E·XFL

Motorola - MPC860ENZQ50D4 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	Νο
Display & Interface Controllers	-
Ethernet	10Mbps (4)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc860enzq50d4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

1 Overview

The MPC860 power quad integrated communications controller (PowerQUICCTM) is a versatile one-chip integrated microprocessor and peripheral combination designed for a variety of controller applications. It particularly excels in communications and networking systems. The PowerQUICC unit is referred to as the MPC860 in this hardware specification.

The MPC860 implements Power ArchitectureTM technology and contains a superset of Freescale's MC68360 quad integrated communications controller (QUICC), referred to here as the QUICC, RISC communications proceessor module (CPM). The CPU on the MPC860 is a 32-bit core built on Power Architecture technology that incorporates memory management units (MMUs) and instruction and data caches.. The CPM from the MC68360 QUICC has been enhanced by the addition of the inter-integrated controller (I²C) channel. The memory controller has been enhanced, enabling the MPC860 to support any type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket controller supports up to two sockets. A real-time clock has also been integrated.

Table 1 shows the functionality supported by the MPC860 family.

	Cache (Kbytes)	Ethe	Ethernet			
Part	Instruction Cache	Data Cache	10T	10/100	ΑΤΜ	SCC	Reference ¹
MPC860DE	4	4	Up to 2	_	_	2	1
MPC860DT	4	4	Up to 2	1	Yes	2	1
MPC860DP	16	8	Up to 2	1	Yes	2	1
MPC860EN	4	4	Up to 4	—	—	4	1
MPC860SR	4	4	Up to 4	—	Yes	4	1
MPC860T	4	4	Up to 4	1	Yes	4	1
MPC860P	16	8	Up to 4	1	Yes	4	1
MPC855T	4	4	1	1	Yes	1	2

Table 1. MPC860 Family Functionality

Supporting documentation for these devices refers to the following:

1. MPC860 PowerQUICC Family User's Manual (MPC860UM, Rev. 3)

2. MPC855T User's Manual (MPC855TUM, Rev. 1)

Table 4 shows the thermal characteristics for the MPC860.

Table 4. MPC860 Thermal Resistance Data

Rating	Environment		Symbol	ZP MPC860P	ZQ / VR MPC860P	Unit
Mold Compound Thickness				0.85	1.15	mm
Junction-to-ambient ¹	Natural convection	Single-layer board (1s)	$R_{\theta JA}^2$	34	34	°C/W
		Four-layer board (2s2p)	$R_{\theta JMA}^{3}$	22	22	
	Airflow (200 ft/min)	Single-layer board (1s)	$R_{\theta JMA}^{3}$	27	27	
		Four-layer board (2s2p)	$R_{\theta JMA}^{3}$	18	18	
Junction-to-board ⁴			$R_{\theta JB}$	14	13	
Junction-to-case ⁵			R_{\thetaJC}	6	8	
Junction-to-package top ⁶	Natural convection		Ψ_{JT}	2	2	

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.

² Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2.

Figure 7 provides the timing for the synchronous input signals.

Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

Figure 8. Input Data Timing in Normal Case

Bus Signal Timing

Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

Figure 9. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM factors.

Figure 14 through Figure 16 provide the timing for the external bus write controlled by various GPCM factors.

Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)

Bus Signal Timing

Figure 17. External Bus Timing (UPM Controlled Signals)

1

Table 8 provides interrupt timing for the MPC860.

Table 8. Interrupt Timing

Num	Characteristic1	All Frequencies		Unit
	Characteristic	Min	Мах	Onit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00	_	ns
140	IRQx hold time after CLKOUT	2.00	_	ns
141	IRQx pulse width low	3.00	—	ns
142	IRQx pulse width high	3.00	_	ns
143	IRQx edge-to-edge time	$4 \times T_{CLOCKOUT}$	—	—

The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level-sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC860 is able to support.

Figure 23 provides the interrupt detection timing for the external level-sensitive lines.

Figure 23. Interrupt Detection Timing for External Level Sensitive Lines

Figure 24 provides the interrupt detection timing for the external edge-sensitive lines.

Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines

Bus Signal Timing

Table 9 shows the PCMCIA timing for the MPC860.

