

E·XFI

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	-
Number of Cores/Bus Width	-
Speed	-
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	-
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	-
Operating Temperature	-
Security Features	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc860pzq66d4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- Allows dynamic changes
- Can be internally connected to six serial channels (four SCCs and two SMCs)
- Parallel interface port (PIP)
 - Centronics interface support
 - Supports fast connection between compatible ports on the MPC860 or the MC68360
- PCMCIA interface
 - Master (socket) interface, release 2.1 compliant
 - Supports two independent PCMCIA sockets
 - Supports eight memory or I/O windows
- Low power support
 - Full on-all units fully powered
 - Doze—core functional units disabled except time base decrementer, PLL, memory controller, RTC, and CPM in low-power standby
 - Sleep-all units disabled except RTC and PIT, PLL active for fast wake up
 - Deep sleep—all units disabled including PLL except RTC and PIT
 - Power down mode—all units powered down except PLL, RTC, PIT, time base, and decrementer
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
 - Supports conditions: = $\neq < >$
 - Each watchpoint can generate a break-point internally.
- 3.3-V operation with 5-V TTL compatibility except EXTAL and EXTCLK
- 357-pin ball grid array (BGA) package

	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
NUM		Min	Max	Min	Max	Min	Max	Min	Max	Unit
B35	A(0:31), BADDR(28:30) to \overline{CS} valid—as requested by control bit BST4 in the corresponding word in UPM	5.58	_	4.25	_	3.00	_	1.79	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{BS}}$ valid—as requested by control bit BST1 in the corresponding word in UPM	13.15	—	10.50	—	8.00	—	5.58	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{BS}}$ valid—as requested by control bit BST2 in the corresponding word in UPM	20.73	—	16.75	—	13.00	—	9.36		ns
B36	A(0:31), BADDR(28:30), and D(0:31) to GPL valid—as requested by control bit GxT4 in the corresponding word in UPM	5.58	—	4.25	—	3.00	—	1.79	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁹	6.00	—	6.00	—	6.00	—	6.00		ns
B38	CLKOUT falling edge to UPWAIT valid ⁹	1.00	—	1.00	_	1.00	_	1.00	_	ns
B39	AS valid to CLKOUT rising edge ¹⁰	7.00	_	7.00	_	7.00	_	7.00	_	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge	7.00	—	7.00	—	7.00	—	7.00	_	ns
B41	$\overline{\text{TS}}$ valid to CLKOUT rising edge (setup time)	7.00	—	7.00	_	7.00	_	7.00	_	ns
B42	CLKOUT rising edge to \overline{TS} valid (hold time)	2.00	—	2.00	—	2.00	—	2.00	_	ns
B43	AS negation to memory controller signals negation	_	TBD	_	TBD	_	TBD	_	TBD	ns

¹ Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.

² If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.

³ The timings specified in B4 and B5 are based on full strength clock.

⁴ The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC860 is selected to work with internal bus arbiter.

⁵ The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing for BG input is relevant when the MPC860 is selected to work with external bus arbiter.

⁶ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.

⁷ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁸ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.

⁹ The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 18.

¹⁰ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 21.

Figure 7 provides the timing for the synchronous input signals.

Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

Figure 8. Input Data Timing in Normal Case

Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)

Figure 20 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 20. Synchronous External Master Access Timing (GPCM Handled ACS = 00)

Figure 21 provides the timing for the asynchronous external master memory access controlled by the GPCM.

Figure 22 provides the timing for the asynchronous external master control signals negation.

Figure 22. Asynchronous External Master—Control Signals Negation Timing

Table 10 shows the PCMCIA port timing for the MPC860.

Table 10. PCMCIA Port Timing

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Unit
P57	CLKOUT to OPx valid	—	19.00	_	19.00	_	19.00	_	19.00	ns
P58	HRESET negated to OPx drive ¹	25.73		21.75		18.00		14.36	_	ns
P59	IP_Xx valid to CLKOUT rising edge	5.00		5.00		5.00		5.00	_	ns
P60	CLKOUT rising edge to IP_Xx invalid	1.00		1.00		1.00		1.00	-	ns

¹ OP2 and OP3 only.

