

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (2)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc860deczq66d4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

1 Overview

The MPC860 power quad integrated communications controller (PowerQUICCTM) is a versatile one-chip integrated microprocessor and peripheral combination designed for a variety of controller applications. It particularly excels in communications and networking systems. The PowerQUICC unit is referred to as the MPC860 in this hardware specification.

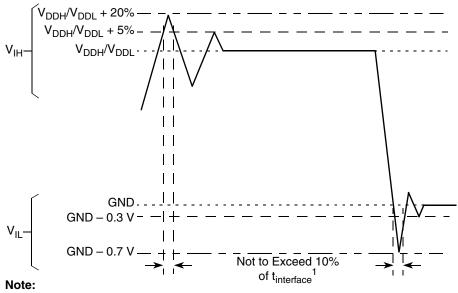
The MPC860 implements Power ArchitectureTM technology and contains a superset of Freescale's MC68360 quad integrated communications controller (QUICC), referred to here as the QUICC, RISC communications proceessor module (CPM). The CPU on the MPC860 is a 32-bit core built on Power Architecture technology that incorporates memory management units (MMUs) and instruction and data caches.. The CPM from the MC68360 QUICC has been enhanced by the addition of the inter-integrated controller (I²C) channel. The memory controller has been enhanced, enabling the MPC860 to support any type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket controller supports up to two sockets. A real-time clock has also been integrated.

Table 1 shows the functionality supported by the MPC860 family.

	Cache (Kbytes)	Ethe	ernet			
Part	Instruction Cache	Data Cache	10T	10/100	АТМ	SCC	Reference ¹
MPC860DE	4	4	Up to 2	_	_	2	1
MPC860DT	4	4	Up to 2	1	Yes	2	1
MPC860DP	16	8	Up to 2	1	Yes	2	1
MPC860EN	4	4	Up to 4	_	_	4	1
MPC860SR	4	4	Up to 4	—	Yes	4	1
MPC860T	4	4	Up to 4	1	Yes	4	1
MPC860P	16	8	Up to 4	1	Yes	4	1
MPC855T	4	4	1	1	Yes	1	2

Table 1. MPC860 Family Functionality

Supporting documentation for these devices refers to the following:


1. MPC860 PowerQUICC Family User's Manual (MPC860UM, Rev. 3)

2. MPC855T User's Manual (MPC855TUM, Rev. 1)

Thermal Characteristics

Figure 1 shows the undershoot and overshoot voltages at the interface of the MPC860.

1. t_{interface} refers to the clock period associated with the bus clock interface.

Figure 1. Undershoot/Overshoot Voltage for V_{DDH} and V_{DDL}

4 Thermal Characteristics

Table 3. Package Description

Package Designator	Package Code (Case No.)	Package Description		
ZP	5050 (1103-01)	PBGA 357 25*25*0.9P1.27		
ZQ/VR	5058 (1103D-02)	PBGA 357 25*25*1.2P1.27		

Thermal Calculation and Measurement

7 Thermal Calculation and Measurement

For the following discussions, $P_D = (V_{DD} \times I_{DD}) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_A = ambient temperature (°C)

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta IC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the airflow around the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature; see Figure 2.

