

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (2), 10/100Mbps (1)
Ethernet SATA	10Mbps (2), 10/100Mbps (1)
SATA	
SATA USB	- -
SATA USB Voltage - I/O	- 3.3V
SATA USB Voltage - I/O Operating Temperature	- - 3.3V 0°C ~ 95°C (TJ)
SATA USB Voltage - I/O Operating Temperature Security Features	- 3.3V 0°C ~ 95°C (TJ)
SATA USB Voltage - I/O Operating Temperature Security Features Package / Case	- 3.3V 0°C ~ 95°C (TJ) - 357-BBGA

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Up to 8 Kbytes of dual-port RAM
- 16 serial DMA (SDMA) channels
- Three parallel I/O registers with open-drain capability
- Four baud-rate generators (BRGs)
 - Independent (can be tied to any SCC or SMC)
 - Allows changes during operation
 - Autobaud support option
- Four serial communications controllers (SCCs)
 - Ethernet/IEEE 802.3® standard optional on SCC1–4, supporting full 10-Mbps operation (available only on specially programmed devices)
 - HDLC/SDLC (all channels supported at 2 Mbps)
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Asynchronous HDLC to support point-to-point protocol (PPP)
 - AppleTalk
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Serial infrared (IrDA)
 - Binary synchronous communication (BISYNC)
 - Totally transparent (bit streams)
 - Totally transparent (frame-based with optional cyclic redundancy check (CRC))
- Two SMCs (serial management channels)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division multiplexed (TDM) channels
- One SPI (serial peripheral interface)
 - Supports master and slave modes
 - Supports multimaster operation on the same bus
- One I²C (inter-integrated circuit) port
 - Supports master and slave modes
 - Multiple-master environment support
- Time-slot assigner (TSA)
 - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, and clocking

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC860. Table 2 provides the maximum ratings.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

Table 2. Maximum Tolerated Ratings

(GND = 0 V)

Rating	Symbol	Value	Unit
Supply voltage ¹	V_{DDH}	-0.3 to 4.0	V
	V _{DDL}	-0.3 to 4.0	V
	KAPWR	-0.3 to 4.0	V
	V _{DDSYN}	-0.3 to 4.0	V
Input voltage ²	V _{in}	GND – 0.3 to V _{DDH}	V
Temperature ³ (standard)	T _{A(min)}	0	°C
	T _{j(max)}	95	°C
Temperature ³ (extended)	T _{A(min)}	-40	°C
	T _{j(max)}	95	°C
Storage temperature range	T _{stg}	-55 to 150	°C

The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be applied to its inputs).

³ Minimum temperatures are guaranteed as ambient temperature, T_A. Maximum temperatures are guaranteed as junction temperature, T_j.

Power Dissipation

5 Power Dissipation

Table 5 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1, where CPU frequency is twice the bus speed.

Table 5. Power Dissipation (P_D)

Die Revision	Frequency (MHz)	Typical ¹	Maximum ²	Unit
D.4	50	656	735	mW
(1:1 mode)	66	TBD	TBD	mW
0.4	66	722	762	mW
(2:1 mode)	80	851	909	mW

¹ Typical power dissipation is measured at 3.3 V.

NOTE

Values in Table 5 represent V_{DDL} -based power dissipation and do not include I/O power dissipation over V_{DDH} . I/O power dissipation varies widely by application due to buffer current, depending on external circuitry.

6 DC Characteristics

Table 6 provides the DC electrical characteristics for the MPC860.