Table 9. PCMCIA Timing

Num	Obevectovictic	33	MHz	40 I	MHz	50 I	MHz	66 I	MHz	11
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
P44	A(0:31), REG valid to PCMCIA Strobe asserted ¹	20.73	—	16.75	—	13.00	—	9.36	—	ns
P45	A(0:31), $\overline{\text{REG}}$ valid to ALE negation ¹	28.30	—	23.00	—	18.00	—	13.15	—	ns
P46	CLKOUT to REG valid	7.58	15.58	6.25	14.25	5.00	13.00	3.79	11.84	ns
P47	CLKOUT to REG invalid	8.58	—	7.25	—	6.00	—	4.84	—	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted	7.58	15.58	6.25	14.25	5.00	13.00	3.79	11.84	ns
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated	7.58	15.58	6.25	14.25	5.00	13.00	3.79	11.84	ns
P50	CLKOUT to PCOE, IORD, PCWE, IOWR assert time	—	11.00		11.00	—	11.00	—	11.00	ns
P51	CLKOUT to PCOE, IORD, PCWE, IOWR negate time	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
P52	CLKOUT to ALE assert time	7.58	15.58	6.25	14.25	5.00	13.00	3.79	10.04	ns
P53	CLKOUT to ALE negate time	—	15.58		14.25	_	13.00	—	11.84	ns
P54	PCWE, IOWR negated to D(0:31) invalid ¹	5.58	—	4.25	—	3.00	—	1.79	—	ns
P55	WAITA and WAITB valid to CLKOUT rising edge ¹	8.00	—	8.00	—	8.00	—	8.00	—	ns
P56	CLKOUT rising edge to WAITA and WAITB invalid ¹	2.00	—	2.00	—	2.00	—	2.00	—	ns

¹ PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See Chapter 16, "PCMCIA Interface," in the *MPC860 PowerQUICCTM Family User's Manual*.

Figure 34 provides the reset timing for the debug port configuration.

Figure 34. Reset Timing—Debug Port Configuration

10 IEEE 1149.1 Electrical Specifications

Table 13 provides the JTAG timings for the MPC860 shown in Figure 35 through Figure 38.

Num	Charactariatia	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	Onit
J82	TCK cycle time	100.00	—	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	_	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	—	ns
J86	TMS, TDI data hold time	25.00	_	ns
J87	TCK low to TDO data valid	—	27.00	ns
J88	TCK low to TDO data invalid	0.00	—	ns
J89	TCK low to TDO high impedance	—	20.00	ns
J90	TRST assert time	100.00	_	ns
J91	TRST setup time to TCK low	40.00	—	ns
J92	TCK falling edge to output valid	—	50.00	ns
J93	TCK falling edge to output valid out of high impedance	—	50.00	ns
J94	TCK falling edge to output high impedance	—	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	—	ns
J96	TCK rising edge to boundary scan input invalid	50.00		ns

Table 13. JTAG Timing

IEEE 1149.1 Electrical Specifications

Figure 35. JTAG Test Clock Input Timing

Figure 36. JTAG Test Access Port Timing Diagram

Figure 37. JTAG TRST Timing Diagram

CPM Electrical Characteristics

Figure 42. PIP TX (Pulse Mode) Timing Diagram

Figure 43. Parallel I/O Data-In/Data-Out Timing Diagram

11.2 Port C Interrupt AC Electrical Specifications

Table 15 provides the timings for port C interrupts.

Num	Characteristic	≥ 33.34	4 MHz ¹	Unit
Num	Unaracteristic	Min	Max	Onic
35	Port C interrupt pulse width low (edge-triggered mode)	55	—	ns
36	Port C interrupt minimum time between active edges	55		ns

¹ External bus frequency of greater than or equal to 33.34 MHz.

Figure 44 shows the port C interrupt detection timing.

Figure 44. Port C Interrupt Detection Timing

11.3 IDMA Controller AC Electrical Specifications

Table 16 provides the IDMA controller timings as shown in Figure 45 through Figure 48.

Table 16. IDMA Controller Timing

Num	Charactariatia	All Freq	uencies	Unit
Num	Characteristic	Min	Max	Onit
40	DREQ setup time to clock high	7	_	ns
41	DREQ hold time from clock high	3	_	ns

CPM Electrical Characteristics

Figure 56 through Figure 58 show the NMSI timings.

Figure 58. HDLC Bus Timing Diagram

11.8 Ethernet Electrical Specifications

Table 22 provides the Ethernet timings as shown in Figure 59 through Figure 63.

Num	Oh ann athreid the	All Freq	uencies	l lucit
NUM	Characteristic	Min	Мах	Unit
120	CLSN width high	40		ns
121	RCLK1 rise/fall time	—	15	ns
122	RCLK1 width low	40	—	ns
123	RCLK1 clock period ¹	80	120	ns
124	RXD1 setup time	20	—	ns
125	RXD1 hold time	5	—	ns
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	—	ns
127	RENA width low	100	—	ns
128	TCLK1 rise/fall time	—	15	ns
129	TCLK1 width low	40	—	ns
130	TCLK1 clock period ¹	99	101	ns
131	TXD1 active delay (from TCLK1 rising edge)	10	50	ns
132	TXD1 inactive delay (from TCLK1 rising edge)	10	50	ns
133	TENA active delay (from TCLK1 rising edge)	10	50	ns
134	TENA inactive delay (from TCLK1 rising edge)	10	50	ns

CPM Electrical Characteristics

SMC Transparent AC Electrical Specifications 11.9

Table 23 provides the SMC transparent timings as shown in Figure 64.

