

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XFI

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	
Ethernet	10Mbps (4)
SATA	
USB	
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TJ)
Security Features	· · · · · · · · · · · · · · · · · · ·
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc860enzq50d4r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

1 Overview

The MPC860 power quad integrated communications controller (PowerQUICCTM) is a versatile one-chip integrated microprocessor and peripheral combination designed for a variety of controller applications. It particularly excels in communications and networking systems. The PowerQUICC unit is referred to as the MPC860 in this hardware specification.

The MPC860 implements Power ArchitectureTM technology and contains a superset of Freescale's MC68360 quad integrated communications controller (QUICC), referred to here as the QUICC, RISC communications proceessor module (CPM). The CPU on the MPC860 is a 32-bit core built on Power Architecture technology that incorporates memory management units (MMUs) and instruction and data caches.. The CPM from the MC68360 QUICC has been enhanced by the addition of the inter-integrated controller (I²C) channel. The memory controller has been enhanced, enabling the MPC860 to support any type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket controller supports up to two sockets. A real-time clock has also been integrated.

Table 1 shows the functionality supported by the MPC860 family.

	Cache (Cache (Kbytes)		Ethernet				
Part	Instruction Cache	Data Cache	10T	10/100	ΑΤΜ	SCC	Reference ¹	
MPC860DE	4	4	Up to 2	_	_	2	1	
MPC860DT	4	4	Up to 2	1	Yes	2	1	
MPC860DP	16	8	Up to 2	1	Yes	2	1	
MPC860EN	4	4	Up to 4	—	—	4	1	
MPC860SR	4	4	Up to 4	—	Yes	4	1	
MPC860T	4	4	Up to 4	1	Yes	4	1	
MPC860P	16	8	Up to 4	1	Yes	4	1	
MPC855T	4	4	1	1	Yes	1	2	

Table 1. MPC860 Family Functionality

Supporting documentation for these devices refers to the following:

1. MPC860 PowerQUICC Family User's Manual (MPC860UM, Rev. 3)

2. MPC855T User's Manual (MPC855TUM, Rev. 1)

Features

- Allows dynamic changes
- Can be internally connected to six serial channels (four SCCs and two SMCs)
- Parallel interface port (PIP)
 - Centronics interface support
 - Supports fast connection between compatible ports on the MPC860 or the MC68360
- PCMCIA interface
 - Master (socket) interface, release 2.1 compliant
 - Supports two independent PCMCIA sockets
 - Supports eight memory or I/O windows
- Low power support
 - Full on-all units fully powered
 - Doze—core functional units disabled except time base decrementer, PLL, memory controller, RTC, and CPM in low-power standby
 - Sleep-all units disabled except RTC and PIT, PLL active for fast wake up
 - Deep sleep—all units disabled including PLL except RTC and PIT
 - Power down mode—all units powered down except PLL, RTC, PIT, time base, and decrementer
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
 - Supports conditions: = $\neq < >$
 - Each watchpoint can generate a break-point internally.
- 3.3-V operation with 5-V TTL compatibility except EXTAL and EXTCLK
- 357-pin ball grid array (BGA) package

		33	MHz	40	MHz	50 I	MHz	66 MHz		
Num	Characteristic	Min	Мах	Min	Мах	Min	Мах	Min	Max	Unit
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0, and CSNT = 0	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0	5.58	—	4.25	_	3.00	_	1.79	—	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 0	13.15	—	10.50	—	8.00	—	5.58	—	ns
B25	CLKOUT rising edge to \overline{OE} , \overline{WE} (0:3) asserted	—	9.00	—	9.00	—	9.00	—	9.00	ns
B26	CLKOUT rising edge to OE negated	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1	35.88	_	29.25	_	23.00	_	16.94	_	ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1	43.45	—	35.50	—	28.00	—	20.73	—	ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)$ negated GPCM write access CSNT = 0	—	9.00	—	9.00	—	9.00	—	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, 1, CSNT = 1, EBDF = 0	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0	—	14.33	—	13.00		11.75		10.54	ns
B28c	CLKOUT falling edge to \overline{WE} (0:3) negated GPCM write access TRLX = 0, 1, CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1	10.86	17.99	8.88	16.00	7.00	14.13	5.18	12.31	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	_	17.99	_	16.00		14.13		12.31	ns
B29	$\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access CSNT = 0, EBDF = 0	5.58	_	4.25	—	3.00	—	1.79	—	ns
B29a	$\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0	13.15	—	10.5	—	8.00		5.58	—	ns
B29b	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3), High-Z GPCM write access, ACS = 00, TRLX = 0, 1, and CSNT = 0	5.58		4.25		3.00		1.79		ns
B29c	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0	13.15		10.5		8.00		5.58		ns