Table 6. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage at 40 MHz or less	V _{DDH} , V _{DDL} , V _{DDSYN}	3.0	3.6	V
	KAPWR (power-down mode)	2.0	3.6	V
	KAPWR (all other operating modes)	V _{DDH} – 0.4	V _{DDH}	V
Operating voltage greater than 40 MHz	$V_{ m DDH}, V_{ m DDL}, { m KAPWR}, \ V_{ m DDSYN}$	3.135	3.465	V
	KAPWR (power-down mode)	2.0	3.6	V
	KAPWR (all other operating modes)	V _{DDH} – 0.4	V _{DDH}	V
Input high voltage (all inputs except EXTAL and EXTCLK)	V _{IH}	2.0	5.5	V
Input low voltage ¹	V _{IL}	GND	0.8	V
EXTAL, EXTCLK input high voltage	V _{IHC}	0.7 × (V _{DDH})	V _{DDH} + 0.3	V
Input leakage current, V_{in} = 5.5 V (except TMS, \overline{TRST} , DSCK, and DSDI pins)	l _{in}	_	100	μΑ

² Maximum power dissipation is measured at 3.5 V.

Thermal Calculation and Measurement

7 Thermal Calculation and Measurement

For the following discussions, $P_D = (V_{DD} \times I_{DD}) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_I , in °C can be obtained from the equation:

$$T_I = T_A + (R_{\theta IA} \times P_D)$$

where:

 T_A = ambient temperature (°C)

 $R_{\theta,IA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the airflow around the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature; see Figure 2.

Layout Practices

where:

 Ψ_{IT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

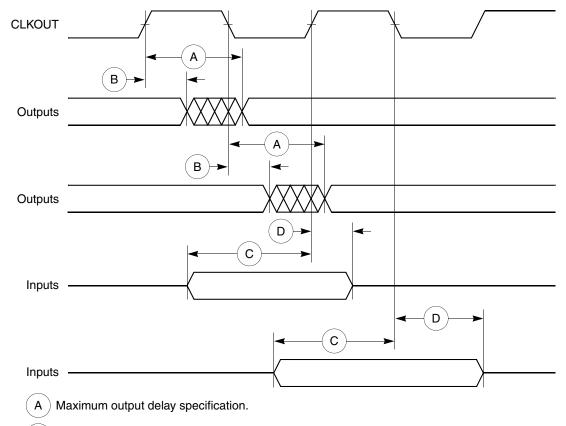
Semiconductor Equipment and Materials International (415) 964-5111

805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) Specifications 800-854-7179 or (Available from Global Engineering Documents) 303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.


8 Layout Practices

Each V_{DD} pin on the MPC860 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1 μ F-bypass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. A four-layer board employing two inner layers as V_{CC} and GND planes is recommended.

All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

Figure 3 is the control timing diagram.

- (B) Minimum output hold time.
- C Minimum input setup time specification.
- (D) Minimum input hold time specification.

Figure 3. Control Timing

Figure 4 provides the timing for the external clock.

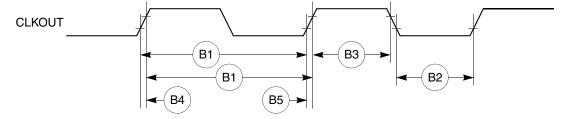


Figure 4. External Clock Timing

Bus Signal Timing

Figure 5 provides the timing for the synchronous output signals.

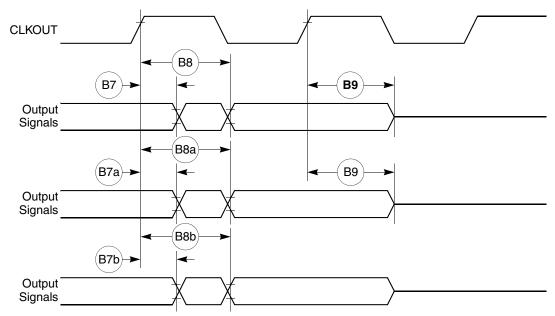


Figure 5. Synchronous Output Signals Timing

Figure 6 provides the timing for the synchronous active pull-up and open-drain output signals.

