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2 Features
The following list summarizes the key MPC860 features:

• Embedded single-issue, 32-bit core (implementing the Power Architecture technology) with 
thirty-two 32-bit general-purpose registers (GPRs)
— The core performs branch prediction with conditional prefetch without conditional execution.
— 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)

– 16-Kbyte instruction caches are four-way, set-associative with 256 sets; 4-Kbyte instruction 
caches are two-way, set-associative with 128 sets.

– 8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data caches are 
two-way, set-associative with 128 sets.

– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) 
cache blocks.

– Caches are physically addressed, implement a least recently used (LRU) replacement 
algorithm, and are lockable on a cache block basis.

— MMUs with 32-entry TLB, fully-associative instruction, and data TLBs
— MMUs support multiple page sizes of 4-, 16-, and 512-Kbytes, and 8-Mbytes; 16 virtual 

address spaces and 16 protection groups
— Advanced on-chip-emulation debug mode

• Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
• 32 address lines
• Operates at up to 80 MHz
• Memory controller (eight banks)

— Contains complete dynamic RAM (DRAM) controller
— Each bank can be a chip select or RAS to support a DRAM bank.
— Up to 15 wait states programmable per memory bank
— Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and other memory 

devices
— DRAM controller programmable to support most size and speed memory interfaces
— Four CAS lines, four WE lines, and one OE line
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
— Variable block sizes (32 Kbytes to 256 Mbytes)
— Selectable write protection
— On-chip bus arbitration logic

• General-purpose timers
— Four 16-bit timers or two 32-bit timers
— Gate mode can enable/disable counting
— Interrupt can be masked on reference match and event capture.
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— Up to 8 Kbytes of dual-port RAM
— 16 serial DMA (SDMA) channels
— Three parallel I/O registers with open-drain capability

• Four baud-rate generators (BRGs)
— Independent (can be tied to any SCC or SMC)
— Allows changes during operation 
— Autobaud support option

• Four serial communications controllers (SCCs)
— Ethernet/IEEE 802.3® standard optional on SCC1–4, supporting full 10-Mbps operation 

(available only on specially programmed devices)
— HDLC/SDLC (all channels supported at 2 Mbps)
— HDLC bus (implements an HDLC-based local area network (LAN))
— Asynchronous HDLC to support point-to-point protocol (PPP)
— AppleTalk 

— Universal asynchronous receiver transmitter (UART)
— Synchronous UART
— Serial infrared (IrDA)
— Binary synchronous communication (BISYNC)
— Totally transparent (bit streams)
— Totally transparent (frame-based with optional cyclic redundancy check (CRC))

• Two SMCs (serial management channels)
— UART
— Transparent
— General circuit interface (GCI) controller
— Can be connected to the time-division multiplexed (TDM) channels

• One SPI (serial peripheral interface)
— Supports master and slave modes
— Supports multimaster operation on the same bus

• One I2C (inter-integrated circuit) port
— Supports master and slave modes
— Multiple-master environment support

• Time-slot assigner (TSA)
— Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined
— 1- or 8-bit resolution
— Allows independent transmit and receive routing, frame synchronization, and clocking
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Table 4 shows the thermal characteristics for the MPC860.
Table 4. MPC860 Thermal Resistance Data

Rating Environment Symbol
ZP

MPC860P
ZQ / VR

MPC860P
Unit

Mold Compound Thickness 0.85 1.15 mm

Junction-to-ambient 1

1 Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) 
temperature, ambient temperature, airflow, power dissipation of other components on the board,  and board thermal 
resistance.

Natural convection Single-layer board (1s) RθJA
2

2 Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

34 34 °C/W

Four-layer board (2s2p) RθJMA
3

3 Per JEDEC JESD51-6 with the board horizontal.

22 22

Airflow (200 ft/min) Single-layer board (1s) RθJMA
3 27 27

Four-layer board (2s2p) RθJMA
3 18 18

Junction-to-board 4

4 Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured 
on the top surface of the board near the package.

RθJB 14 13

Junction-to-case 5

5 Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method 
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad 
packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from 
the junction to the exposed pad without contact resistance.

