
num	Characteristic		Unit	
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	50	—	ns
163	Master data hold time (inputs)	0	—	ns
164	Master data valid (after SCK edge)	—	20	ns
165	Master data hold time (outputs)	0	—	ns
166	Rise time output	—	15	ns
167	Fall time output	—	15	ns

11.11 SPI Slave AC Electrical Specifications

Table 25 provides the SPI slave timings as shown in Figure 67 and Figure 68.

Table 25. SPI Slave Timing

Num	Characteristic	All Frequencies Min Max		All Frequencies		Unit
Num	Characteristic		Omi			
170	Slave cycle time	2	—	t _{cyc}		
171	Slave enable lead time	15	—	ns		
172	Slave enable lag time	15	—	ns		
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}		
174	Slave sequential transfer delay (does not require deselect)	1	—	t _{cyc}		
175	Slave data setup time (inputs)	20	—	ns		
176	Slave data hold time (inputs)	20	—	ns		
177	Slave access time	_	50	ns		

UTOPIA AC Electrical Specifications

Figure 70 shows signal timings during UTOPIA receive operations.

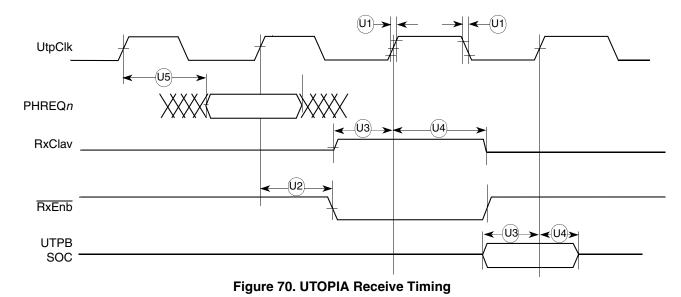


Figure 71 shows signal timings during UTOPIA transmit operations.

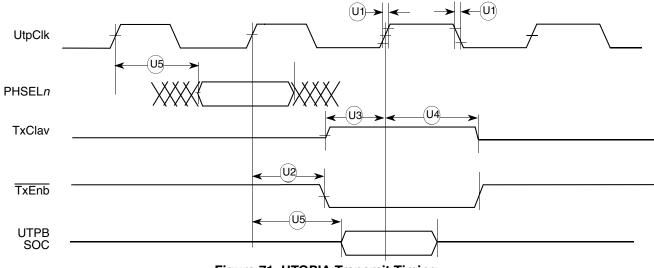


Figure 71. UTOPIA Transmit Timing

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

13.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency - 1%.

Table 29 provides information on the MII receive signal timing.

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
М3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 29. Mll Receive Signal Timing

Figure 72 shows MII receive signal timing.

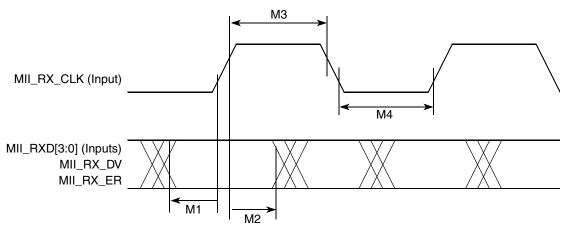


Figure 72. MII Receive Signal Timing Diagram

Table 34 identifies the packages and operating frequencies available for the MPC860.

Package Type	Freq. (MHz) / Temp. (Tj)	Package	Order Number
Ball grid array ZP suffix—leaded ZQ suffix—leaded VR suffix—lead-free	50 0° to 95°C	ZP/ZQ ¹	MPC855TZQ50D4 MPC860DEZQ50D4 MPC860DTZQ50D4 MPC860ENZQ50D4 MPC860SRZQ50D4 MPC860TZQ50D4 MPC860DPZQ50D4 MPC860PZQ50D4
		Tape and Reel	MPC855TZQ50D4R2 MPC860DEZQ50D4R2 MPC860ENZQ50D4R2 MPC860SRZQ50D4R2 MPC860TZQ50D4R2 MPC860TZQ50D4R2 MPC860TZQ50D4R2 MPC855TVR50D4R2 MPC860ENVR50D4R2 MPC860SRVR50D4R2 MPC860TVR50D4R2
		VR	MPC855TVR50D4 MPC860DEVR50D4 MPC860DPVR50D4 MPC860DTVR50D4 MPC860ENVR50D4 MPC860PVR50D4 MPC860SRVR50D4 MPC860SRVR50D4
	66 0° to 95°C	ZP/ZQ ¹	MPC855TZQ66D4 MPC860DEZQ66D4 MPC860DTZQ66D4 MPC860ENZQ66D4 MPC860SRZQ66D4 MPC860TZQ66D4 MPC860DPZQ66D4 MPC860PZQ66D4
		Tape and Reel	MPC860SRZQ66D4R2 MPC860PZQ66D4R2
		VR	MPC855TVR66D4 MPC860DEVR66D4 MPC860DPVR66D4 MPC860DTVR66D4 MPC860ENVR66D4 MPC860PVR66D4 MPC860SRVR66D4 MPC860TVR66D4