Figure 28 provides the PCMCIA output port timing for the MPC860.

Figure 28. PCMCIA Output Port Timing

Figure 29 provides the PCMCIA output port timing for the MPC860.

Figure 29. PCMCIA Input Port Timing

Table 11 shows the debug port timing for the MPC860.

Table 11. Debug Port Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Unit
P61	DSCK cycle time	$3 \times T_{CLOCKOUT}$	_	
P62	DSCK clock pulse width	$1.25 \times T_{CLOCKOUT}$	—	—
P63	DSCK rise and fall times	0.00	3.00	ns
P64	DSDI input data setup time	8.00	—	ns
P65	DSDI data hold time	5.00	—	ns
P66	DSCK low to DSDO data valid	0.00	15.00	ns
P67	DSCK low to DSDO invalid	0.00	2.00	ns

Figure 30 provides the input timing for the debug port clock.

Figure 30. Debug Port Clock Input Timing

Figure 31 provides the timing for the debug port.

Figure 31. Debug Port Timings

Table 12 shows the reset timing for the MPC860.

Table 12. Reset Timing

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		llmit
Num	Unaracteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to HRESET high impedance	—	20.00	—	20.00	—	20.00	—	20.00	ns
R70	CLKOUT to SRESET high impedance	—	20.00	—	20.00	—	20.00	—	20.00	ns
R71	RSTCONF pulse width	515.15	_	425.00		340.00	_	257.58	_	ns
R72	_		_	_	_	_	_		_	
R73	Configuration data to HRESET rising edge setup time	504.55	_	425.00		350.00	_	277.27	_	ns
R74	Configuration data to RSTCONF rising edge setup time	350.00	—	350.00	—	350.00	—	350.00	—	ns
R75	Configuration data hold time after RSTCONF negation	0.00	—	0.00	—	0.00	—	0.00	—	ns
R76	Configuration data hold time after HRESET negation	0.00	—	0.00	—	0.00	—	0.00	—	ns
R77	HRESET and RSTCONF asserted to data out drive	-	25.00		25.00	—	25.00	—	25.00	ns
R78	RSTCONF negated to data out high impedance	—	25.00	_	25.00	_	25.00	_	25.00	ns
R79	CLKOUT of last rising edge before chip three-state HRESET to data out high impedance	_	25.00	—	25.00	_	25.00	_	25.00	ns
R80	DSDI, DSCK setup	90.91	—	75.00	—	60.00	—	45.45	—	ns
R81	DSDI, DSCK hold time	0.00	—	0.00	_	0.00	_	0.00	—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	242.42	_	200.00		160.00		121.21	_	ns

Figure 34 provides the reset timing for the debug port configuration.

Figure 34. Reset Timing—Debug Port Configuration

10 IEEE 1149.1 Electrical Specifications

Table 13 provides the JTAG timings for the MPC860 shown in Figure 35 through Figure 38.

Num	Charactariatia	All Freq	Unit	
Nulli	Characteristic	Min	Мах	Onit
J82	TCK cycle time	100.00	—	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	_	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	—	ns
J86	TMS, TDI data hold time	25.00	_	ns
J87	TCK low to TDO data valid	—	27.00	ns
J88	TCK low to TDO data invalid	0.00	—	ns
J89	TCK low to TDO high impedance	—	20.00	ns
J90	TRST assert time	100.00	_	ns
J91	TRST setup time to TCK low	40.00	—	ns
J92	TCK falling edge to output valid	—	50.00	ns
J93	TCK falling edge to output valid out of high impedance	—	50.00	ns
J94	TCK falling edge to output high impedance	—	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	—	ns
J96	TCK rising edge to boundary scan input invalid	50.00		ns

Table 13. JTAG Timing

11 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC860.

11.1 PIP/PIO AC Electrical Specifications

Table 14 provides the PIP/PIO AC timings as shown in Figure 39 through Figure 43.