Table 7. Bus Operation Timings (continued)

Bus Signal Timing

		33	MHz	40 1	MHz	50 I	MHz	66 I	ИНz	
Num	Characteristic	Min	Мах	Min	Мах	Min	Мах	Min	Max	Unit
B29d	\overline{WE} (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0	43.45		35.5	_	28.00		20.73	_	ns
B29e	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0	43.45		35.5		28.00		29.73	_	ns
B29f	\overline{WE} (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1	8.86	_	6.88	_	5.00	_	3.18		ns
B29g	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	8.86	_	6.88	—	5.00	—	3.18	_	ns
B29h	$\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1	38.67	—	31.38	—	24.50	—	17.83	_	ns
B29i	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	38.67		31.38		24.50		17.83	_	ns
B30	\overline{CS} , \overline{WE} (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access ⁸	5.58	—	4.25	—	3.00	—	1.79		ns
B30a	$\overline{\text{WE}}(0:3)$ negated to A(0:31), BADDR(28:30) invalid GPCM, write access, TRLX = 0, CSNT = 1, $\overline{\text{CS}}$ negated to A(0:31) invalid GPCM write access, TRLX = 0, CSNT = 1 ACS = 10, or ACS = 11, EBDF = 0	13.15	_	10.50	_	8.00	_	5.58		ns
B30b	$\label{eq:weighted} \hline WE(0:3) \ negated to \ A(0:31), \ invalid \ GPCM \\ BADDR(28:30) \ invalid \ GPCM \ write \ access, \\ TRLX = 1, \ CSNT = 1. \ \overline{CS} \ negated to \\ A(0:31), \ Invalid \ GPCM, \ write \ access, \\ TRLX = 1, \ CSNT = 1, \ ACS = 10, \ or \\ ACS = 11, \ EBDF = 0 \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	43.45	_	35.50	_	28.00	_	20.73	_	ns
B30c	$\label{eq:weighted} \begin{array}{ c c c c } \hline WE(0:3) \mbox{ negated to } A(0:31), \mbox{ BADDR}(28:30) \\ \hline \mbox{ invalid GPCM write access, TRLX = 0, } \\ \hline CSNT = 1. \end{cmathcelline CS} \mbox{ negated to } A(0:31) \mbox{ invalid GPCM write access, TRLX = 0, } \\ \hline GPCM \mbox{ write access, TRLX = 0, } \\ \hline ACS = 10, \mbox{ ACS = 11, EBDF = 1} \end{array}$	8.36	_	6.38	_	4.50		2.68		ns
B30d	$\overline{WE}(0:3)$ negated to A(0:31), BADDR(28:30) invalid GPCM write access, TRLX = 1, CSNT =1. \overline{CS} negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	38.67	_	31.38	_	24.50	_	17.83		ns
B31	CLKOUT falling edge to CS valid—as requested by control bit CST4 in the corresponding word in UPM	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns

Table 7. Bus Operation Timings (continued)

Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

Figure 14 through Figure 16 provide the timing for the external bus write controlled by various GPCM factors.

Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)

1

Table 8 provides interrupt timing for the MPC860.

