

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

2 0 0 0 0 0	
Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TJ)
Security Features	
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc855tczq50d4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

1 Overview

The MPC860 power quad integrated communications controller (PowerQUICCTM) is a versatile one-chip integrated microprocessor and peripheral combination designed for a variety of controller applications. It particularly excels in communications and networking systems. The PowerQUICC unit is referred to as the MPC860 in this hardware specification.

The MPC860 implements Power ArchitectureTM technology and contains a superset of Freescale's MC68360 quad integrated communications controller (QUICC), referred to here as the QUICC, RISC communications proceessor module (CPM). The CPU on the MPC860 is a 32-bit core built on Power Architecture technology that incorporates memory management units (MMUs) and instruction and data caches.. The CPM from the MC68360 QUICC has been enhanced by the addition of the inter-integrated controller (I²C) channel. The memory controller has been enhanced, enabling the MPC860 to support any type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket controller supports up to two sockets. A real-time clock has also been integrated.

Table 1 shows the functionality supported by the MPC860 family.

Part	Cache (Kbytes)	Ethe	ernet				
	Instruction Cache	Data Cache	10T	10/100	АТМ	SCC	Reference ¹	
MPC860DE	4	4	Up to 2	_	_	2	1	
MPC860DT	4	4	Up to 2	1	Yes	2	1	
MPC860DP	16	8	Up to 2	1	Yes	2	1	
MPC860EN	4	4	Up to 4	_	_	4	1	
MPC860SR	4	4	Up to 4	—	Yes	4	1	
MPC860T	4	4	Up to 4	1	Yes	4	1	
MPC860P	16	8	Up to 4	1	Yes	4	1	
MPC855T	4	4	1	1	Yes	1	2	

Table 1. MPC860 Family Functionality

Supporting documentation for these devices refers to the following:

1. MPC860 PowerQUICC Family User's Manual (MPC860UM, Rev. 3)

2. MPC855T User's Manual (MPC855TUM, Rev. 1)

Features

- System integration unit (SIU)
 - Bus monitor
 - Software watchdog
 - Periodic interrupt timer (PIT)
 - Low-power stop mode
 - Clock synthesizer
 - Decrementer, time base, and real-time clock (RTC)
 - Reset controller
 - IEEE 1149.1TM Std. test access port (JTAG)
- Interrupts
 - Seven external interrupt request (IRQ) lines
 - 12 port pins with interrupt capability
 - 23 internal interrupt sources
 - Programmable priority between SCCs
 - Programmable highest priority request
- 10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u® Standard (not available when using ATM over UTOPIA interface)
- ATM support compliant with ATM forum UNI 4.0 specification
 - Cell processing up to 50–70 Mbps at 50-MHz system clock
 - Cell multiplexing/demultiplexing
 - Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables OAM and software implementation of other protocols.
 - ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and unspecified bit rate (UBR) and providing control mechanisms enabling software support of available bit rate (ABR)
 - Physical interface support for UTOPIA (10/100-Mbps is not supported with this interface) and byte-aligned serial (for example, T1/E1/ADSL)
 - UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to four physical layer devices), connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system clock ratios of 1/2 or 1/3.
 - Serial-mode ATM connection supports transmission convergence (TC) function for T1/E1/ADSL lines, cell delineation, cell payload scrambling/descrambling, automatic idle/unassigned cell insertion/stripping, header error control (HEC) generation, checking, and statistics.
- Communications processor module (CPM)
 - RISC communications processor (CP)
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels

Layout Practices

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

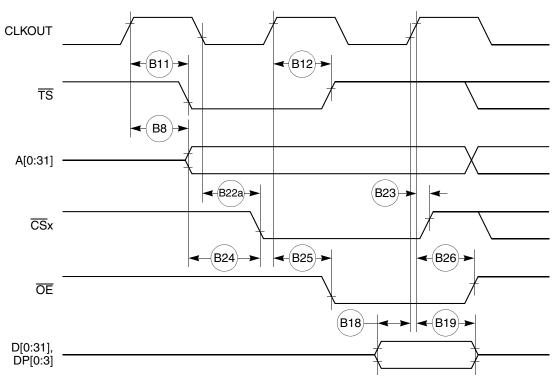
7.6 References

Semiconductor Equipment and Materials International	(415) 964-5111
805 East Middlefield Rd.	
Mountain View, CA 94043	
MIL-SPEC and EIA/JESD (JEDEC) Specifications	800-854-7179 or
(Available from Global Engineering Documents)	303-397-7956
JEDEC Specifications	http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

8 Layout Practices

Each V_{DD} pin on the MPC860 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1 µF-bypass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. A four-layer board employing two inner layers as V_{CC} and GND planes is recommended.