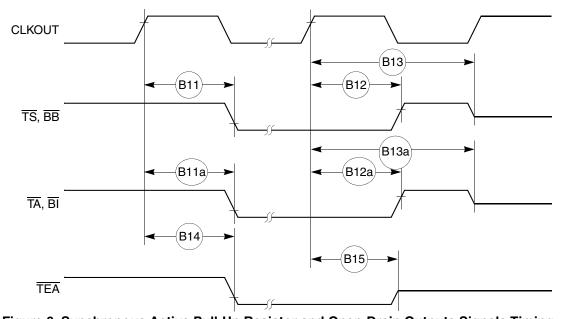


Figure 6. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing

Bus Signal Timing

Figure 26 provides the PCMCIA access cycle timing for the external bus write.

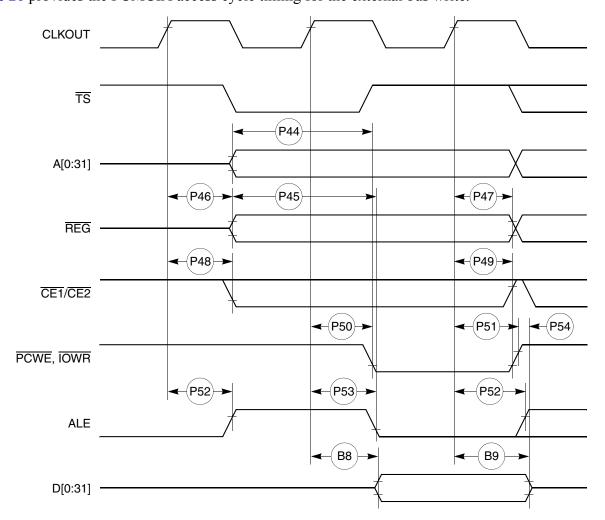


Figure 26. PCMCIA Access Cycle Timing External Bus Write

Figure 27 provides the PCMCIA WAIT signal detection timing.

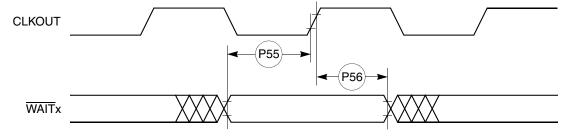


Figure 27. PCMCIA WAIT Signal Detection Timing

36 Freescale Semiconductor

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

Table 12 shows the reset timing for the MPC860.

Table 12. Reset Timing

	Observato totto	33 MHz		40 MHz		50 MHz		66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to HRESET high impedance	_	20.00	_	20.00	_	20.00	_	20.00	ns
R70	CLKOUT to SRESET high impedance	_	20.00	_	20.00	_	20.00	_	20.00	ns
R71	RSTCONF pulse width	515.15	_	425.00		340.00	_	257.58	_	ns
R72		_	_	_	_	_	_	_	_	
R73	Configuration data to HRESET rising edge setup time	504.55	_	425.00	_	350.00	_	277.27	_	ns
R74	Configuration data to RSTCONF rising edge setup time	350.00	_	350.00	_	350.00	_	350.00	_	ns
R75	Configuration data hold time after RSTCONF negation	0.00	_	0.00	_	0.00	_	0.00	_	ns
R76	Configuration data hold time after HRESET negation	0.00	_	0.00	_	0.00	_	0.00	_	ns
R77	HRESET and RSTCONF asserted to data out drive	_	25.00		25.00	_	25.00	_	25.00	ns
R78	RSTCONF negated to data out high impedance	_	25.00	_	25.00	_	25.00	_	25.00	ns
R79	CLKOUT of last rising edge before chip three-state HRESET to data out high impedance	_	25.00	_	25.00	_	25.00	_	25.00	ns
R80	DSDI, DSCK setup	90.91	_	75.00	_	60.00	_	45.45	_	ns
R81	DSDI, DSCK hold time	0.00	_	0.00	_	0.00	_	0.00	_	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	242.42		200.00		160.00	_	121.21	_	ns

CPM Electrical Characteristics

Table 16. IDMA Controller Timing (continued)

N 1	Observatoristis	All Freq	I I m i t	
Num	lum Characteristic		Max	Unit
42	SDACK assertion delay from clock high	_	12	ns
43	SDACK negation delay from clock low	_	12	ns
44	SDACK negation delay from TA low	_	20	ns
45	SDACK negation delay from clock high	_	15	ns
46	$\overline{\text{TA}}$ assertion to rising edge of the clock setup time (applies to external $\overline{\text{TA}}$)	7	_	ns