Table 8. Interrupt Timing

Num	Characteristic1	All Freq	Unit	
Num	Characteristic	Min	Мах	Onit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00	_	ns
140	IRQx hold time after CLKOUT	2.00	_	ns
141	IRQx pulse width low	3.00	—	ns
142	IRQx pulse width high	3.00	_	ns
143	IRQx edge-to-edge time	$4 \times T_{CLOCKOUT}$	—	—

The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level-sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC860 is able to support.

Figure 23 provides the interrupt detection timing for the external level-sensitive lines.

Figure 23. Interrupt Detection Timing for External Level Sensitive Lines

Figure 24 provides the interrupt detection timing for the external edge-sensitive lines.

Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines

Figure 25 provides the PCMCIA access cycle timing for the external bus read.

Figure 25. PCMCIA Access Cycle Timing External Bus Read

Table 12 shows the reset timing for the MPC860.

Table 12. Reset Timing

Num	Characteristic	33 N	/IHz	40 MHz		50 MHz		66 MHz		llmit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to HRESET high impedance	—	20.00	—	20.00	—	20.00	—	20.00	ns
R70	CLKOUT to SRESET high impedance	—	20.00	—	20.00	—	20.00	—	20.00	ns
R71	RSTCONF pulse width	515.15	_	425.00		340.00	_	257.58	_	ns
R72	_		_	_	_	_	_		_	
R73	Configuration data to HRESET rising edge setup time	504.55	_	425.00		350.00	_	277.27	_	ns
R74	Configuration data to RSTCONF rising edge setup time	350.00	—	350.00	—	350.00	—	350.00	—	ns
R75	Configuration data hold time after RSTCONF negation	0.00	—	0.00	—	0.00	—	0.00	—	ns
R76	Configuration data hold time after HRESET negation	0.00	—	0.00	—	0.00	—	0.00	—	ns
R77	HRESET and RSTCONF asserted to data out drive	-	25.00		25.00	—	25.00	—	25.00	ns
R78	RSTCONF negated to data out high impedance	—	25.00	_	25.00	_	25.00	_	25.00	ns
R79	CLKOUT of last rising edge before chip three-state HRESET to data out high impedance	_	25.00	—	25.00	_	25.00	_	25.00	ns
R80	DSDI, DSCK setup	90.91	—	75.00	—	60.00	—	45.45	—	ns
R81	DSDI, DSCK hold time	0.00	—	0.00	_	0.00	_	0.00	—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	242.42	_	200.00		160.00		121.21	_	ns

IEEE 1149.1 Electrical Specifications

Figure 35. JTAG Test Clock Input Timing

Figure 36. JTAG Test Access Port Timing Diagram

Figure 37. JTAG TRST Timing Diagram

Figure 42. PIP TX (Pulse Mode) Timing Diagram

Num	Charactariatia	All Freq	Unit	
	Characteristic	Min	Мах	Unit
42	SDACK assertion delay from clock high	—	12	ns
43	SDACK negation delay from clock low	—	12	ns
44	SDACK negation delay from TA low	—	20	ns
45	SDACK negation delay from clock high	_	15	ns
46	\overline{TA} assertion to rising edge of the clock setup time (applies to external \overline{TA})	7		ns

Table 16. IDMA Controller Timing (continued)

Figure 45. IDMA External Requests Timing Diagram

Figure 46. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

Figure 58. HDLC Bus Timing Diagram

11.8 Ethernet Electrical Specifications

Table 22 provides the Ethernet timings as shown in Figure 59 through Figure 63.