RθJC 6 8

Junction-to-package top 6

6 Thermal characterization parameter indicating the temperature difference between the package top and the junction 
temperature per JEDEC JESD51-2.

Natural convection ΨJT 2 2
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5 Power Dissipation
Table 5 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, 
and 2:1, where CPU frequency is twice the bus speed.

NOTE

Values in Table 5 represent VDDL-based power dissipation and do not 
include I/O power dissipation over VDDH. I/O power dissipation varies 
widely by application due to buffer current, depending on external circuitry.

6 DC Characteristics
Table 6 provides the DC electrical characteristics for the MPC860.

Table 5. Power Dissipation (PD)

Die Revision Frequency (MHz) Typical 1

1 Typical power dissipation is measured at 3.3 V.

Maximum 2

2 Maximum power dissipation is measured at 3.5 V.

Unit

D.4
(1:1 mode)

50 656 735 mW

66 TBD TBD mW

D.4
(2:1 mode)

66 722 762 mW

80 851 909 mW

Table 6. DC Electrical Specifications

Characteristic Symbol Min Max Unit

Operating voltage at 40 MHz or less VDDH, VDDL, VDDSYN 3.0 3.6 V

KAPWR 
(power-down mode)

2.0 3.6 V

KAPWR
(all other operating modes)

VDDH – 0.4 VDDH V

Operating voltage greater than 40 MHz VDDH, VDDL, KAPWR, 
VDDSYN

3.135 3.465 V

KAPWR 
(power-down mode)

2.0 3.6 V

KAPWR 
(all other operating modes)

VDDH – 0.4 VDDH V

Input high voltage (all inputs except EXTAL and 
EXTCLK)

VIH 2.0 5.5 V

Input low voltage1 VIL GND 0.8 V

EXTAL, EXTCLK input high voltage VIHC 0.7 × (VDDH) VDDH + 0.3 V

Input leakage current, Vin = 5.5 V (except TMS, TRST, 
DSCK, and DSDI pins)

Iin — 100 µA



MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

12 Freescale Semiconductor
 

Thermal Calculation and Measurement

7 Thermal Calculation and Measurement
For the following discussions, PD = (VDD × IDD) + PI/O, where PI/O is the power dissipation of the I/O 
drivers.

7.1 Estimation with Junction-to-Ambient Thermal Resistance
An estimation of the chip junction temperature, TJ, in ºC can be obtained from the equation:

TJ = TA + (RθJA × PD)

where:
TA = ambient temperature (ºC)
RθJA = package junction-to-ambient thermal resistance (ºC/W)
PD = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy 
estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated 
that errors of a factor of two (in the quantity TJ – TA) are possible.

7.2 Estimation with Junction-to-Case Thermal Resistance
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal 
resistance and a case-to-ambient thermal resistance:

RθJA = RθJC + RθCA

where:
RθJA = junction-to-ambient thermal resistance (ºC/W)
RθJC = junction-to-case thermal resistance (ºC/W)
RθCA = case-to-ambient thermal resistance (ºC/W)

RθJC is device related and cannot be influenced by the user. The user adjusts the thermal environment to 
affect the case-to-ambient thermal resistance, RθCA. For instance, the user can change the airflow around 
the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the 
thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful 
for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink 
to the ambient environment. For most packages, a better model is required.

7.3 Estimation with Junction-to-Board Thermal Resistance
A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a 
two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The 
junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial 
amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance 
describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has 
been observed that the thermal performance of most plastic packages, especially PBGA packages, is 
strongly dependent on the board temperature; see Figure 2.
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Figure 2. Effect of Board Temperature Rise on Thermal Behavior

If the board temperature is known, an estimate of the junction temperature in the environment can be made 
using the following equation:

TJ = TB + (RθJB × PD)

where:
RθJB = junction-to-board thermal resistance (ºC/W)
TB = board temperature (ºC)
PD = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, 
acceptable predictions of junction temperature can be made. For this method to work, the board and board 
mounting must be similar to the test board used to determine the junction-to-board thermal resistance, 
namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground 
plane.