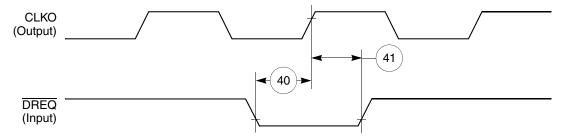


Figure 45. IDMA External Requests Timing Diagram

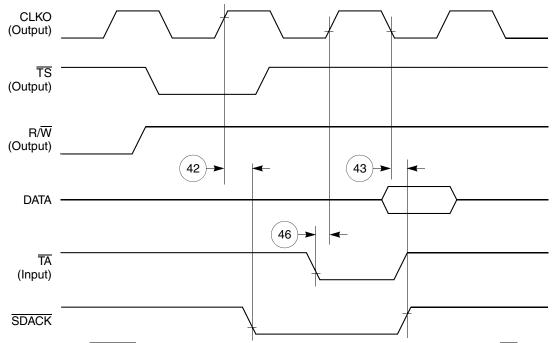


Figure 46. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

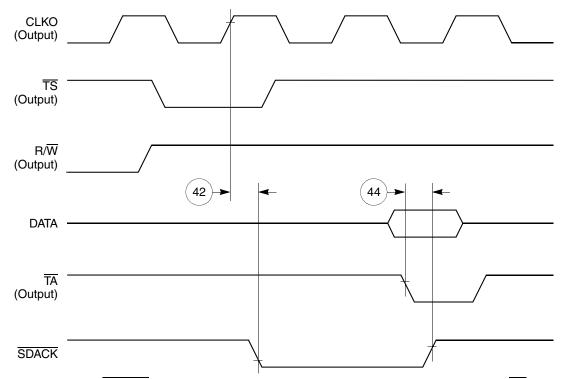


Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

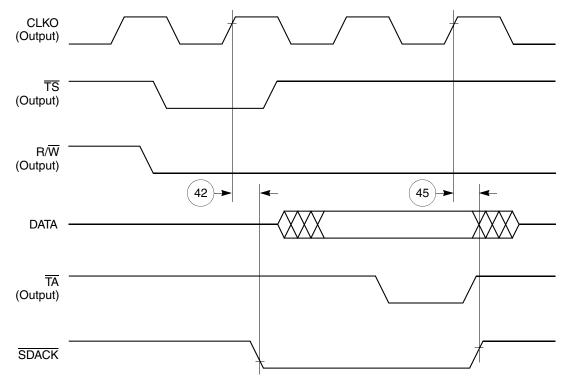


Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

CPM Electrical Characteristics

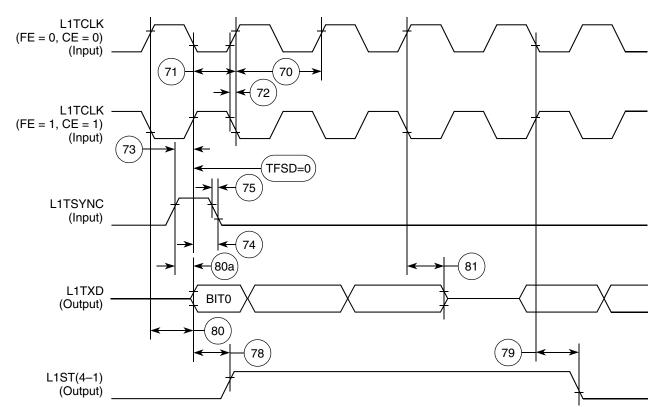


Figure 53. SI Transmit Timing Diagram (DSC = 0)