All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

NI		33	33 MHz		40 MHz		MHz	66 MHz		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B31a	CLKOUT falling edge to CS valid—as requested by control bit CST1 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B31b	CLKOUT rising edge to \overline{CS} valid—as requested by control bit CST2 in the corresponding word in UPM	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid—as requested by control bit CST3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B31d	I CLKOUT falling edge to CS valid—as requested by control bit CST1 in the corresponding word in UPM, EBDF = 1		17.99	11.28	16.00	9.40	14.13	7.58	12.31	ns
B32	CLKOUT falling edge to BS valid—as requested by control bit BST4 in the corresponding word in UPM		6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to \overline{BS} valid—as requested by control bit BST1 in the corresponding word in UPM, EBDF = 0		14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B32b	CLKOUT rising edge to BS valid—as requested by control bit BST2 in the corresponding word in UPM	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to $\overline{\text{BS}}$ valid—as requested by control bit BST3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B32d	CLKOUT falling edge to \overline{BS} valid—as requested by control bit BST1 in the corresponding word in UPM, EBDF = 1	13.26	17.99	11.28	16.00	9.40	14.13	7.58	12.31	ns
B33	CLKOUT falling edge to GPL valid—as requested by control bit GxT4 in the corresponding word in UPM	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to GPL valid—as requested by control bit GxT3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid—as requested by control bit CST4 in the corresponding word in UPM	5.58		4.25		3.00		1.79	—	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid—as requested by control bit CST1 in the corresponding word in UPM	13.15		10.50		8.00		5.58	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid—as requested by control bit CST2 in the corresponding word in UPM	20.73	_	16.75		13.00		9.36	_	ns

Table 7. Bus Operation Timings (continued)

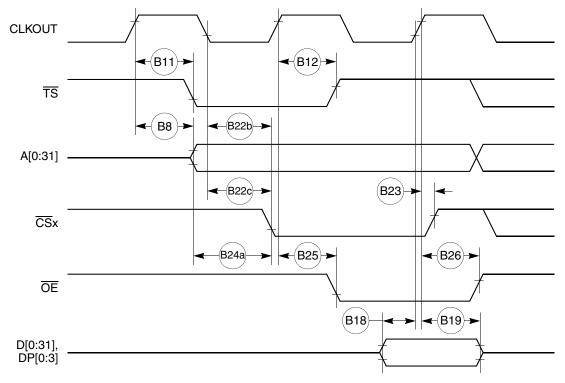


Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

Bus Signal Timing

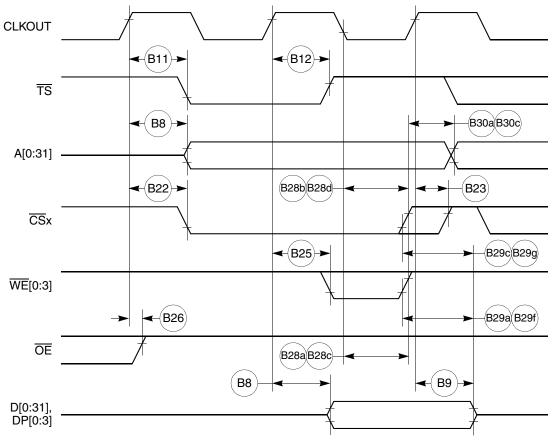


Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)

Bus Signal Timing

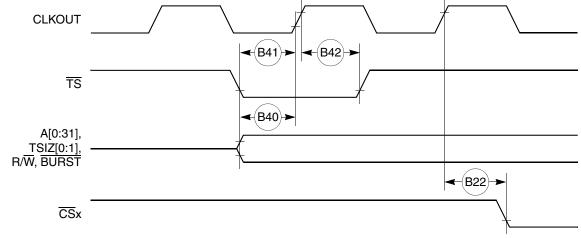


Figure 20 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 20. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 21 provides the timing for the asynchronous external master memory access controlled by the GPCM.