7.4 Estimation Using Simulation
When the board temperature is not known, a thermal simulation of the application is needed. The simple 
two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and 
complex model of the package can be used in the thermal simulation.

7.5 Experimental Determination
To determine the junction temperature of the device in the application after prototypes are available, the 
thermal characterization parameter (ΨJT) can be used to determine the junction temperature with a 
measurement of the temperature at the top center of the package case using the following equation:

TJ = TT + (ΨJT × PD)
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where:
ΨJT = thermal characterization parameter
TT = thermocouple temperature on top of package
PD = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge 
type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned 
so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the 
thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is 
placed flat against the package case to avoid measurement errors caused by cooling effects of the 
thermocouple wire.

7.6 References
Semiconductor Equipment and Materials International (415) 964-5111
805 East Middlefield Rd.
Mountain View, CA 94043
MIL-SPEC and EIA/JESD (JEDEC) Specifications 800-854-7179 or 
(Available from Global Engineering Documents) 303-397-7956
JEDEC Specifications http://www.jedec.org
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an 

Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance 

and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, 
pp. 212–220. 

8 Layout Practices
Each VDD pin on the MPC860 should be provided with a low-impedance path to the board’s supply. Each 
GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive 
distinct groups of logic on the chip. The VDD power supply should be bypassed to ground using at least 
four 0.1 µF-bypass capacitors located as close as possible to the four sides of the package. The capacitor 
leads and associated printed circuit traces connecting to chip VDD and GND should be kept to less than half 
an inch per capacitor lead. A four-layer board employing two inner layers as VCC and GND planes is 
recommended.

All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection 
length should be minimized in order to minimize undershoot and reflections caused by these fast output 
switching times. This recommendation particularly applies to the address and data buses. Maximum PC 
trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as 
well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes 
especially critical in systems with higher capacitive loads because these loads create higher transient 
currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. 
Special care should be taken to minimize the noise levels on the PLL supply pins.
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B31a CLKOUT falling edge to CS valid—as 
requested by control bit CST1 in the 
corresponding word in UPM

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns

B31b CLKOUT rising edge to CS valid—as 
requested by control bit CST2 in the 
corresponding word in UPM

1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns

B31c CLKOUT rising edge to CS valid—as 
requested by control bit CST3 in the 
corresponding word in UPM

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns

B31d CLKOUT falling edge to CS valid—as 
requested by control bit CST1 in the 
corresponding word in UPM, EBDF = 1

13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns

B32 CLKOUT falling edge to BS valid—as 
requested by control bit BST4 in the 
corresponding word in UPM

1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns

B32a CLKOUT falling edge to BS valid—as 
requested by control bit BST1 in the 
corresponding word in UPM, EBDF = 0

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns

B32b CLKOUT rising edge to BS valid—as 
requested by control bit BST2 in the 
corresponding word in UPM

1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns

B32c CLKOUT rising edge to BS valid—as 
requested by control bit BST3 in the 
corresponding word in UPM

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns

B32d CLKOUT falling edge to BS valid—as 
requested by control bit BST1 in the 
corresponding word in UPM, EBDF = 1

13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns

B33 CLKOUT falling edge to GPL valid—as 
requested by control bit GxT4 in the 
corresponding word in UPM

1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns

B33a CLKOUT rising edge to GPL valid—as 
requested by control bit GxT3 in the 
corresponding word in UPM

7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns

B34 A(0:31), BADDR(28:30), and D(0:31) to CS 
valid—as requested by control bit CST4 in 
the corresponding word in UPM

5.58 — 4.25 — 3.00 — 1.79 — ns

B34a A(0:31), BADDR(28:30), and D(0:31) to CS 
valid—as requested by control bit CST1 in 
the corresponding word in UPM

13.15 — 10.50 — 8.00 — 5.58 — ns

B34b A(0:31), BADDR(28:30), and D(0:31) to CS 
valid—as requested by control bit CST2 in 
the corresponding word in UPM

20.73 — 16.75 — 13.00 — 9.36 — ns

Table 7. Bus Operation Timings (continued)

Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz

Unit
Min Max Min Max Min Max Min Max
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B35 A(0:31), BADDR(28:30) to CS valid—as 
requested by control bit BST4 in the 
corresponding word in UPM

5.58 — 4.25 — 3.00 — 1.79 — ns

B35a A(0:31), BADDR(28:30), and D(0:31) to BS 
valid—as requested by control bit BST1 in 
the corresponding word in UPM

13.15 — 10.50 — 8.00 — 5.58 — ns

B35b A(0:31), BADDR(28:30), and D(0:31) to BS 
valid—as requested by control bit BST2 in 
the corresponding word in UPM

20.73 — 16.75 — 13.00 — 9.36 — ns

B36 A(0:31), BADDR(28:30), and D(0:31) to 
GPL valid—as requested by control bit GxT4 
in the corresponding word in UPM

5.58 — 4.25 — 3.00 — 1.79 — ns

B37 UPWAIT valid to CLKOUT falling edge9 6.00 — 6.00 — 6.00 — 6.00 — ns

B38 CLKOUT falling edge to UPWAIT valid9 1.00 — 1.00 — 1.00 — 1.00 — ns

B39 AS valid to CLKOUT rising edge10 7.00 — 7.00 — 7.00 — 7.00 — ns

B40 A(0:31), TSIZ(0:1), RD/WR, BURST, valid to 
CLKOUT rising edge

7.00 — 7.00 — 7.00 — 7.00 — ns

B41 TS valid to CLKOUT rising edge (setup time) 7.00 — 7.00 — 7.00 — 7.00 — ns

B42 CLKOUT rising edge to TS valid (hold time) 2.00 — 2.00 — 2.00 — 2.00 — ns

B43 AS negation to memory controller signals 
negation

— TBD — TBD — TBD — TBD ns

1 Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.
2 If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values 

in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time) then the maximum 
allowed jitter on EXTAL can be up to 2%.

3 The timings specified in B4 and B5 are based on full strength clock.
4 The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for BG output 

is relevant when the MPC860 is selected to work with internal bus arbiter.
5 The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing for BG 

input is relevant when the MPC860 is selected to work with external bus arbiter.
6 The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is 

asserted.
7 The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read 

accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the 
UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

8 The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.
9 The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and 

B38 are specified to enable the freeze of the UPM output signals as described in Figure 18.
10 The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified 

in Figure 21.

Table 7. Bus Operation Timings (continued)

Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz

Unit
Min Max Min Max Min Max Min Max
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Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)
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Table 8 provides interrupt timing for the MPC860.

Figure 23 provides the interrupt detection timing for the external level-sensitive lines.

Figure 23. Interrupt Detection Timing for External Level Sensitive Lines

Figure 24 provides the interrupt detection timing for the external edge-sensitive lines.

Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines

Table 8. Interrupt Timing

Num Characteristic1

1 The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as 
level-sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the 
CLKOUT.
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry and have no direct 
relation with the total system interrupt latency that the MPC860 is able to support.

All Frequencies
Unit

Min Max

I39 IRQx valid to CLKOUT rising edge (setup time) 6.00 — ns

I40 IRQx hold time after CLKOUT 2.00 — ns

I41 IRQx pulse width low 3.00 — ns

I42 IRQx pulse width high 3.00 — ns

I43 IRQx edge-to-edge time 4 × TCLOCKOUT — —

CLKOUT

IRQx

I39

I40

CLKOUT

IRQx

I41 I42

I43

I43
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Table 10 shows the PCMCIA port timing for the MPC860.

Figure 28 provides the PCMCIA output port timing for the MPC860.

Figure 28. PCMCIA Output Port Timing

Figure 29 provides the PCMCIA output port timing for the MPC860.

