

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc860pcvr66d4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC860. Table 2 provides the maximum ratings.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

(GND = 0 V)

Table 2. Maximum Tolerated Ratings

Rating	Symbol	Value	Unit
Supply voltage ¹	V _{DDH}	-0.3 to 4.0	V
	V _{DDL}	-0.3 to 4.0	V
	KAPWR	-0.3 to 4.0	V
	V _{DDSYN}	-0.3 to 4.0	V
Input voltage ²	V _{in}	GND – 0.3 to V _{DDH}	V
Temperature ³ (standard)	T _{A(min)}	0	°C
	T _{j(max)}	95	°C
Temperature ³ (extended)	T _{A(min)}	-40	°C
	T _{j(max)}	95	°C
Storage temperature range	T _{stg}	-55 to 150	°C

¹ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be applied to its inputs).

³ Minimum temperatures are guaranteed as ambient temperature, T_A. Maximum temperatures are guaranteed as junction temperature, T_j.

Characteristic	Symbol	Min	Max	Unit
Input leakage current, V_{in} = 3.6 V (except TMS, TRST, DSCK, and DSDI pins)	l _{in}	—	10	μA
Input leakage current, V _{in} = 0 V (except TMS, TRST, DSCK, and DSDI pins)	l _{in}	—	10	μA
Input capacitance ²	C _{in}	—	20	pF
Output high voltage, $I_{OH} = -2.0$ mA, $V_{DDH} = 3.0$ V (except XTAL, XFC, and open-drain pins)	V _{OH}	2.4	—	V
$\label{eq:IDE_Constraint} \hline \begin{array}{l} Output low voltage \\ I_{OL} = 2.0 \text{ mA, CLKOUT} \\ I_{OL} = 3.2 \text{ mA}^3 \\ I_{OL} = 5.3 \text{ mA}^4 \\ I_{OL} = 7.0 \text{ mA, TXD1/PA14, TXD2/PA12} \\ I_{OL} = 8.9 \text{ mA, TS, TA, TEA, BI, BB, HRESET, SRESET} \end{array}$	V _{OL}		0.5	V

Table 6. DC Electrical Specifications (continued)

 1 V_{IL}(max) for the I²C interface is 0.8 V rather than the 1.5 V as specified in the I²C standard.

² Input capacitance is periodically sampled.

- ³ A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1/PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/ L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/ PB30,SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/ PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/ RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/ DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, L1RSYNCB/PC6, SDACK1/L1TSYNCA/PC5, L1RSYNCA/PC4, PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PD5, PD6, PD7, PD4, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, and MII_TXD[0:3]
- ⁴ BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/ CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, and BADDR(28:30)

Thermal Calculation and Measurement

7 Thermal Calculation and Measurement

For the following discussions, $P_D = (V_{DD} \times I_{DD}) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_A = ambient temperature (°C)

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta IC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the airflow around the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature; see Figure 2.

		33	MHz	40 I	MHz	50 I	MHz	66		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion	7.58	13.58	6.25	12.25	5.00	11.00	3.80	11.29	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface)	2.50	9.25	2.50	9.25	2.50	9.25	2.50	9.75	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation	7.58	14.33	6.25	13.00	5.00	11.75	3.80	8.54	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface)	2.50	11.00	2.50	11.00	2.50	11.00	2.50	9.00	ns
B13	CLKOUT to TS, BB High-Z	7.58	21.58	6.25	20.25	5.00	19.00	3.80	14.04	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B14	CLKOUT to TEA assertion	2.50	10.00	2.50	10.00	2.50	10.00	2.50	9.00	ns
B15	CLKOUT to TEA High-Z	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	TA, BI valid to CLKOUT (setup time)	9.75	_	9.75	_	9.75	—	6.00	_	ns
B16a	TEA, KR, RETRY, CR valid to CLKOUT (setup time)	10.00	—	10.00	_	10.00	—	4.50	—	ns
B16b	$\overline{\text{BB}}, \overline{\text{BG}}, \overline{\text{BR}}, \text{ valid to CLKOUT (setup time)}^5$	8.50		8.50		8.50	_	4.00	_	ns
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time)	1.00	—	1.00	—	1.00	_	2.00	_	ns
B17a	CLKOUT to \overline{KR} , \overline{RETRY} , \overline{CR} valid (hold time)	2.00	—	2.00	_	2.00	_	2.00	_	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) ⁶	6.00	—	6.00	—	6.00	—	6.00	—	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) ⁶	1.00	—	1.00	—	1.00	—	2.00	—	ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) ⁷	4.00	—	4.00	—	4.00	—	4.00	—	ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold time) ⁷	2.00	—	2.00	—	2.00	—	2.00	—	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0	_	8.00	_	8.00	_	8.00	_	8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1	10.86	17.99	8.88	16.00	7.00	14.13	5.18	12.31	ns

