

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	80MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TJ)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc860srzq80d4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

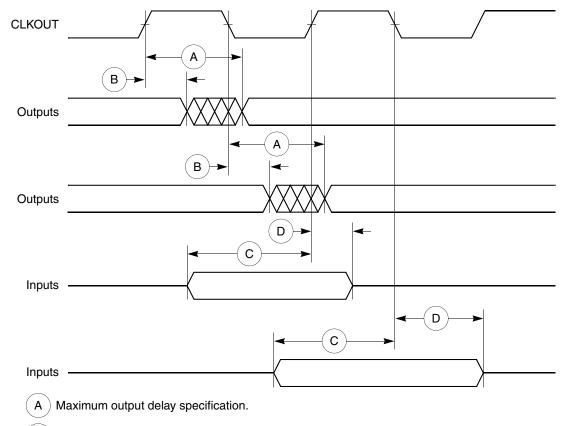


Table 7. Bus Operation Timings (continued)

N	Observatoristis	33	MHz	40 I	MHz	50 1	MHz	66	MHz	11!4
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B31a	CLKOUT falling edge to CS valid—as requested by control bit CST1 in the corresponding word in UPM		14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B31b	CLKOUT rising edge to CS valid—as requested by control bit CST2 in the corresponding word in UPM	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to CS valid—as requested by control bit CST3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B31d	CLKOUT falling edge to $\overline{\text{CS}}$ valid—as requested by control bit CST1 in the corresponding word in UPM, EBDF = 1	13.26	17.99	11.28	16.00	9.40	14.13	7.58	12.31	ns
B32	CLKOUT falling edge to BS valid—as requested by control bit BST4 in the corresponding word in UPM		6.00	1.50	6.00	1.50	6.00	ns		
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid—as requested by control bit BST1 in the corresponding word in UPM, EBDF = 0	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B32b	CLKOUT rising edge to BS valid—as requested by control bit BST2 in the corresponding word in UPM	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to BS valid—as requested by control bit BST3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B32d	CLKOUT falling edge to BS valid—as requested by control bit BST1 in the corresponding word in UPM, EBDF = 1	13.26	17.99	11.28	16.00	9.40	14.13	7.58	12.31	ns
B33	CLKOUT falling edge to GPL valid—as requested by control bit GxT4 in the corresponding word in UPM	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to GPL valid—as requested by control bit GxT3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{CS}}$ valid—as requested by control bit CST4 in the corresponding word in UPM	5.58	_	4.25	_	3.00	_	1.79	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{CS}}$ valid—as requested by control bit CST1 in the corresponding word in UPM	13.15	_	10.50	_	8.00	_	5.58	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{CS}}$ valid—as requested by control bit CST2 in the corresponding word in UPM	20.73	_	16.75	_	13.00	_	9.36	_	ns

Figure 3 is the control timing diagram.

- (B) Minimum output hold time.
- C Minimum input setup time specification.
- (D) Minimum input hold time specification.

Figure 3. Control Timing

Figure 4 provides the timing for the external clock.

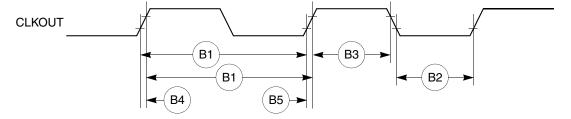


Figure 4. External Clock Timing

Bus Signal Timing

Figure 5 provides the timing for the synchronous output signals.

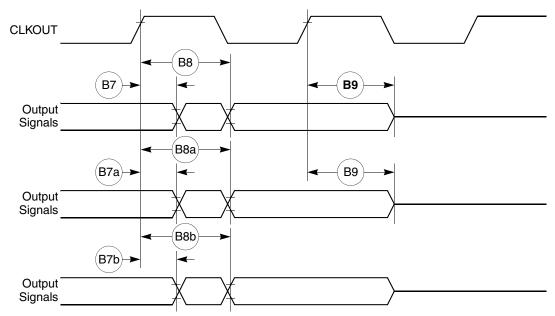


Figure 5. Synchronous Output Signals Timing

Figure 6 provides the timing for the synchronous active pull-up and open-drain output signals.

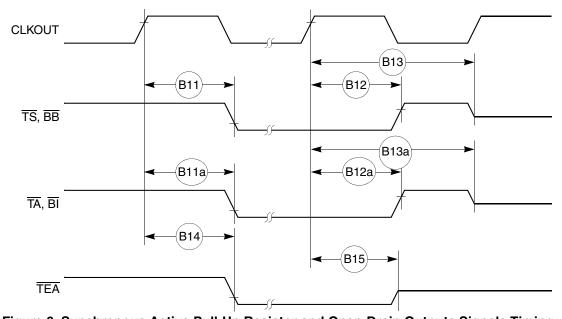


Figure 6. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing

Figure 7 provides the timing for the synchronous input signals.