Num	Oh ann athreid the	All Freq	uencies	11
NUM	Characteristic	Min	Мах	Unit
120	CLSN width high	40		ns
121	RCLK1 rise/fall time	—	15	ns
122	RCLK1 width low	40	—	ns
123	RCLK1 clock period ¹	80	120	ns
124	RXD1 setup time	20	—	ns
125	RXD1 hold time	5	—	ns
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	—	ns
127	RENA width low	100	—	ns
128	TCLK1 rise/fall time	—	15	ns
129	TCLK1 width low	40	—	ns
130	TCLK1 clock period ¹	99	101	ns
131	TXD1 active delay (from TCLK1 rising edge)	10	50	ns
132	TXD1 inactive delay (from TCLK1 rising edge)	10	50	ns
133	TENA active delay (from TCLK1 rising edge)	10	50	ns
134	TENA inactive delay (from TCLK1 rising edge)	10	50	ns

11.12 I²C AC Electrical Specifications

Table 26 provides the I^2C (SCL < 100 kHz) timings.

Table 26. I²C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	uencies	Unit
Nulli		Min	Мах	Unit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7	—	μS
203	Low period of SCL	4.7	—	μS
204	High period of SCL	4.0	—	μS
205	Start condition setup time	4.7	—	μS
206	Start condition hold time	4.0	—	μS
207	Data hold time	0	—	μS
208	Data setup time	250	—	ns
209	SDL/SCL rise time	—	1	μS
210	SDL/SCL fall time	—	300	ns
211	Stop condition setup time	4.7	—	μS

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3 × pre_scaler × 2). The ratio SYNCCLK/(BRGCLK/pre_scaler) must be greater than or equal to 4/1.

Table 27 provides the I^2C (SCL > 100 kHz) timings.

Table 27. . I²C Timing (SCL > 100 kHz)

Num	Characteristic	Expression	All Freq	Unit	
Num	Characteristic	Expression	Min	Мах	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions		1/(2.2 * fSCL)	—	S
203	Low period of SCL		1/(2.2 * fSCL)	—	S
204	High period of SCL		1/(2.2 * fSCL)	_	S
205	Start condition setup time		1/(2.2 * fSCL)	—	S
206	Start condition hold time		1/(2.2 * fSCL)	—	S
207	Data hold time		0	_	S
208	Data setup time		1/(40 * fSCL)	_	S
209	SDL/SCL rise time		—	1/(10 * fSCL)	S
210	SDL/SCL fall time		—	1/(33 * fSCL)	S
211	Stop condition setup time		1/2(2.2 * fSCL)	—	s

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) × pre_scaler × 2). The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater than or equal to 4/1.

Figure 69 shows the I^2C bus timing.

Figure 69. I²C Bus Timing Diagram

12 UTOPIA AC Electrical Specifications

Table 28 shows the AC electrical specifications for the UTOPIA interface.

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output	_	3.5	ns
	Duty cycle		50	50	%
	Frequency		_	50	MHz
U1a	UtpClk rise/fall time (external clock option)	Input	_	3.5	ns
	Duty cycle		40	60	%
	Frequency		_	50	MHz
U2	RxEnb and TxEnb active delay	Output	2	16	ns
U3	UTPB, SOC, Rxclav and Txclav setup time	Input	8	—	ns
U4	UTPB, SOC, Rxclav and Txclav hold time	Input	1	—	ns
U5	UTPB, SOC active delay (and PHREQ and PHSEL active delay in MPHY mode)	Output	2	16	ns

Table 28. UTOPIA AC Electrical Specifications

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

13.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency - 1%.

Table 29 provides information on the MII receive signal timing.

Num	Characteristic	Min	Max	Unit		
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5		ns		
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5		ns		
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period		
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period		

Table 29. MII Receive Signal Timing

Figure 72 shows MII receive signal timing.

Figure 72. MII Receive Signal Timing Diagram

13.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 31 provides information on the MII async inputs signal timing.

Table 31. MII Async Inputs Signal Timing

Num	Characteristic	Min	Мах	Unit
M9	MII_CRS, MII_COL minimum pulse width	1.5		MII_TX_CLK period

Figure 74 shows the MII asynchronous inputs signal timing diagram.