Table 7. Bus Operation Timings (continued)

		33	MHz	40 1	MHz	50 I	MHz	66 I		
Num	Characteristic	Min	Мах	Min	Мах	Min	Мах	Min	Max	Unit
B29d	\overline{WE} (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0	43.45		35.5	_	28.00	_	20.73	_	ns
B29e	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0	43.45		35.5		28.00		29.73	_	ns
B29f	\overline{WE} (0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1	8.86	_	6.88	_	5.00	_	3.18		ns
B29g	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	8.86	_	6.88	—	5.00	—	3.18	_	ns
B29h	$\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1	38.67	_	31.38	—	24.50	—	17.83	_	ns
B29i	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	38.67		31.38		24.50		17.83	_	ns
B30	\overline{CS} , \overline{WE} (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access ⁸	5.58	—	4.25	—	3.00	—	1.79		ns
B30a	\overline{WE} (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM, write access, TRLX = 0, CSNT = 1, \overline{CS} negated to A(0:31) invalid GPCM write access, TRLX = 0, CSNT = 1 ACS = 10, or ACS = 11, EBDF = 0	13.15	_	10.50	_	8.00	_	5.58		ns
B30b	$\label{eq:weighted} \hline WE(0:3) \ negated to \ A(0:31), \ invalid \ GPCM \\ BADDR(28:30) \ invalid \ GPCM \ write \ access, \\ TRLX = 1, \ CSNT = 1. \ \overline{CS} \ negated to \\ A(0:31), \ Invalid \ GPCM, \ write \ access, \\ TRLX = 1, \ CSNT = 1, \ ACS = 10, \ or \\ ACS = 11, \ EBDF = 0 \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	43.45	_	35.50	_	28.00	_	20.73	_	ns
B30c	$\label{eq:weighted} \begin{array}{ c c c c } \hline WE(0:3) \mbox{ negated to } A(0:31), \mbox{ BADDR}(28:30) \\ \hline \mbox{ invalid GPCM write access, TRLX = 0, } \\ \hline CSNT = 1. \end{cmathcelline CS} \mbox{ negated to } A(0:31) \mbox{ invalid GPCM write access, TRLX = 0, } \\ \hline GPCM \mbox{ write access, TRLX = 0, } \\ \hline ACS = 10, \mbox{ ACS = 11, EBDF = 1} \end{array}$	8.36	_	6.38	_	4.50	_	2.68	_	ns
B30d	$\overline{WE}(0:3)$ negated to A(0:31), BADDR(28:30) invalid GPCM write access, TRLX = 1, CSNT =1. \overline{CS} negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	38.67	_	31.38	_	24.50	_	17.83		ns
B31	CLKOUT falling edge to CS valid—as requested by control bit CST4 in the corresponding word in UPM	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns

Table 7. Bus Operation Timings (continued)

Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

Figure 26. PCMCIA Access Cycle Timing External Bus Write

Figure 27 provides the PCMCIA \overline{WAIT} signal detection timing.

Figure 27. PCMCIA WAIT Signal Detection Timing

Table 11 shows the debug port timing for the MPC860.