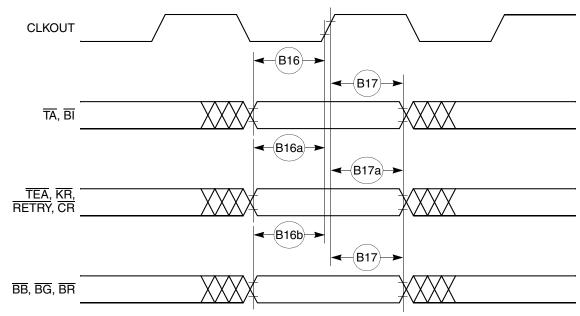


Figure 7. Synchronous Input Signals Timing

Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

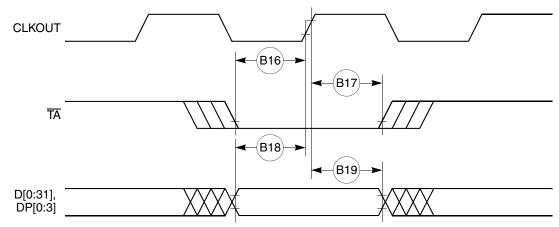


Figure 8. Input Data Timing in Normal Case

Bus Signal Timing

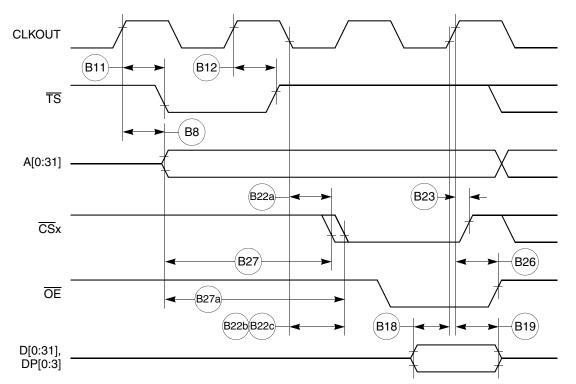


Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

Table 8 provides interrupt timing for the MPC860.

Table 8. Interrupt Timing

Num	Characteristic ¹	All Frequencies Min Max		l locit
	Characteristic			Unit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00	_	ns
140	IRQx hold time after CLKOUT	2.00	_	ns
I41	IRQx pulse width low	3.00	_	ns
142	IRQx pulse width high	3.00	_	ns
143	ĪRQx edge-to-edge time	4 × T _{CLOCKOUT}	_	_

The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level-sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC860 is able to support.

Figure 23 provides the interrupt detection timing for the external level-sensitive lines.

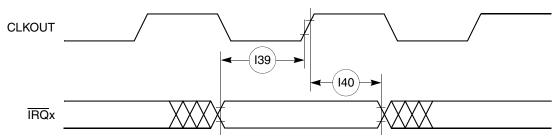


Figure 23. Interrupt Detection Timing for External Level Sensitive Lines

Figure 24 provides the interrupt detection timing for the external edge-sensitive lines.

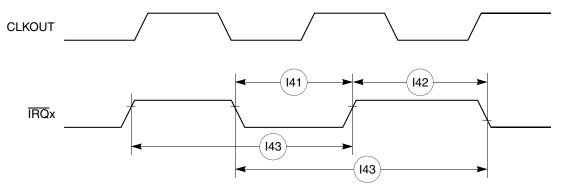


Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines

Freescale Semiconductor 33

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

Table 12 shows the reset timing for the MPC860.

Table 12. Reset Timing

	Characteristic		1Hz	40 MHz		50 MHz		66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to HRESET high impedance	_	20.00	_	20.00	_	20.00	_	20.00	ns
R70	CLKOUT to SRESET high impedance	_	20.00	_	20.00	_	20.00	_	20.00	ns
R71	RSTCONF pulse width	515.15	_	425.00		340.00	_	257.58	_	ns
R72		_	_	_	_	_	_	_	_	
R73	Configuration data to HRESET rising edge setup time	504.55	_	425.00	_	350.00	_	277.27	_	ns
R74	Configuration data to RSTCONF rising edge setup time			_	350.00	_	ns			
R75	Configuration data hold time after RSTCONF negation		_	0.00	_	0.00	_	0.00	_	ns
R76	Configuration data hold time after HRESET negation	0.00	_	0.00	_	0.00	_	0.00	_	ns
R77	HRESET and RSTCONF asserted to data out drive	_	25.00		25.00	_	25.00	_	25.00	ns
R78	RSTCONF negated to data out high impedance	_	25.00	_	25.00	_	25.00	_	25.00	ns
R79	CLKOUT of last rising edge before chip three-state HRESET to data out high impedance		_	25.00	_	25.00	_	25.00	ns	
R80	DSDI, DSCK setup 90.91 -		_	75.00	_	60.00	_	45.45	_	ns
R81	DSDI, DSCK hold time	0.00	_	0.00	_	0.00	_	0.00	_	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	242.42		200.00		160.00	_	121.21	_	ns

Figure 34 provides the reset timing for the debug port configuration.