Table 23. SMC Transparent Timing

Num	Chavastavistia	All Frequencies		Unit
	Characteristic	Min	Мах	Unit
150	SMCLK clock period ¹	100	—	ns
151	SMCLK width low	50	—	ns
151A	SMCLK width high	50	—	ns
152	SMCLK rise/fall time	—	15	ns
153	SMTXD active delay (from SMCLK falling edge)	10	50	ns
154	SMRXD/SMSYNC setup time	20	—	ns
155	RXD1/SMSYNC hold time	5	—	ns

¹ SYNCCLK must be at least twice as fast as SMCLK.

Note: 1. This delay is equal to an integer number of character-length clocks.

Figure 69 shows the I^2C bus timing.

Figure 69. I²C Bus Timing Diagram

12 UTOPIA AC Electrical Specifications

Table 28 shows the AC electrical specifications for the UTOPIA interface.

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output	—	3.5	ns
	Duty cycle		50	50	%
	Frequency		—	50	MHz
U1a	UtpClk rise/fall time (external clock option)	Input	—	3.5	ns
	Duty cycle		40	60	%
	Frequency		—	50	MHz
U2	RxEnb and TxEnb active delay	Output	2	16	ns
U3	UTPB, SOC, Rxclav and Txclav setup time	Input	8	—	ns
U4	UTPB, SOC, Rxclav and Txclav hold time	Input	1	—	ns
U5	UTPB, SOC active delay (and PHREQ and PHSEL active delay in MPHY mode)	Output	2	16	ns

Table 28. UTOPIA AC Electrical Specifications

FEC Electrical Characteristics

13.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN, MII_TX_ER, MII_TX_CLK)

The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency -1%.

Table 30 provides information on the MII transmit signal timing.

Table 30. MI	Transmit	Signal	Timing
--------------	----------	--------	--------

Num	Characteristic	Min	Max	Unit
M5	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid	5	_	ns
M6	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid		25	
M7	MII_TX_CLK pulse width high	35	65%	MII_TX_CLK period
M8	MII_TX_CLK pulse width low	35%	65%	MII_TX_CLK period

Figure 73 shows the MII transmit signal timing diagram.

Figure 73. MII Transmit Signal Timing Diagram

FEC Electrical Characteristics

13.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 31 provides information on the MII async inputs signal timing.

Table 31. MII Async Inputs Signal Timing

Num	Characteristic	Min	Мах	Unit
M9	MII_CRS, MII_COL minimum pulse width	1.5	_	MII_TX_CLK period

Figure 74 shows the MII asynchronous inputs signal timing diagram.

13.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 32 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

Num	Characteristic	Min	Мах	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	—	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	—	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	—	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Table 32. MII Serial Management Channel Timing

Mechanical Data and Ordering Information

Package Type	Freq. (MHz) / Temp. (Tj)	Package	Order Number
Ball grid array <i>(continued)</i> ZP suffix—leaded ZQ suffix—leaded VR suffix—lead-free	80 0° to 95°C	ZP/ZQ ¹	MPC855TZQ80D4 MPC860DEZQ80D4 MPC860DTZQ80D4 MPC860ENZQ80D4 MPC860SRZQ80D4 MPC860TZQ80D4 MPC860DPZQ80D4 MPC860PZQ80D4
		Tape and Reel	MPC860PZQ80D4R2 MPC860PVR80D4R2
		VR	MPC855TVR80D4 MPC860DEVR80D4 MPC860DPVR80D4 MPC860ENVR80D4 MPC860PVR80D4 MPC860SRVR80D4 MPC860SRVR80D4
Ball grid array (CZP suffix) CZP suffix—leaded CZQ suffix—leaded CVR suffix—lead-free	50 –40° to 95°C	ZP/ZQ ¹	MPC855TCZQ50D4 MPC855TCVR50D4 MPC860DECZQ50D4 MPC860DTCZQ50D4 MPC860ENCZQ50D4 MPC860SRCZQ50D4 MPC860TCZQ50D4 MPC860DPCZQ50D4 MPC860PCZQ50D4
		Tape and Reel	MPC855TCZQ50D4R2 MC860ENCVR50D4R2
		CVR	MPC860DECVR50D4 MPC860DTCVR50D4 MPC860ENCVR50D4 MPC860PCVR50D4 MPC860SRCVR50D4 MPC860TCVR50D4
	66 –40° to 95°C	ZP/ZQ ¹	MPC855TCZQ66D4 MPC855TCVR66D4 MPC860ENCZQ66D4 MPC860SRCZQ66D4 MPC860TCZQ66D4 MPC860DPCZQ66D4 MPC860PCZQ66D4
		CVR	MPC860DTCVR66D4 MPC860ENCVR66D4 MPC860PCVR66D4 MPC860SRCVR66D4 MPC860TCVR66D4

Table 34. MPC860 Family Package/Frequency Availability (continued)

¹ The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2007-2015 Freescale Semiconductor, Inc.

Document Number: MPC860EC Rev. 10 09/2015