NI	Charactoristic	33 MHz 40 MHz		50 MHz 66 MHz			MHz	11		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion	7.58	13.58	6.25	12.25	5.00	11.00	3.80	11.29	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface)	2.50	9.25	2.50	9.25	2.50	9.25	2.50	9.75	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation	7.58	14.33	6.25	13.00	5.00	11.75	3.80	8.54	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface)	2.50	11.00	2.50	11.00	2.50	11.00	2.50	9.00	ns
B13	CLKOUT to TS, BB High-Z	7.58	21.58	6.25	20.25	5.00	19.00	3.80	14.04	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B14	CLKOUT to TEA assertion	2.50	10.00	2.50	10.00	2.50	10.00	2.50	9.00	ns
B15	CLKOUT to TEA High-Z	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	TA, BI valid to CLKOUT (setup time)	9.75	_	9.75	—	9.75	—	6.00	—	ns
B16a	TEA, KR, RETRY, CR valid to CLKOUT (setup time)	10.00	—	10.00	—	10.00	—	4.50	—	ns
B16b	$\overline{\text{BB}}, \overline{\text{BG}}, \overline{\text{BR}}, \text{ valid to CLKOUT (setup time)}^5$	8.50		8.50	_	8.50		4.00	_	ns
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time)	1.00	—	1.00	_	1.00	_	2.00	_	ns
B17a	CLKOUT to KR, RETRY, CR valid (hold time)	2.00	—	2.00	_	2.00	_	2.00	_	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) ⁶	6.00	—	6.00	—	6.00	_	6.00	_	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) ⁶	1.00	_	1.00	_	1.00	_	2.00	_	ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) ⁷	4.00	—	4.00	_	4.00	_	4.00	_	ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold time) ⁷	2.00	—	2.00	—	2.00	—	2.00	—	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0	_	8.00		8.00		8.00		8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1	10.86	17.99	8.88	16.00	7.00	14.13	5.18	12.31	ns

Table 7. Bus Operation Timings (continued)

	Characteristic	33 MHz 40 M		MHz	IHz 50 MHz			66 MHz		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B29d	$\overline{WE}(0:3) \text{ negated to } D(0:31), DP(0:3) \text{ High-Z}$ GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0			35.5		28.00		20.73		ns
B29e	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0	43.45	_	35.5	_	28.00		29.73	_	ns
B29f	$\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1	8.86		6.88		5.00		3.18		ns
B29g	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	8.86		6.88		5.00		3.18		ns
B29h	$\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1	38.67		31.38		24.50		17.83		ns
B29i	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	38.67		31.38		24.50		17.83		ns
B30	\overline{CS} , \overline{WE} (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access ⁸	5.58	—	4.25	—	3.00	—	1.79	—	ns
B30a	$\overline{\text{WE}}(0:3)$ negated to A(0:31), BADDR(28:30) invalid GPCM, write access, TRLX = 0, CSNT = 1, $\overline{\text{CS}}$ negated to A(0:31) invalid GPCM write access, TRLX = 0, CSNT = 1 ACS = 10, or ACS = 11, EBDF = 0	13.15	_	10.50	_	8.00	_	5.58	_	ns
B30b	$\label{eq:weighted} \hline \hline WE(0:3) \ negated to \ A(0:31), \ invalid \ GPCM \\ BADDR(28:30) \ invalid \ GPCM \ write \ access, \\ TRLX = 1, \ CSNT = 1. \ \overline{CS} \ negated to \\ A(0:31), \ Invalid \ GPCM, \ write \ access, \\ TRLX = 1, \ CSNT = 1, \ ACS = 10, \ or \\ ACS = 11, \ EBDF = 0 \\ \hline \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	43.45	_	35.50	_	28.00		20.73	_	ns
B30c	$\label{eq:weighted_states} \begin{array}{ c c c c } \hline WE(0:3) \mbox{ negated to } A(0:31), \mbox{ BADDR}(28:30) \\ \hline \mbox{ invalid GPCM write access, TRLX = 0, } \\ \hline CSNT = 1. \end{tabular} \begin{array}{ c c c } \hline CS \mbox{ negated to } A(0:31) \mbox{ invalid } \\ \hline GPCM \mbox{ write access, TRLX = 0, } CSNT = 1, \\ \hline ACS = 10, \mbox{ ACS = 11, EBDF = 1} \end{array}$	8.36	_	6.38	_	4.50	_	2.68	_	ns
B30d	$\overline{WE}(0:3)$ negated to A(0:31), BADDR(28:30) invalid GPCM write access, TRLX = 1, CSNT =1. \overline{CS} negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	38.67	_	31.38	_	24.50	_	17.83	_	ns
B31	CLKOUT falling edge to \overline{CS} valid—as requested by control bit CST4 in the corresponding word in UPM	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns

Table 7. Bus Operation Timings (continued)