Table 14. PIP/PIO Timing

Num	Characteristic	All Freq	uencies	Unit
Num	Onardetensite	Min	Max	Onit
21	Data-in setup time to STBI low	0	_	ns
22	Data-in hold time to STBI high	2.5 – t3 ¹	_	CLK
23	STBI pulse width	1.5	_	CLK
24	STBO pulse width	1 CLK – 5 ns	_	ns
25	Data-out setup time to STBO low	2	_	CLK
26	Data-out hold time from STBO high	5	_	CLK
27	STBI low to STBO low (Rx interlock)	_	2	CLK
28	STBI low to STBO high (Tx interlock)	2	_	CLK
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)		25	ns

¹ t3 = Specification 23.

Figure 39. PIP Rx (Interlock Mode) Timing Diagram

Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

CPM Electrical Characteristics

Figure 56 through Figure 58 show the NMSI timings.

Num	Chavastavistia	All Freq	Unit	
	Characteristic	Min	Мах	Unit
135	RSTRT active delay (from TCLK1 falling edge)	10	50	ns
136	RSTRT inactive delay (from TCLK1 falling edge)	10	50	ns
137	REJECT width low	1	—	CLK
138	CLKO1 low to SDACK asserted ²		20	ns
139	CLKO1 low to SDACK negated ²	_	20	ns

Table 22. Ethernet Timing (continued)

¹ The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

Figure 59. Ethernet Collision Timing Diagram

Figure 60. Ethernet Receive Timing Diagram

11.11 SPI Slave AC Electrical Specifications

Table 25 provides the SPI slave timings as shown in Figure 67 and Figure 68.

Table 25. SPI Slave Timing

Num	Characteristic	All Freq	Unit	
Nulli		Min	Мах	Unit
170	Slave cycle time	2	_	t _{cyc}
171	Slave enable lead time	15	—	ns
172	Slave enable lag time	15	—	ns
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	_	t _{cyc}
175	Slave data setup time (inputs)	20	—	ns
176	Slave data hold time (inputs)	20	—	ns
177	Slave access time	_	50	ns

11.12 I²C AC Electrical Specifications

Table 26 provides the I^2C (SCL < 100 kHz) timings.

Table 26. I²C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	uencies	Unit
Nulli		Min	Мах	Unit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7	—	μS
203	Low period of SCL	4.7	—	μS
204	High period of SCL	4.0	—	μS
205	Start condition setup time	4.7	—	μS
206	Start condition hold time	4.0	—	μS
207	Data hold time	0	—	μS
208	Data setup time	250	—	ns
209	SDL/SCL rise time	—	1	μS
210	SDL/SCL fall time	—	300	ns
211	Stop condition setup time	4.7	—	μS

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3 × pre_scaler × 2). The ratio SYNCCLK/(BRGCLK/pre_scaler) must be greater than or equal to 4/1.

Table 27 provides the I^2C (SCL > 100 kHz) timings.

Table 27. . I²C Timing (SCL > 100 kHz)

Num	Characteristic	Expression	All Freq	Unit	
Num	Characteristic	Expression	Min	Мах	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions		1/(2.2 * fSCL)	—	S
203	Low period of SCL		1/(2.2 * fSCL)	—	S
204	High period of SCL		1/(2.2 * fSCL)	_	S
205	Start condition setup time		1/(2.2 * fSCL)	—	S
206	Start condition hold time		1/(2.2 * fSCL)	—	S
207	Data hold time		0	_	S
208	Data setup time		1/(40 * fSCL)	—	S
209	SDL/SCL rise time		—	1/(10 * fSCL)	S
210	SDL/SCL fall time		—	1/(33 * fSCL)	S
211	Stop condition setup time		1/2(2.2 * fSCL)	—	s

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) × pre_scaler × 2). The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater than or equal to 4/1.

UTOPIA AC Electrical Specifications

Figure 70 shows signal timings during UTOPIA receive operations.

Figure 71 shows signal timings during UTOPIA transmit operations.

Figure 71. UTOPIA Transmit Timing

13.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 31 provides information on the MII async inputs signal timing.

Table 31. MII Async Inputs Signal Timing

Num	Characteristic	Min	Мах	Unit
M9	MII_CRS, MII_COL minimum pulse width			MII_TX_CLK period

Figure 74 shows the MII asynchronous inputs signal timing diagram.