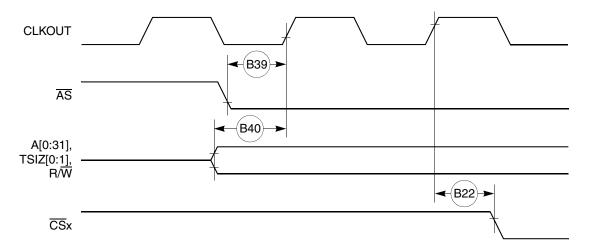


Figure 22 provides the timing for the asynchronous external master control signals negation.

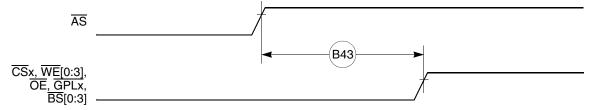


Figure 22. Asynchronous External Master—Control Signals Negation Timing

Bus Signal Timing

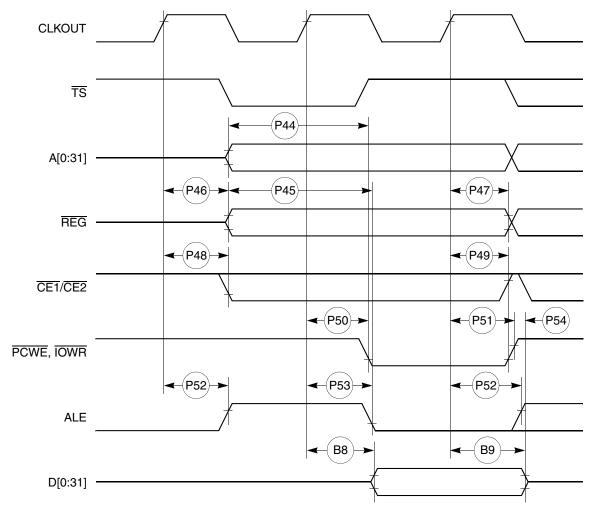


Figure 26. PCMCIA Access Cycle Timing External Bus Write

Figure 27 provides the PCMCIA \overline{WAIT} signal detection timing.

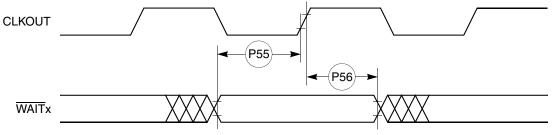


Figure 27. PCMCIA WAIT Signal Detection Timing



Figure 34 provides the reset timing for the debug port configuration.

Figure 34. Reset Timing—Debug Port Configuration

10 IEEE 1149.1 Electrical Specifications

Table 13 provides the JTAG timings for the MPC860 shown in Figure 35 through Figure 38.

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Мах	Unit
J82	TCK cycle time	100.00		ns
J83	TCK clock pulse width measured at 1.5 V	40.00	—	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	—	ns
J86	TMS, TDI data hold time	25.00	—	ns
J87	TCK low to TDO data valid	_	27.00	ns
J88	TCK low to TDO data invalid	0.00	—	ns
J89	TCK low to TDO high impedance	_	20.00	ns
J90	TRST assert time	100.00	—	ns
J91	TRST setup time to TCK low	40.00	—	ns
J92	TCK falling edge to output valid	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	—	ns
J96	TCK rising edge to boundary scan input invalid	50.00	—	ns

Table 13. JTAG Timing

CPM Electrical Characteristics

11 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC860.

11.1 PIP/PIO AC Electrical Specifications

Table 14 provides the PIP/PIO AC timings as shown in Figure 39 through Figure 43.

Table 14. PIP/PIO Timing

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	onin
21	Data-in setup time to STBI low	0	_	ns
22	Data-in hold time to STBI high	2.5 - t3 ¹	—	CLK
23	STBI pulse width	1.5	_	CLK
24	STBO pulse width	1 CLK – 5 ns	_	ns
25	Data-out setup time to STBO low	2	_	CLK
26	Data-out hold time from STBO high	5	_	CLK
27	STBI low to STBO low (Rx interlock)	—	2	CLK
28	STBI low to STBO high (Tx interlock)	2	_	CLK
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	—	25	ns

¹ t3 = Specification 23.