		33 MHz 40 MHz		MHz	50 I	MHz	66 MHz		11	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B31a	CLKOUT falling edge to CS valid—as requested by control bit CST1 in the corresponding word in UPM		14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B31b	CLKOUT rising edge to \overline{CS} valid—as requested by control bit CST2 in the corresponding word in UPM	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid—as requested by control bit CST3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B31d	CLKOUT falling edge to \overline{CS} valid—as requested by control bit CST1 in the corresponding word in UPM, EBDF = 1	13.26	17.99	11.28	16.00	9.40	14.13	7.58	12.31	ns
B32	CLKOUT falling edge to BS valid—as requested by control bit BST4 in the corresponding word in UPM	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to \overline{BS} valid—as requested by control bit BST1 in the corresponding word in UPM, EBDF = 0		14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B32b	CLKOUT rising edge to BS valid—as requested by control bit BST2 in the corresponding word in UPM	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to BS valid—as requested by control bit BST3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B32d	CLKOUT falling edge to \overline{BS} valid—as requested by control bit BST1 in the corresponding word in UPM, EBDF = 1	13.26	17.99	11.28	16.00	9.40	14.13	7.58	12.31	ns
B33	CLKOUT falling edge to GPL valid—as requested by control bit GxT4 in the corresponding word in UPM	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to GPL valid—as requested by control bit GxT3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid—as requested by control bit CST4 in the corresponding word in UPM	5.58	—	4.25	—	3.00		1.79	—	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid—as requested by control bit CST1 in the corresponding word in UPM	13.15	—	10.50	—	8.00	—	5.58	—	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid—as requested by control bit CST2 in the corresponding word in UPM	20.73		16.75	_	13.00		9.36		ns

Table 7. Bus Operation Timings (continued)

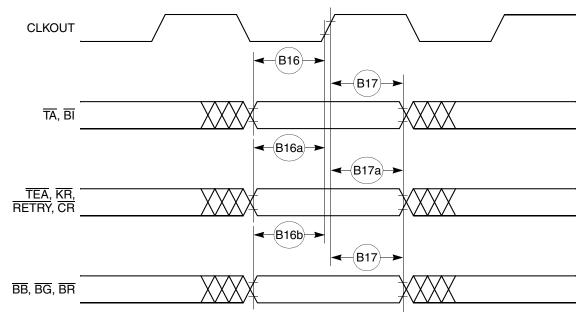


Figure 7 provides the timing for the synchronous input signals.

Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

Figure 8. Input Data Timing in Normal Case

Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

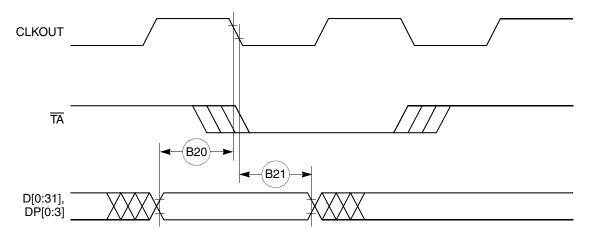
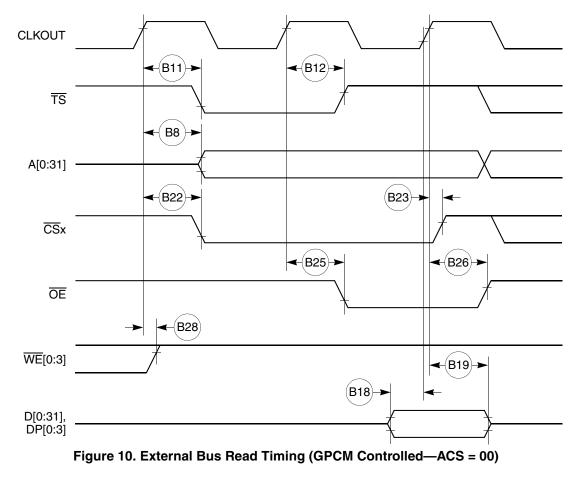



Figure 9. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM factors.