Table 11. Debug Port Timing

Num	Jm Characteristic 61 DSCK cycle time 62 DSCK clock pulse width 63 DSCK rise and fall times 64 DSDI input data setup time 65 DSDI data hold time	All Freq	Unit	
Num	Characteristic	Min	Мах	Unit
P61	DSCK cycle time	$3 \times T_{CLOCKOUT}$	_	
P62	DSCK clock pulse width	$1.25 \times T_{CLOCKOUT}$	—	—
P63	DSCK rise and fall times	0.00	3.00	ns
P64	DSDI input data setup time	8.00	—	ns
P65	DSDI data hold time	5.00	—	ns
P66	DSCK low to DSDO data valid	0.00	15.00	ns
P67	DSCK low to DSDO invalid	0.00	2.00	ns

Figure 30 provides the input timing for the debug port clock.

Figure 30. Debug Port Clock Input Timing

Figure 31 provides the timing for the debug port.

Figure 31. Debug Port Timings

Figure 32 shows the reset timing for the data bus configuration.

Figure 32. Reset Timing—Configuration from Data Bus

Figure 33 provides the reset timing for the data bus weak drive during configuration.

Figure 33. Reset Timing—Data Bus Weak Drive During Configuration

CPM Electrical Characteristics

Num	Num Characteristic 42 SDACK assertion delay from clock high 43 SDACK negation delay from clock low 44 SDACK negation delay from TA low 45 SDACK negation delay from clock high	All Freq	uencies	Unit
42 SDA(43 SDA(Characteristic	Min	Мах	Unit
42	SDACK assertion delay from clock high	—	12	ns
43	SDACK negation delay from clock low	—	12	ns
44	SDACK negation delay from TA low	—	20	ns
45	SDACK negation delay from clock high	—	15	ns
46	\overline{TA} assertion to rising edge of the clock setup time (applies to external \overline{TA})	7		ns

Table 16. IDMA Controller Timing (continued)

Figure 45. IDMA External Requests Timing Diagram

Figure 46. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

CPM Electrical Characteristics

CPM Electrical Characteristics

CPM Electrical Characteristics

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

CPM Electrical Characteristics

CPM Electrical Characteristics

11.12 I²C AC Electrical Specifications

Table 26 provides the I^2C (SCL < 100 kHz) timings.

Table 26. I²C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	uencies	Unit
Nulli		All Frequencies Min Max 0 100 1.5 100 4.7 — 4.7 — 4.7 — 4.7 — 4.0 — 4.7 — 4.0 — 2.0 — 0 — 250 — — 1 — 300 4.7 —	Onit	
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7	—	μS
203	Low period of SCL	4.7	—	μS
204	High period of SCL	4.0	—	μS
205	Start condition setup time	4.7	—	μS
206	Start condition hold time	4.0	—	μS
207	Data hold time	0	—	μS
208	Data setup time	250	—	ns
209	SDL/SCL rise time	—	1	μS
210	SDL/SCL fall time	—	300	ns
211	Stop condition setup time	4.7	—	μS

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3 × pre_scaler × 2). The ratio SYNCCLK/(BRGCLK/pre_scaler) must be greater than or equal to 4/1.

Table 27 provides the I^2C (SCL > 100 kHz) timings.

Table 27. . I²C Timing (SCL > 100 kHz)

Num	Characteristic	Expression	All Freq	Unit	
Num	Characteristic	$\begin{tabular}{ c c c c c c c } \hline HII Frequencies & HII & HII Frequencies & HII &$	Unit		
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions		1/(2.2 * fSCL)	—	S
203	Low period of SCL		1/(2.2 * fSCL)	—	S
204	High period of SCL		1/(2.2 * fSCL)	—	S
205	Start condition setup time		1/(2.2 * fSCL)	—	S
206	Start condition hold time		1/(2.2 * fSCL)	—	S
207	Data hold time		0	—	S
208	Data setup time		1/(40 * fSCL)	—	S
209	SDL/SCL rise time		—	1/(10 * fSCL)	S
210	SDL/SCL fall time		—	1/(33 * fSCL)	S
211	Stop condition setup time		1/2(2.2 * fSCL)	—	s

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) × pre_scaler × 2). The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater than or equal to 4/1.

UTOPIA AC Electrical Specifications

Figure 70 shows signal timings during UTOPIA receive operations.

Figure 71 shows signal timings during UTOPIA transmit operations.