Figure 29. PCMCIA Input Port Timing

Table 10. PCMCIA Port Timing

Num Characteristic
33 MHz 40 MHz 50 MHz 66 MHz

Unit
Min Max Min Max Min Max Min Max

P57 CLKOUT to OPx valid — 19.00 — 19.00 — 19.00 — 19.00 ns

P58 HRESET negated to OPx drive1

1 OP2 and OP3 only.

25.73 — 21.75 — 18.00 — 14.36 — ns

P59 IP_Xx valid to CLKOUT rising edge 5.00 — 5.00 — 5.00 — 5.00 — ns

P60 CLKOUT rising edge to IP_Xx invalid 1.00 — 1.00 — 1.00 — 1.00 — ns

CLKOUT

HRESET

Output
Signals

OP2, OP3

P57

P58

CLKOUT

Input
Signals

P59

P60
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Figure 40. PIP Tx (Interlock Mode) Timing Diagram

Figure 41. PIP Rx (Pulse Mode) Timing Diagram

Figure 42. PIP TX (Pulse Mode) Timing Diagram
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11.4 Baud Rate Generator AC Electrical Specifications
Table 17 provides the baud rate generator timings as shown in Figure 49.

Figure 49. Baud Rate Generator Timing Diagram

11.5 Timer AC Electrical Specifications
Table 18 provides the general-purpose timer timings as shown in Figure 50.

 

Table 17. Baud Rate Generator Timing

Num Characteristic
All Frequencies

Unit
Min Max

50 BRGO rise and fall time — 10 ns

51 BRGO duty cycle 40 60 %

52 BRGO cycle 40 — ns

Table 18. Timer Timing

Num Characteristic
All Frequencies

Unit
Min Max

61 TIN/TGATE rise and fall time 10 — ns

62 TIN/TGATE low time 1 — CLK

63 TIN/TGATE high time 2 — CLK

64 TIN/TGATE cycle time 3 — CLK

65 CLKO low to TOUT valid 3 25 ns
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Figure 50. CPM General-Purpose Timers Timing Diagram

11.6 Serial Interface AC Electrical Specifications
Table 19 provides the serial interface timings as shown in Figure 51 through Figure 55.

 

Table 19. SI Timing

Num Characteristic
All Frequencies

Unit
 Min Max

70 L1RCLK, L1TCLK frequency (DSC = 0)1, 2 — SYNCCLK/2.5 MHz

71 L1RCLK, L1TCLK width low (DSC = 0)2 P + 10 — ns

71a L1RCLK, L1TCLK width high (DSC = 0)3 P + 10 — ns

72 L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time — 15.00 ns

73 L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time) 20.00 — ns

74 L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time) 35.00 — ns

75 L1RSYNC, L1TSYNC rise/fall time — 15.00 ns

76 L1RXD valid to L1CLK edge (L1RXD setup time) 17.00 — ns

77 L1CLK edge to L1RXD invalid (L1RXD hold time) 13.00 — ns

78 L1CLK edge to L1ST(1–4) valid 4 10.00 45.00 ns

78A L1SYNC valid to L1ST(1–4) valid 10.00 45.00 ns

79 L1CLK edge to L1ST(1–4) invalid 10.00 45.00 ns

80 L1CLK edge to L1TXD valid 10.00 55.00 ns

80A L1TSYNC valid to L1TXD valid 4 10.00 55.00 ns

81 L1CLK edge to L1TXD high impedance 0.00 42.00 ns

82 L1RCLK, L1TCLK frequency (DSC =1 ) — 16.00 or 
SYNCCLK/2

MHz

83 L1RCLK, L1TCLK width low (DSC = 1) P + 10 — ns

83a L1RCLK, L1TCLK width high (DSC = 1)3 P + 10 — ns

CLKO

TIN/TGATE
(Input)

TOUT
(Output)
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Figure 52. SI Receive Timing with Double-Speed Clocking (DSC = 1)

L1RXD
(Input)

L1RCLK
(FE = 1, CE = 1)

(Input)

L1RCLK
(FE = 0, CE = 0)

(Input)

L1RSYNC
(Input)

L1ST(4–1)
(Output)

72

RFSD=1

75

73

74 77

78

76

79

83a

82

L1CLKO
(Output)

84

BIT0



MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

Freescale Semiconductor 59
 

CPM Electrical Characteristics

Figure 61. Ethernet Transmit Timing Diagram

Figure 62. CAM Interface Receive Start Timing Diagram

Figure 63. CAM Interface REJECT Timing Diagram
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11.10 SPI Master AC Electrical Specifications
Table 24 provides the SPI master timings as shown in Figure 65 and Figure 66.