Table 34. MPC860 Family Package/Frequency Availability

Mechanical Data and Ordering Information

Package Type	Freq. (MHz) / Temp. (Tj)	Package	Order Number				
Ball grid array <i>(continued)</i> ZP suffix—leaded ZQ suffix—leaded VR suffix—lead-free	80 0° to 95°C	ZP/ZQ ¹	MPC855TZQ80D4 MPC860DEZQ80D4 MPC860DTZQ80D4 MPC860ENZQ80D4 MPC860SRZQ80D4 MPC860TZQ80D4 MPC860DPZQ80D4 MPC860PZQ80D4				
		Tape and Reel	MPC860PZQ80D4R2 MPC860PVR80D4R2				
		VR	MPC855TVR80D4 MPC860DEVR80D4 MPC860DPVR80D4 MPC860ENVR80D4 MPC860PVR80D4 MPC860SRVR80D4 MPC860SRVR80D4 MPC860TVR80D4				
Ball grid array (CZP suffix) CZP suffix—leaded CZQ suffix—leaded CVR suffix—lead-free	50 –40° to 95°C	ZP/ZQ ¹	MPC855TCZQ50D4 MPC855TCVR50D4 MPC860DECZQ50D4 MPC860DTCZQ50D4 MPC860ENCZQ50D4 MPC860ENCZQ50D4 MPC860SRCZQ50D4 MPC860DPCZQ50D4 MPC860PCZQ50D4				
		Tape and Reel	MPC855TCZQ50D4R2 MC860ENCVR50D4R2				
		CVR	MPC860DECVR50D4 MPC860DTCVR50D4 MPC860ENCVR50D4 MPC860PCVR50D4 MPC860SRCVR50D4 MPC860SRCVR50D4 MPC860TCVR50D4				
	66 –40° to 95°C	ZP/ZQ ¹	MPC855TCZQ66D4 MPC855TCVR66D4 MPC860ENCZQ66D4 MPC860SRCZQ66D4 MPC860TCZQ66D4 MPC860DPCZQ66D4 MPC860PCZQ66D4				
		CVR	MPC860DTCVR66D4 MPC860ENCVR66D4 MPC860PCVR66D4 MPC860SRCVR66D4 MPC860TCVR66D4				

Table 34. MPC860 Family Package/Frequency Availability (continued)

¹ The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.

14.2 Pin Assignments

Figure 76 shows the top view pinout of the PBGA package. For additional information, see the MPC860 PowerQUICC User's Manual, or the MPC855T User's Manual.

(
	O PD10	O PD8	O PD3) D0	O D4	() D1	() D2	() D3) D5) D6	() D7) D29	O DP2				w
O PD14	O PD13	O PD9	O PD6	⊖ M_Tx_		O D13	() D27	〇 D10) D14) D18) D20	0 D24	() D28	O DP1	O DP3		() N/C \		V
0 PA0	O PB14	O PD15	O PD4	O PD5		() D8	() D23	() D11	〇 D16) D19	() D21	0 D26) D30	O IPA5) IPA4	O IPA2	⊖ N/C		U
O PA1	O PC5	O PC4	O PD11	O PD7		0 1 D12	0 D17	O D9) D15	0 D22	0 D25	O D31	O IPA6) IPA1	O IPA7	⊖ xfc		т
 ₽C6	0 PA2	O PB15	O PD12	$\left(\circ \right)$		0	0	0	0	0	0	\bigcirc	0			O WAIT_A			R VR
O PA4	О РВ17	O PA3		0		O GND	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc		\circ				C T XTAL	Р
O PB19	O PA5	O PB18	〇 PB16	0	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0					N
0 PA7	0 PC8	0 PA6	O PC7	0	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		BADDR28	O BADD	O R29 VDD	M L
O PB22	O PC9	0 PA8	О РВ20	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0 0P0	\bigcirc AS	O OP1		L
O PC10	0 PA9	O PB23	O PB21	0	0	\bigcirc	\bigcirc	\bigcirc	O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		0 130 IPB6			к
O PC11	O PB24	〇 PA10	O PB25	0	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	O IPB5	O IPB1		O	J
			О тск	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	O M_COI				н
	O TMS	O TDO	O PA11	0	0) GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O GND	0				O IPB3	G
O PB26	O PC12	〇 PA12		0			0	0	0	0	0	0				⊖ ⊤s			F
O PB27	O PC13	〇 PA13	O PB29	\bigcirc	0	0	0	0	0	0	0	0	0	0	$\frac{\bigcirc}{CS3}$				Е
O PB28	O PC14	O PA14	O PC15	() A8	O N/C	O N/C	() A15	〇 A19	() A25	() A18			O N/C		$\frac{\bigcirc}{CS2}$				D
O PB30	O PA15	O PB31	() A3	() A9	() A12	〇 A16	() A20	() A24	() A26										с
() A0	() A1	() A4	0 A6) A10	〇 A13	() A17	() A21	() A23	0 A22		\bigcirc				$\frac{\bigcirc}{CS5}$				в
	0 A2	0 A5	0 A7	0 A11	0 A14	0 A27	0 A29) () () () ()	0 A28	 A31	VDDL								А
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	ر

NOTE: This is the top view of the device.

Figure 76. Pinout of the PBGA Package