Figure 71. UTOPIA Transmit Timing

13 FEC Electrical Characteristics

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

13.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency - 1%.

Table 29 provides information on the MII receive signal timing.

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5		ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5		ns
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 29. Mll Receive Signal Timing

Figure 72 shows MII receive signal timing.

Figure 72. MII Receive Signal Timing Diagram

14.2 Pin Assignments

Figure 76 shows the top view pinout of the PBGA package. For additional information, see the MPC860 PowerQUICC User's Manual, or the MPC855T User's Manual.

	\sim	~	\sim	~	\sim	~	~	~	~	~	~	~	~	~	~	\sim	\sim		
	O PD10	O PD8	O PD3		O D0	O D4	⊖ D1) D2	О D3	O D5		O D6	0 D7	0 D29	DP2		с IPA3		W
O PD14	O PD13	O PD9	O PD6	O M_Tx_I		O D13	() D27	〇 D10) D14	〇 D18	〇 D20	〇 D24	0 D28	O DP1	O DP3	O DP0	⊖ N/C		V 1
0 PA0	O PB14	O PD15	O PD4	O PD5		() D8	() D23) D11) D16) D19	0 D21	〇 D26) D30	O IPA5	O IPA4	O IPA2	O N/C	O VSSSYN	U N
O PA1	O PC5	O PC4	O PD11) 1 D12	() D17) D9) D15) D22) D25	〇 D31	O IPA6) IPA1	O IPA7	⊖ xfc		T N
O PC6	0 PA2	O PB15	O PD12	\bigcirc		0	0	\bigcirc	\bigcirc	0	0	0	0						R WR
O PA4	O PB17	O PA3		\bigcirc	$\bigcap_{i=1}^{n}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	GND					ET XTAL	Ρ
O PB19	O PA5	O PB18	O PB16	\bigcirc	0	\bigcirc	0					N							
O PA7	0 PC8	O PA6	O PC7	\bigcirc	\circ	\bigcirc	0) DR29 VDE	M							
O PB22	O PC9	O PA8	O PB20	\bigcirc	\circ	\bigcirc	0	О ОР0		O OP1		L 1							
O PC10	O PA9	O PB23	O PB21	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0					к
O PC11	O PB24	O PA10	O PB25	\bigcirc	\circ	\bigcirc	0	O IPB5	O IPB1			J							
			О тск	\bigcirc	0	\bigcirc	0	О СО				н							
	_ ⊂ ™S		O PA11	\bigcirc	0	\bigcirc	0					G							
O PB26	O PC12	O PA12		\bigcirc			0	0	0	\bigcirc	0	\bigcirc							F
O PB27	O PC13	O PA13	O PB29	\bigcirc		0	0	0	0	0	0	0	0		$\frac{\bigcirc}{CS3}$	O BI			E
0	0	0	0	0	\bigcirc	\bigcirc	0	0	0	0	<u> </u>	0	0	<u> </u>	<u> </u>	0	0	<u> </u>	D
									A25						$\frac{0}{0}$				С
				A9															В
AU								A23							$\frac{1}{000}$			GPLB4	A
19	А2 18	н5 17	А7 16	ATT 15	A14 14	А27 13	A29 12	АЗО 11	A28 10	A31 9	8	в5А2 7	vv⊨1 6	vv⊨3 5	4	3 3	2	1	

NOTE: This is the top view of the device.

Figure 76. Pinout of the PBGA Package

Mechanical Data and Ordering Information

14.3 Mechanical Dimensions of the PBGA Package

Figure 77 shows the mechanical dimensions of the ZP PBGA package.

- 1. Dimensions and tolerance per ASME Y14.5M, 1994.
- 2. Dimensions in millimeters.
- 3. Dimension b is the maximum solder ball diameter measured parallel to data C.

22.40

E2

22.60

Figure 78 shows the mechanical dimensions of the ZQ PBGA package.

- 1. All Dimensions in millimeters.
- 2. Dimensions and tolerance per ASME Y14.5M, 1994.
- 3. Maximum Solder Ball Diameter measured parallel to Datum A.
- 4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.

Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the ZQ PBGA Package