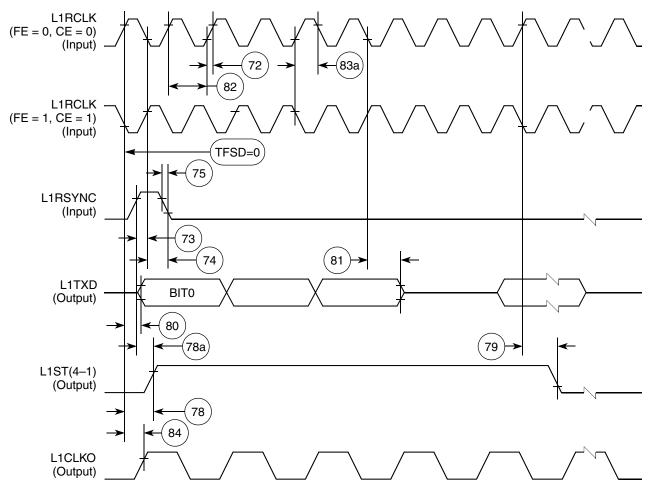


Figure 54. SI Transmit Timing with Double Speed Clocking (DSC = 1)

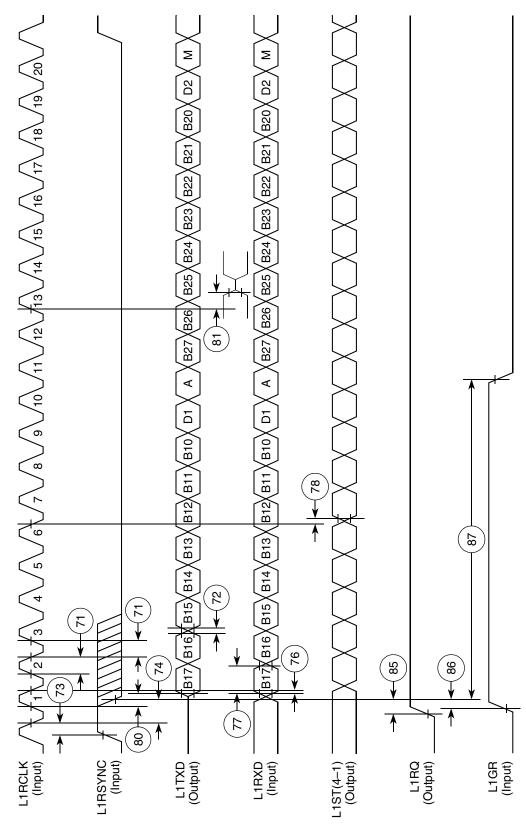


Figure 55. IDL Timing

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

CPM Electrical Characteristics

Figure 56 through Figure 58 show the NMSI timings.

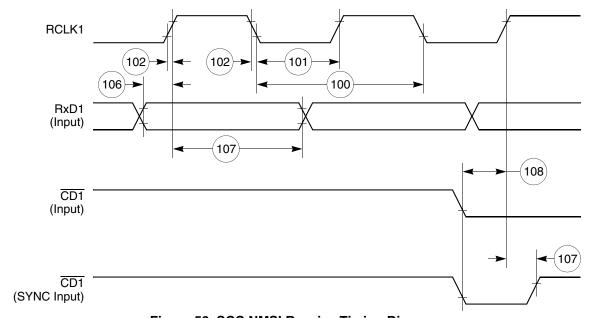


Figure 56. SCC NMSI Receive Timing Diagram

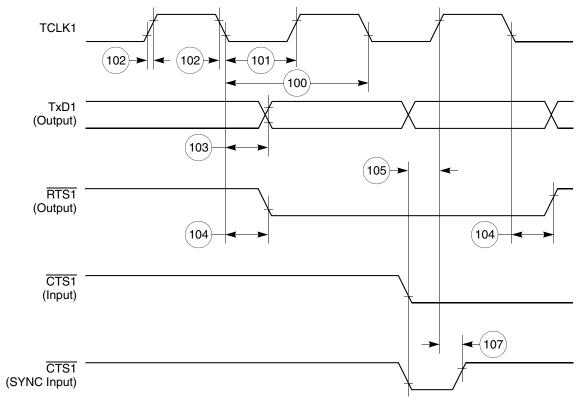


Figure 57. SCC NMSI Transmit Timing Diagram

11.10 SPI Master AC Electrical Specifications

Table 24 provides the SPI master timings as shown in Figure 65 and Figure 66.