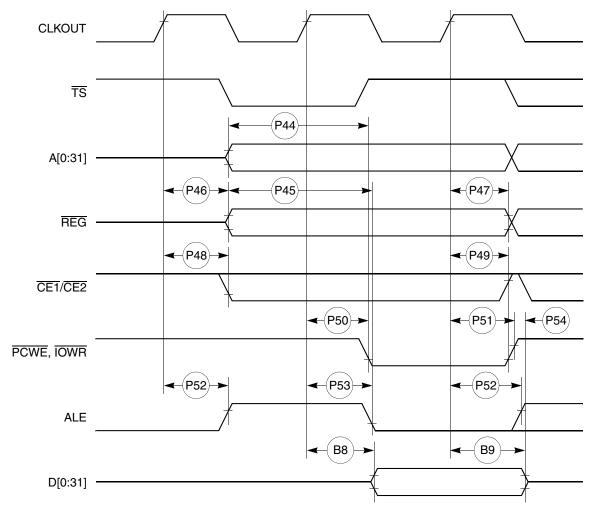


Figure 26. PCMCIA Access Cycle Timing External Bus Write

Figure 27 provides the PCMCIA \overline{WAIT} signal detection timing.

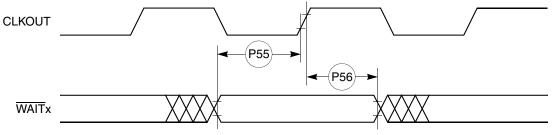


Figure 27. PCMCIA WAIT Signal Detection Timing

Table 12 shows the reset timing for the MPC860.

Table 12. Reset Timing

Num	Characteristic	33 N	/IHz	40 N	ЛНz	50 N	/IHz	66 N	/Hz	Unit
NUM	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to HRESET high impedance	—	20.00	—	20.00	_	20.00	—	20.00	ns
R70	CLKOUT to SRESET high impedance	—	20.00	—	20.00	—	20.00	—	20.00	ns
R71	RSTCONF pulse width	515.15	_	425.00		340.00	_	257.58	—	ns
R72	_	—	_	—	_	—	_	—	—	
R73	Configuration data to HRESET rising edge setup time	504.55	—	425.00	—	350.00	_	277.27	—	ns
R74	Configuration data to RSTCONF rising edge setup time	350.00	—	350.00	—	350.00	_	350.00	—	ns
R75	Configuration data hold time after RSTCONF negation	0.00	—	0.00	—	0.00	_	0.00	—	ns
R76	Configuration data hold time after HRESET negation	0.00	—	0.00	—	0.00	_	0.00	—	ns
R77	HRESET and RSTCONF asserted to data out drive	—	25.00		25.00	—	25.00	—	25.00	ns
R78	RSTCONF negated to data out high impedance	—	25.00	—	25.00	—	25.00	—	25.00	ns
R79	CLKOUT of last rising edge before chip three-state HRESET to data out high impedance	—	25.00	—	25.00	—	25.00	—	25.00	ns
R80	DSDI, DSCK setup	90.91	—	75.00	_	60.00		45.45	—	ns
R81	DSDI, DSCK hold time	0.00	_	0.00		0.00		0.00	—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	242.42	—	200.00	—	160.00	_	121.21	—	ns

11 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC860.

11.1 PIP/PIO AC Electrical Specifications

Table 14 provides the PIP/PIO AC timings as shown in Figure 39 through Figure 43.

Table 14. PIP/PIO Timing

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	onin
21	Data-in setup time to STBI low	0	_	ns
22	Data-in hold time to STBI high	2.5 - t3 ¹	—	CLK
23	STBI pulse width	1.5	_	CLK
24	STBO pulse width	1 CLK – 5 ns	_	ns
25	Data-out setup time to STBO low	2	_	CLK
26	Data-out hold time from STBO high	5	_	CLK
27	STBI low to STBO low (Rx interlock)	—	2	CLK
28	STBI low to STBO high (Tx interlock)	2	_	CLK
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	—	25	ns

¹ t3 = Specification 23.