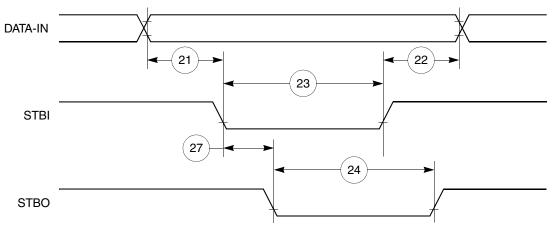


Figure 39. PIP Rx (Interlock Mode) Timing Diagram

CPM Electrical Characteristics

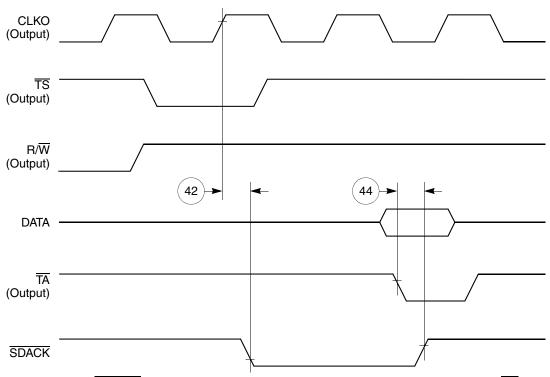


Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

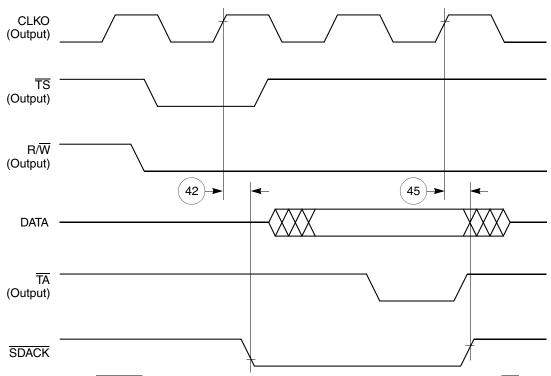
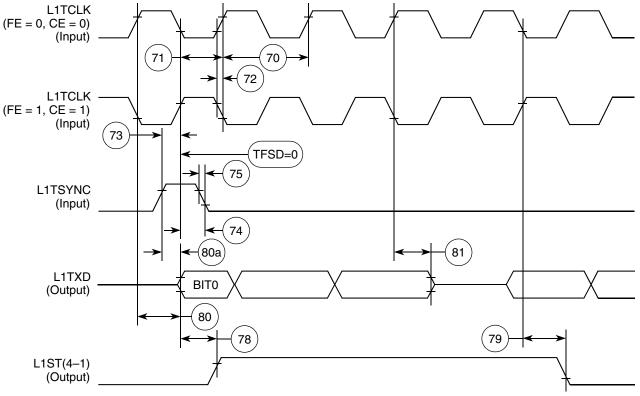
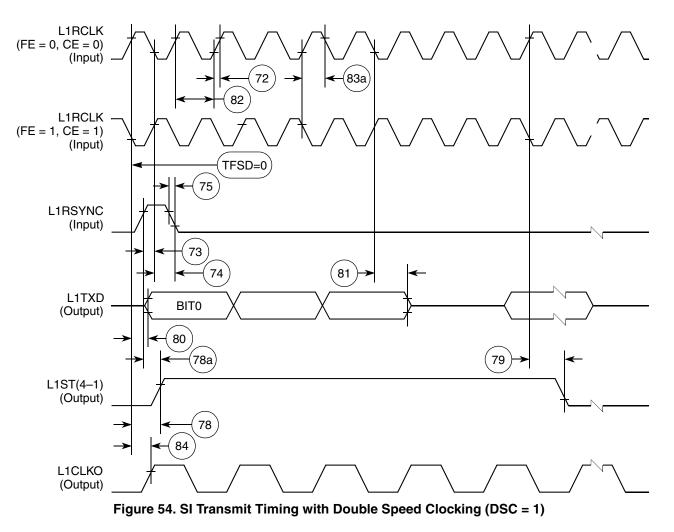
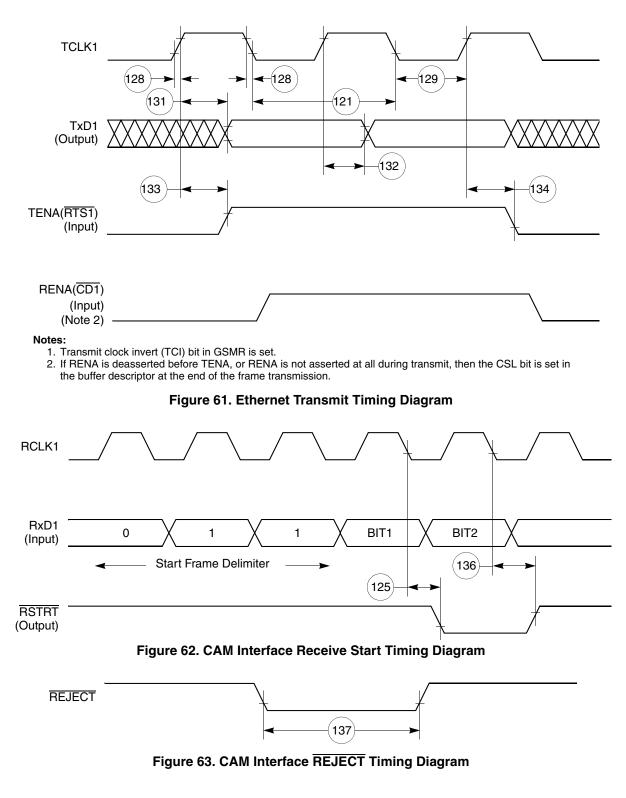



Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA


CPM Electrical Characteristics


CPM Electrical Characteristics

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

CPM Electrical Characteristics

13 FEC Electrical Characteristics

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

13.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency - 1%.

Table 29 provides information on the MII receive signal timing.

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
М3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 29. Mll Receive Signal Timing

Figure 72 shows MII receive signal timing.

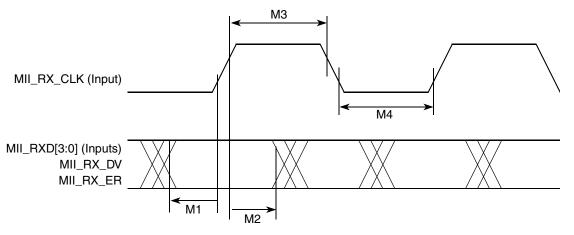


Figure 72. MII Receive Signal Timing Diagram

FEC Electrical Characteristics

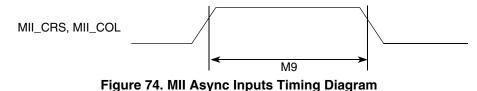

13.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 31 provides information on the MII async inputs signal timing.

Table 31. MII Async Inputs Signal Timing

Num	Characteristic	Min	Max	Unit
M9	MII_CRS, MII_COL minimum pulse width	1.5	_	MII_TX_CLK period

Figure 74 shows the MII asynchronous inputs signal timing diagram.

13.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 32 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

Num	Characteristic	Min	Max	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	_	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	_	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Table 32. MII Serial Management Channel Timing

Mechanical Data and Ordering Information

Figure 75 shows the MII serial management channel timing diagram.

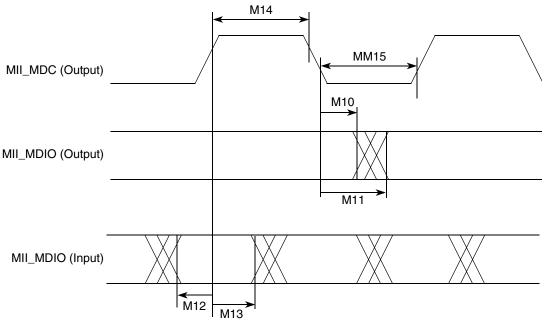


Figure 75. MII Serial Management Channel Timing Diagram

14 Mechanical Data and Ordering Information

14.1 Ordering Information

Table 33 provides information on the MPC860 Revision D.4 derivative devices.

Device	Number of SCCs ¹	Ethernet Support ² (Mbps)	Multichannel HDLC Support	ATM Support
MPC855T	1	10/100	Yes	Yes
MPC860DE	2	10	N/A	N/A
MPC860DT		10/100	Yes	Yes
MPC860DP		10/100	Yes	Yes
MPC860EN	4	10	N/A	N/A
MPC860SR		10	Yes	Yes
MPC860T		10/100	Yes	Yes
MPC860P		10/100	Yes	Yes

Table 33. MPC860 Family Revision D.4 Derivatives

¹ Serial communications controller (SCC)