Table 24. SPI Master Timing

Num	Characteristic	All Freq	Unit	
Num		Min	Max	Unit
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	50	_	ns
163	Master data hold time (inputs)	0	_	ns
164	Master data valid (after SCK edge)	_	20	ns
165	Master data hold time (outputs)	0	_	ns
166	Rise time output	_	15	ns
167	Fall time output	_	15	ns

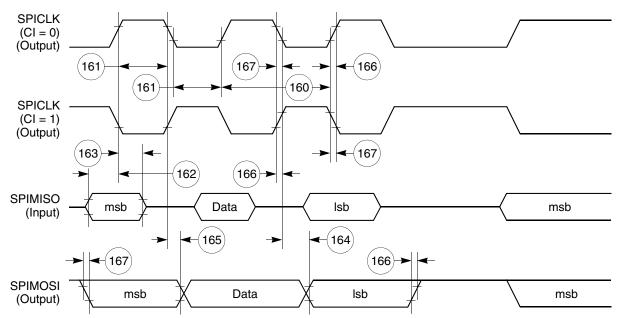


Figure 65. SPI Master (CP = 0) Timing Diagram

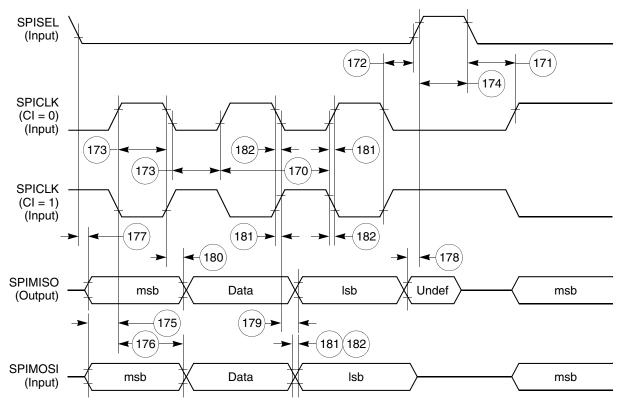


Figure 67. SPI Slave (CP = 0) Timing Diagram

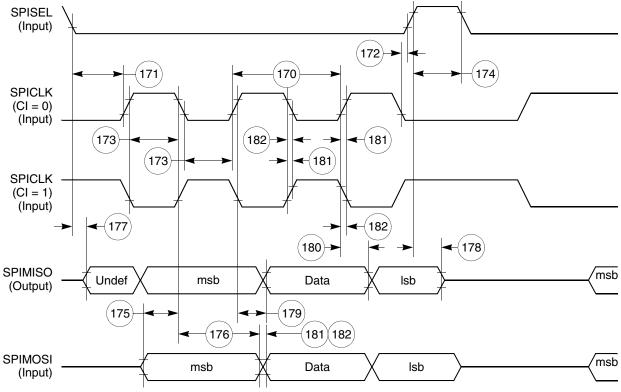


Figure 68. SPI Slave (CP = 1) Timing Diagram

Mechanical Data and Ordering Information

Figure 75 shows the MII serial management channel timing diagram.

Figure 75. MII Serial Management Channel Timing Diagram

14 Mechanical Data and Ordering Information

14.1 Ordering Information

Table 33 provides information on the MPC860 Revision D.4 derivative devices.