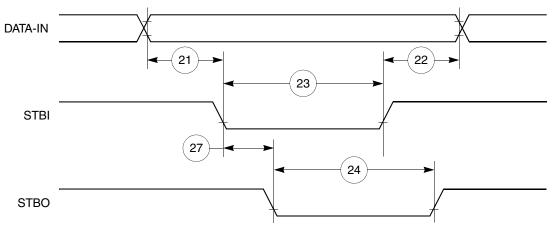


Figure 39. PIP Rx (Interlock Mode) Timing Diagram

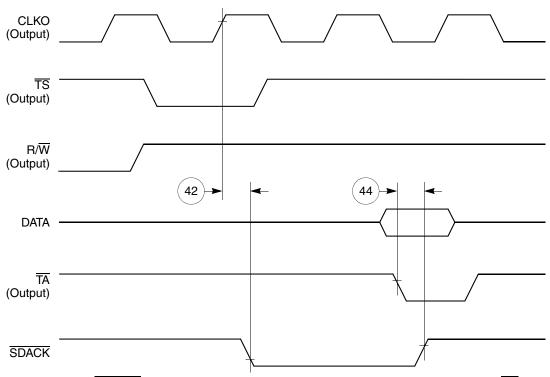


Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

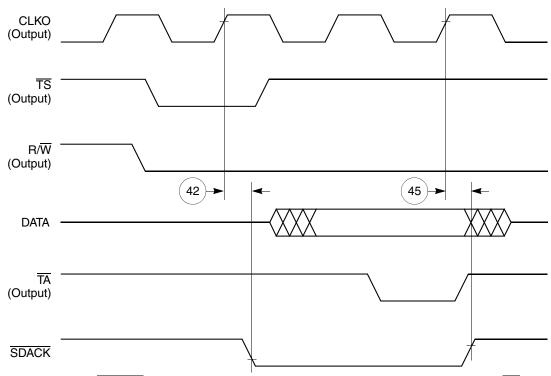
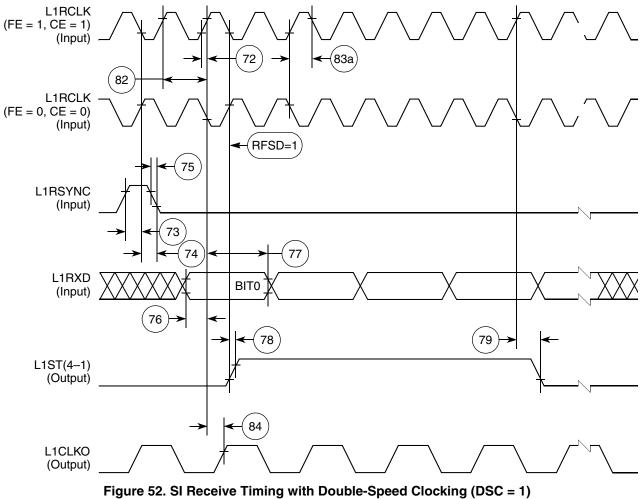
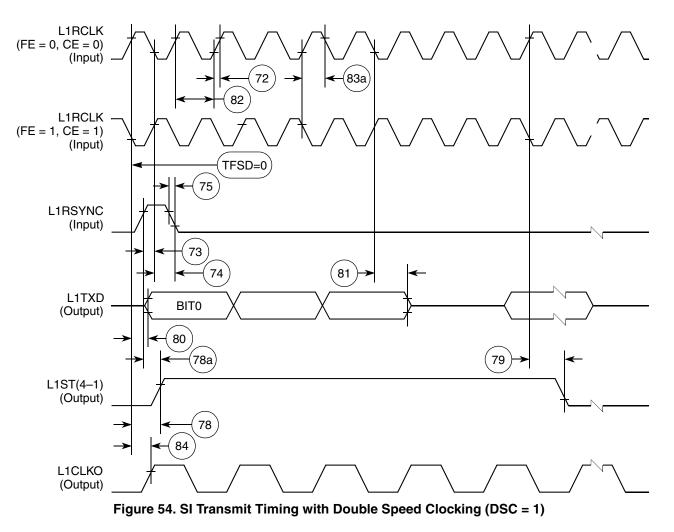
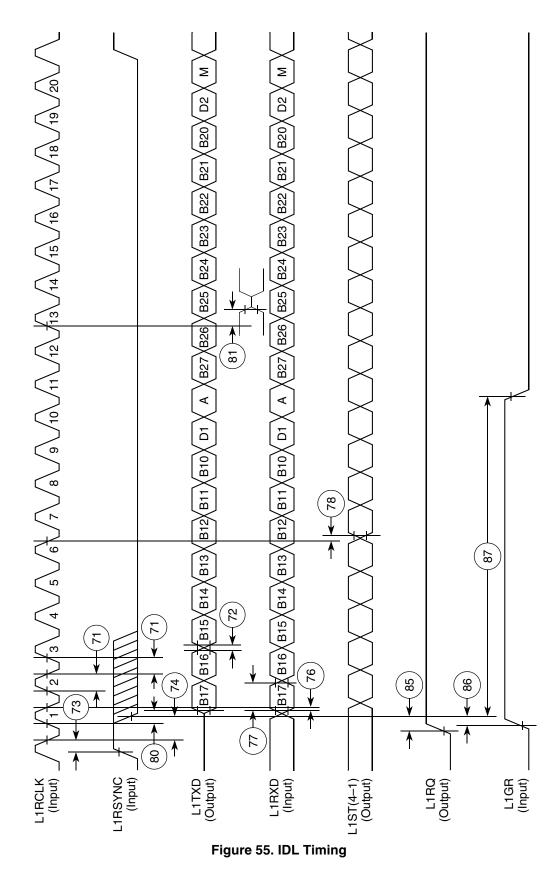



Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA



CPM Electrical Characteristics



CPM Electrical Characteristics

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

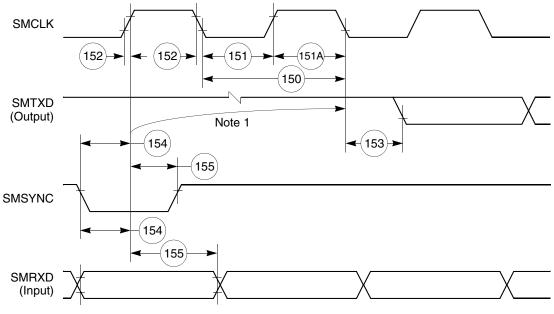
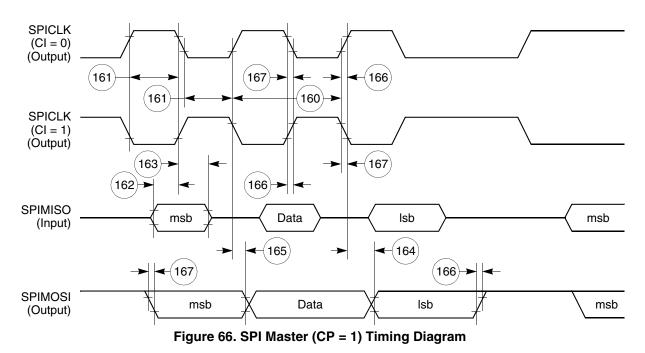

SMC Transparent AC Electrical Specifications 11.9

Table 23 provides the SMC transparent timings as shown in Figure 64.

Table 23. SMC Transparent Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Unit
150	SMCLK clock period ¹	100	—	ns
151	SMCLK width low	50	—	ns
151A	SMCLK width high	50	—	ns
152	SMCLK rise/fall time	_	15	ns
153	SMTXD active delay (from SMCLK falling edge)	10	50	ns
154	SMRXD/SMSYNC setup time	20	—	ns
155	RXD1/SMSYNC hold time	5	—	ns


¹ SYNCCLK must be at least twice as fast as SMCLK.

Note: 1. This delay is equal to an integer number of character-length clocks.

11.11 SPI Slave AC Electrical Specifications

Table 25 provides the SPI slave timings as shown in Figure 67 and Figure 68.