13.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 32 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

Num	Characteristic	Min	Мах	Unit	
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	_	ns	
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns	
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	—	ns	
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	—	ns	
M14	MII_MDC pulse width high	40%	60%	MII_MDC period	
M15	MII_MDC pulse width low	40%	60%	MII_MDC period	

Table 32. MII Serial Management Channel Timing

Mechanical Data and Ordering Information

Figure 75 shows the MII serial management channel timing diagram.

Figure 75. MII Serial Management Channel Timing Diagram

14 Mechanical Data and Ordering Information

14.1 Ordering Information

Table 33 provides information on the MPC860 Revision D.4 derivative devices.

Device	Number of SCCs ¹	Ethernet Support ² (Mbps)	Multichannel HDLC Support	ATM Support		
MPC855T	1	10/100	Yes	Yes		
MPC860DE	2	10	N/A	N/A		
MPC860DT		10/100	Yes	Yes		
MPC860DP		10/100	Yes	Yes		
MPC860EN	4	10	N/A	N/A		
MPC860SR		10	Yes	Yes		
MPC860T		10/100	Yes	Yes		
MPC860P		10/100	Yes	Yes		

Table 33. MPC860 Family Revision D.4 Derivatives

¹ Serial communications controller (SCC)

² Up to 4 channels at 40 MHz or 2 channels at 25 MHz

14.2 Pin Assignments

Figure 76 shows the top view pinout of the PBGA package. For additional information, see the MPC860 PowerQUICC User's Manual, or the MPC855T User's Manual.

	\sim	~	\sim	\sim	\sim	~	~	~	~	~	~	~	~	~	~	\sim	\sim		
	O PD10	O PD8	O PD3		O D0	O D4	⊖ D1) D2	() D3	O D5		O D6	0 D7	0 D29	DP2		с IPA3		W
O PD14	O PD13	O PD9	O PD6	O M_Tx_I		O D13	() D27	〇 D10) D14	〇 D18	〇 D20	〇 D24	0 D28	O DP1	O DP3	O DP0	⊖ N/C		V 1
0 PA0	O PB14	O PD15	O PD4	O PD5		() D8	() D23) D11) D16) D19	0 D21	〇 D26) D30	O IPA5	O IPA4	O IPA2	O N/C	O VSSSYN	U N
O PA1	O PC5	O PC4	O PD11) 1 D12	() D17) D9) D15) D22) D25) D31	O IPA6		O IPA1	O IPA7	⊖ xfc		T N
O PC6	0 PA2	O PB15	O PD12	\bigcirc		0	0	\bigcirc	\bigcirc	0	0	0	0						R WR
O PA4	O PB17	O PA3		\bigcirc	$\bigcap_{i=1}^{n}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	GND						Ρ
O PB19	O PA5	O PB18	O PB16	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0					N
O PA7	0 PC8	O PA6	O PC7	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0				R29 VDD	M
O PB22	O PC9	O PA8	O PB20	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	О ОР0		O OP1		L 1
O PC10	O PA9	O PB23	O PB21	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0					к
O PC11	O PB24	O PA10	O PB25	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	O IPB5	O IPB1			J
			О тск	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	О со				н
	_ ⊂ ™S		O PA11	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0					G
O PB26	O PC12	O PA12		\bigcirc			0	0	0	0	0	\bigcirc							F
O PB27	O PC13	O PA13	O PB29	\bigcirc		0	0	0	0	0	0	0	0		$\frac{\bigcirc}{CS3}$	O BI			E
0	0	0	0	0	\bigcirc	\bigcirc	0	0	0	0	<u> </u>	0	0	<u> </u>	<u> </u>	0	0	0	D
									A25						$\frac{OS2}{OS2}$				С
				A9															В
AU								A23	A22									GPLB4	A
19	А2 18	н5 17	А7 16	ATT 15	A14 14	а <i>27</i> 13	A29 12	АЗО 11	A28 10	A31 9	8	в5А2 7	vv⊨1 6	vv⊨3 5	4	3 3	2	1	

NOTE: This is the top view of the device.

Figure 76. Pinout of the PBGA Package