13.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 32 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

Num	Characteristic	Min	Мах	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	—	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	—	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Table 32. MII Serial Management Channel Timing

Mechanical Data and Ordering Information

Package Type	Freq. (MHz) / Temp. (Tj)	Package	Order Number
Ball grid array <i>(continued)</i> ZP suffix—leaded ZQ suffix—leaded VR suffix—lead-free	80 0° to 95°C	ZP/ZQ ¹	MPC855TZQ80D4 MPC860DEZQ80D4 MPC860DTZQ80D4 MPC860ENZQ80D4 MPC860SRZQ80D4 MPC860TZQ80D4 MPC860DPZQ80D4 MPC860PZQ80D4
		Tape and Reel	MPC860PZQ80D4R2 MPC860PVR80D4R2
		VR	MPC855TVR80D4 MPC860DEVR80D4 MPC860DPVR80D4 MPC860ENVR80D4 MPC860PVR80D4 MPC860SRVR80D4 MPC860SRVR80D4
Ball grid array (CZP suffix) CZP suffix—leaded CZQ suffix—leaded CVR suffix—lead-free	50 –40° to 95°C	ZP/ZQ ¹	MPC855TCZQ50D4 MPC855TCVR50D4 MPC860DECZQ50D4 MPC860DTCZQ50D4 MPC860ENCZQ50D4 MPC860SRCZQ50D4 MPC860TCZQ50D4 MPC860DPCZQ50D4 MPC860PCZQ50D4
		Tape and Reel	MPC855TCZQ50D4R2 MC860ENCVR50D4R2
		CVR	MPC860DECVR50D4 MPC860DTCVR50D4 MPC860ENCVR50D4 MPC860PCVR50D4 MPC860SRCVR50D4 MPC860TCVR50D4
	66 –40° to 95°C	ZP/ZQ ¹	MPC855TCZQ66D4 MPC855TCVR66D4 MPC860ENCZQ66D4 MPC860SRCZQ66D4 MPC860TCZQ66D4 MPC860DPCZQ66D4 MPC860PCZQ66D4
		CVR	MPC860DTCVR66D4 MPC860ENCVR66D4 MPC860PCVR66D4 MPC860SRCVR66D4 MPC860TCVR66D4

Table 34. MPC860 Family Package/Frequency Availability (continued)

¹ The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.

Document Revision History

15 Document Revision History

Table 35 lists significant changes between revisions of this hardware specification.

Revision	Date	Changes
10	09/2015	In Table 34, moved MPC855TCVR50D4 and MPC855TCVR66D4 under the extended temperature (–40° to 95°C) and removed MC860ENCVR50D4R2 from the normal temperature Tape and Reel.
9	10/2011	Updated orderable part numbers in Table 34, "MPC860 Family Package/Frequency Availability."
8	08/2007	 Updated template. On page 1, added a second paragraph. After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 1) and renumbered the rest of the figures. In Figure 3, changed all reference voltage measurement points from 0.2 and 0.8 V to 50% level. In Table 16, changed num 46 description to read, "TA assertion to rising edge" In Figure 46, changed TA to reflect the rising edge of the clock.
7.0	9/2004	 Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL Max of the I2C Standard Replaced the thermal characteristics in Table 4 by the ZQ package Add the new parts to the Ordering and Availablity Chart in Table 34 Added the mechanical spec of the ZQ package in Figure 78 Removed all of the old revisions from Table 5
6.3	9/2003	 Added Section 11.2 on the Port C interrupt pins Nontechnical reformatting
6.2	8/2003	 Changed B28a through B28d and B29d to show that TRLX can be 0 or 1 Changed reference documentation to reflect the Rev 2 MPC860 PowerQUICC Family Users Manual Nontechnical reformatting
6.1	11/2002	 Corrected UTOPIA RXenb* and TXenb* timing values Changed incorrect usage of Vcc to Vdd Corrected dual port RAM to 8 Kbytes
6	10/2002	Added the MPC855T. Corrected Figure 26 on page -36.
5.1	11/2001	Revised template format, removed references to MAC functionality, changed Table 7 B23 max value @ 66 MHz from 2ns to 8ns, added this revision history table

Table 35. Document Revision History