Table 25. SPI Slave Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Omi
170	Slave cycle time	2	—	t _{cyc}
171	Slave enable lead time	15	—	ns
172	Slave enable lag time	15	—	ns
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	—	t _{cyc}
175	Slave data setup time (inputs)	20	—	ns
176	Slave data hold time (inputs)	20	—	ns
177	Slave access time	_	50	ns

UTOPIA AC Electrical Specifications

Figure 70 shows signal timings during UTOPIA receive operations.

Figure 71 shows signal timings during UTOPIA transmit operations.

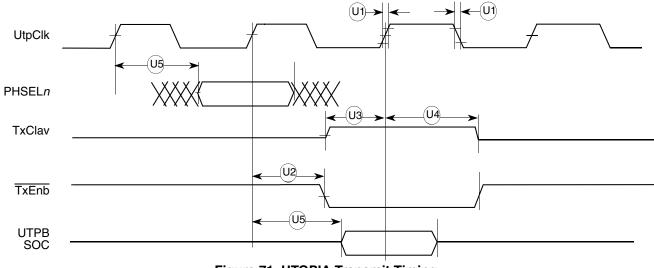


Figure 71. UTOPIA Transmit Timing

13.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN, MII_TX_ER, MII_TX_CLK)

The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency -1%.

Table 30 provides information on the MII transmit signal timing.

Table 30. M	MII	Transmit	Signal	Timing
-------------	-----	----------	--------	--------

Num	Characteristic	Min	Max	Unit
M5	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid	5	_	ns
M6	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid	_	25	
M7	MII_TX_CLK pulse width high	35	65%	MII_TX_CLK period
M8	MII_TX_CLK pulse width low	35%	65%	MII_TX_CLK period

Figure 73 shows the MII transmit signal timing diagram.

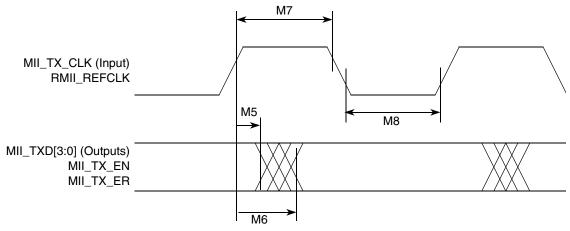


Figure 73. MII Transmit Signal Timing Diagram

Table 34 identifies the packages and operating frequencies available for the MPC860.

Package Type	Freq. (MHz) / Temp. (Tj)	Package	Order Number
Ball grid array ZP suffix—leaded ZQ suffix—lead-free VR suffix—lead-free	50 0° to 95°C	ZP/ZQ ¹	MPC855TZQ50D4 MPC860DEZQ50D4 MPC860DTZQ50D4 MPC860ENZQ50D4 MPC860SRZQ50D4 MPC860TZQ50D4 MPC860DPZQ50D4 MPC860PZQ50D4
		Tape and Reel	MPC855TZQ50D4R2 MPC860DEZQ50D4R2 MPC860ENZQ50D4R2 MPC860SRZQ50D4R2 MPC860TZQ50D4R2 MPC860TZQ50D4R2 MPC860DPZQ50D4R2 MPC855TVR50D4R2 MPC860ENVR50D4R2 MPC860SRVR50D4R2 MPC860TVR50D4R2
		VR	MPC855TVR50D4 MPC860DEVR50D4 MPC860DPVR50D4 MPC860DTVR50D4 MPC860ENVR50D4 MPC860PVR50D4 MPC860SRVR50D4 MPC860SRVR50D4 MPC860TVR50D4
	66 0° to 95°C	ZP/ZQ ¹	MPC855TZQ66D4 MPC860DEZQ66D4 MPC860DTZQ66D4 MPC860ENZQ66D4 MPC860SRZQ66D4 MPC860TZQ66D4 MPC860DPZQ66D4 MPC860PZQ66D4
		Tape and Reel	MPC860SRZQ66D4R2 MPC860PZQ66D4R2
		VR	MPC855TVR66D4 MPC860DEVR66D4 MPC860DPVR66D4 MPC860DTVR66D4 MPC860ENVR66D4 MPC860PVR66D4 MPC860SRVR66D4 MPC860TVR66D4

Table 34. MPC860 Family Package/Frequency Availability