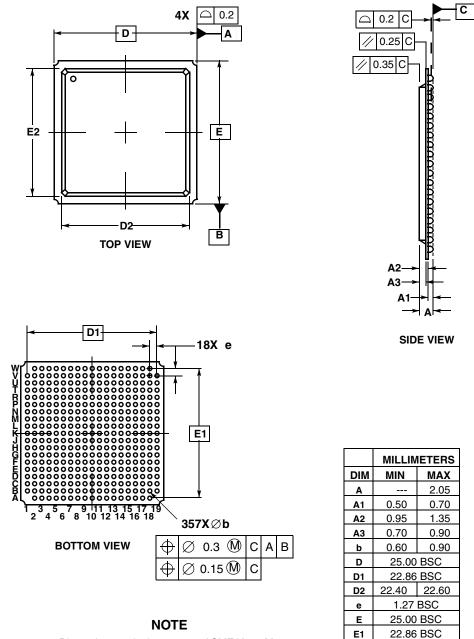
² Up to 4 channels at 40 MHz or 2 channels at 25 MHz

14.2 Pin Assignments

Figure 76 shows the top view pinout of the PBGA package. For additional information, see the MPC860 PowerQUICC User's Manual, or the MPC855T User's Manual.

(
	O PD10	O PD8	O PD3			O D4	() D1	() D2) D3) D5) D6	() D7) D29	O DP2	CLKOUT			w
O PD14	O PD13	O PD9	O PD6	⊖ M_Tx_		0 D13) D27) D10) D14) D18) D20	0 D24	〇 D28	O DP1	O DP3		() N/C		v 1
0 PA0	O PB14	O PD15	O PD4	O PD5		() D8) D23	() D11) D16) D19	() D21	0 D26) D30	O IPA5) IPA4	O IPA2	() N/C		U
O PA1	O PC5	O PC4	O PD11	O PD7) H D12	0 D17	0 D9) D15	0 D22	0 D25	O D31	O IPA6		O IPA1	O IPA7	⊖ xfc		т
 ₽C6	0 PA2	O PB15	O PD12	$\left(\circ \right)$		0	0	0	0	0	0	\bigcirc	0						R VR
O PA4	O PB17	O PA3		0	$\left(\circ \right)$	O GND	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	O GND					C ET XTAL	Р
O PB19	0 PA5	O PB18	〇 PB16	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0					N
0 PA7	0 PC8	O PA6	O PC7	0	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		BADDR28		O R29 VDD	M L
O PB22	O PC9	0 PA8	O PB20	0	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	О ОР0	\bigcirc AS	O OP1		L
〇 PC10	0 PA9	O PB23	O PB21	0	\circ	\bigcirc	\bigcirc	\bigcirc	O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ					к
O PC11	O PB24	〇 PA10	O PB25	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	O IPB5	O IPB1			J
			О тск	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	О м_соі				н
	О тмs	O TDO	O PA11	0	\circ		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0					G
O PB26	O PC12	O PA12		0			0	0	0	0	0	0				⊖ ⊤s			F
O PB27	O PC13	O PA13	O PB29	\bigcirc	\bigcirc	0	0	0	0	0	0	0	0	0	$\frac{\bigcirc}{CS3}$				Е
O PB28	O PC14	O PA14	O PC15	() A8	O N/C	O N/C	O A15	〇 A19	() A25	() A18			O N/C	$\frac{\bigcirc}{CS6}$	$\frac{\bigcirc}{CS2}$				D
O PB30	O PA15	O PB31	0 I O I O A3) () () ()	() A12	() A16	0 A20	0 A24	A26			\bigcirc	\bigcirc		\bigcirc				с
		0 A4	A0 0 A6	A3	A13	A10	A20 A21	A23	A20		\bigcirc		0	0	\bigcirc				в
		A4 () A5	A0 () A7	A10	A13	0 A27	A21	A20	A22 () A28	A31					$\frac{\bigcirc}{CS4}$				А
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	١

NOTE: This is the top view of the device.


Figure 76. Pinout of the PBGA Package

Mechanical Data and Ordering Information

14.3 Mechanical Dimensions of the PBGA Package

Figure 77 shows the mechanical dimensions of the ZP PBGA package.

- 1. Dimensions and tolerance per ASME Y14.5M, 1994.
- 2. Dimensions in millimeters.
- 3. Dimension b is the maximum solder ball diameter measured parallel to data C.

22.40

E2

22.60

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2007-2015 Freescale Semiconductor, Inc.

Power

Document Number: MPC860EC Rev. 10 09/2015