Table 33. MPC860 Family Revision D.4 Derivatives

Device	Number of SCCs ¹	Ethernet Support ² (Mbps)	Multichannel HDLC Support	ATM Support
MPC855T	1	10/100	Yes	Yes
MPC860DE	2	10	N/A	N/A
MPC860DT		10/100	Yes	Yes
MPC860DP		10/100	Yes	Yes
MPC860EN	4	10	N/A	N/A
MPC860SR		10	Yes	Yes
MPC860T		10/100	Yes	Yes
MPC860P		10/100	Yes	Yes

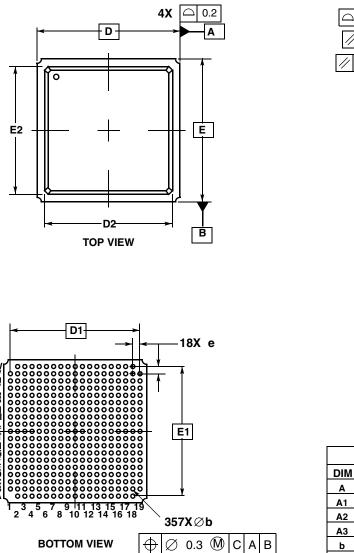
¹ Serial communications controller (SCC)

² Up to 4 channels at 40 MHz or 2 channels at 25 MHz

Mechanical Data and Ordering Information

Table 34. MPC860 Family Package/Frequency Availability (continued)

Package Type	Freq. (MHz) / Temp. (Tj)	Package	Order Number
Ball grid array (continued) ZP suffix—leaded ZQ suffix—leaded VR suffix—lead-free	80 0° to 95°C	ZP/ZQ ¹	MPC855TZQ80D4 MPC860DEZQ80D4 MPC860DTZQ80D4 MPC860ENZQ80D4 MPC860SRZQ80D4 MPC860TZQ80D4 MPC860DPZQ80D4 MPC860PZQ80D4
		Tape and Reel	MPC860PZQ80D4R2 MPC860PVR80D4R2
		VR	MPC855TVR80D4 MPC860DEVR80D4 MPC860DPVR80D4 MPC860ENVR80D4 MPC860PVR80D4 MPC860SRVR80D4 MPC860TVR80D4
Ball grid array (CZP suffix) CZP suffix—leaded CZQ suffix—leaded CVR suffix—lead-free	suffix—leaded —40° to 95°C suffix—leaded	ZP/ZQ ¹	MPC855TCZQ50D4 MPC855TCVR50D4 MPC860DECZQ50D4 MPC860DTCZQ50D4 MPC860ENCZQ50D4 MPC860SRCZQ50D4 MPC860TCZQ50D4 MPC860DPCZQ50D4 MPC860PCZQ50D4
		Tape and Reel	MPC855TCZQ50D4R2 MC860ENCVR50D4R2
		CVR	MPC860DECVR50D4 MPC860DTCVR50D4 MPC860ENCVR50D4 MPC860PCVR50D4 MPC860SRCVR50D4 MPC860TCVR50D4
	66 -40° to 95°C	ZP/ZQ ¹	MPC855TCZQ66D4 MPC855TCVR66D4 MPC860ENCZQ66D4 MPC860SRCZQ66D4 MPC860TCZQ66D4 MPC860DPCZQ66D4 MPC860PCZQ66D4
		CVR	MPC860DTCVR66D4 MPC860ENCVR66D4 MPC860PCVR66D4 MPC860SRCVR66D4 MPC860TCVR66D4


¹ The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

Mechanical Data and Ordering Information

14.3 Mechanical Dimensions of the PBGA Package

Figure 77 shows the mechanical dimensions of the ZP PBGA package.

NOTE

 \varnothing 0.15 M

- 1. Dimensions and tolerance per ASME Y14.5M, 1994.
- 2. Dimensions in millimeters.
- Dimension b is the maximum solder ball diameter measured parallel to data C.

	MILLIMETERS				
DIM	MIN	MAX			
Α		2.05			
A 1	0.50	0.70			
A2	0.95	1.35			
А3	0.70	0.90			
b	0.60	0.90			
D	25.00 BSC				
D1	22.86	BSC			
D2	22.40	22.60			
е	1.27 BSC				
Е	25.00 BSC				
E1	22.86 BSC				
E2	22.40	22.60			

SIDE VIEW

0.2 C

Figure 77. Mechanical Dimensions and Bottom Surface Nomenclature of the ZP PBGA Package