Figure 65. SPI Master (CP = 0) Timing Diagram

Table 24. SPI Master Timing

Num Characteristic
All Frequencies

Unit
Min Max

160 MASTER cycle time 4 1024 tcyc

161 MASTER clock (SCK) high or low time 2 512 tcyc

162 MASTER data setup time (inputs) 50 — ns

163 Master data hold time (inputs) 0 — ns

164 Master data valid (after SCK edge) — 20 ns

165 Master data hold time (outputs) 0 — ns

166 Rise time output — 15 ns

167 Fall time output — 15 ns
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11.12 I2C AC Electrical Specifications
Table 26 provides the I2C (SCL < 100 kHz) timings.

Table 27 provides the I2C (SCL > 100 kHz) timings.

Table 26. I2C Timing (SCL < 100 kHZ)

Num Characteristic
All Frequencies

Unit
Min Max

200 SCL clock frequency (slave) 0 100 kHz

200 SCL clock frequency (master)1

1 SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3 × pre_scaler × 2).
The ratio SYNCCLK/(BRGCLK/pre_scaler) must be greater than or equal to 4/1.

1.5 100 kHz

202 Bus free time between transmissions 4.7 — μs

203 Low period of SCL 4.7 — μs

204 High period of SCL 4.0 — μs

205 Start condition setup time 4.7 — μs

206 Start condition hold time 4.0 — μs

207 Data hold time 0 — μs

208 Data setup time 250 — ns

209 SDL/SCL rise time — 1 μs

210 SDL/SCL fall time — 300 ns

211 Stop condition setup time 4.7 — μs

Table 27. . I2C Timing (SCL > 100 kHZ)

Num Characteristic Expression
All Frequencies

Unit
Min Max

200 SCL clock frequency (slave) fSCL 0 BRGCLK/48 Hz

200 SCL clock frequency (master)1

1 SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) × pre_scaler × 2). 
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater than or equal to 4/1.

fSCL BRGCLK/16512 BRGCLK/48 Hz

202 Bus free time between transmissions 1/(2.2 * fSCL) — s

203 Low period of SCL 1/(2.2 * fSCL) — s

204 High period of SCL 1/(2.2 * fSCL) — s

205 Start condition setup time 1/(2.2 * fSCL) — s

206 Start condition hold time 1/(2.2 * fSCL) — s

207 Data hold time 0 — s

208 Data setup time 1/(40 * fSCL) — s

209 SDL/SCL rise time — 1/(10 * fSCL) s

210 SDL/SCL fall time — 1/(33 * fSCL) s

211 Stop condition setup time 1/2(2.2 * fSCL) — s



Information in this document is provided solely to enable system and software 

implementers to use Freescale products. There are no express or implied copyright 

licenses granted hereunder to design or fabricate any integrated circuits based on the 

information in this document.

Freescale reserves the right to make changes without further notice to any products 

herein. Freescale makes no warranty, representation, or guarantee regarding the 

suitability of its products for any particular purpose, nor does Freescale assume any 

liability arising out of the application or use of any product or circuit, and specifically 

disclaims any and all liability, including without limitation consequential or incidental 

damages. “Typical” parameters that may be provided in Freescale data sheets and/or 

specifications can and do vary in different applications, and actual performance may 

vary over time. All operating parameters, including “typicals,” must be validated for each 

customer application by customer’s technical experts. Freescale does not convey any 

license under its patent rights nor the rights of others. Freescale sells products 

pursuant to standard terms and conditions of sale, which can be found at the following 

address: freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page: 
www.freescale.com 

Web Support: 
http://www.freescale.com/support

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, 
QorIQ, StarCore, and Symphony are trademarks of Freescale 
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ Qonverge, 
QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, 
Inc. All other product or service names are the property of their respective 
owners. The Power Architecture and Power.org word marks and the Power 
and Power.org logos and related marks are trademarks and service marks 
licensed by Power.org. 
© 2007-2015 Freescale Semiconductor, Inc.

Document Number: MPC860EC
Rev. 10
09/2015

 