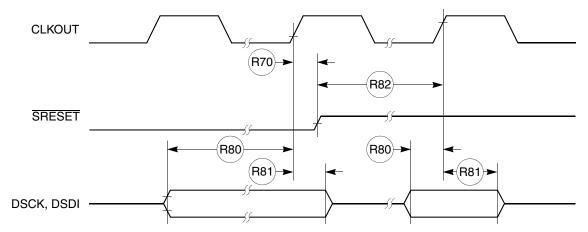


Figure 34. Reset Timing—Debug Port Configuration

10 IEEE 1149.1 Electrical Specifications

Table 13 provides the JTAG timings for the MPC860 shown in Figure 35 through Figure 38.

Table	13. ւ	JTAG	Tim	ing
-------	-------	------	-----	-----

Nives	Characteristic	All Freq		
Num	Characteristic	Min	Max	Unit
J82	TCK cycle time	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	_	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	_	ns
J86	TMS, TDI data hold time		_	ns
J87	TCK low to TDO data valid	_	27.00	ns
J88	TCK low to TDO data invalid	0.00	_	ns
J89	TCK low to TDO high impedance	_	20.00	ns
J90	TRST assert time	100.00	_	ns
J91	TRST setup time to TCK low	40.00	_	ns
J92	TCK falling edge to output valid	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid 5		_	ns

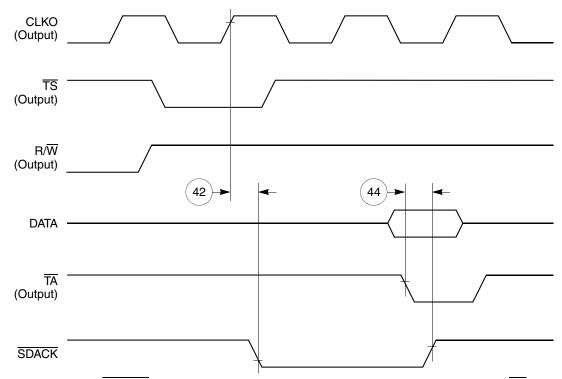


Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

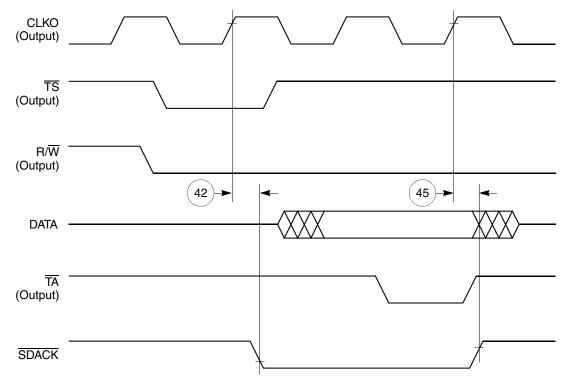


Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

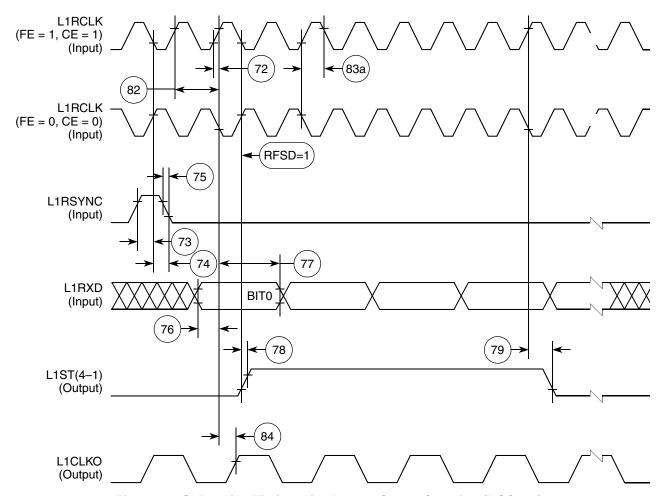


Figure 52. SI Receive Timing with Double-Speed Clocking (DSC = 1)

CPM Electrical Characteristics

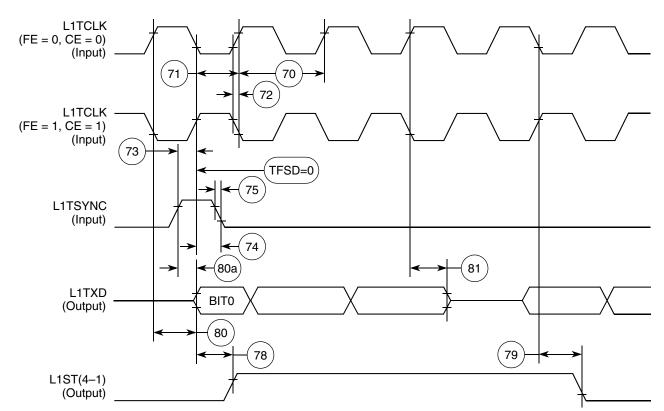


Figure 53. SI Transmit Timing Diagram (DSC = 0)

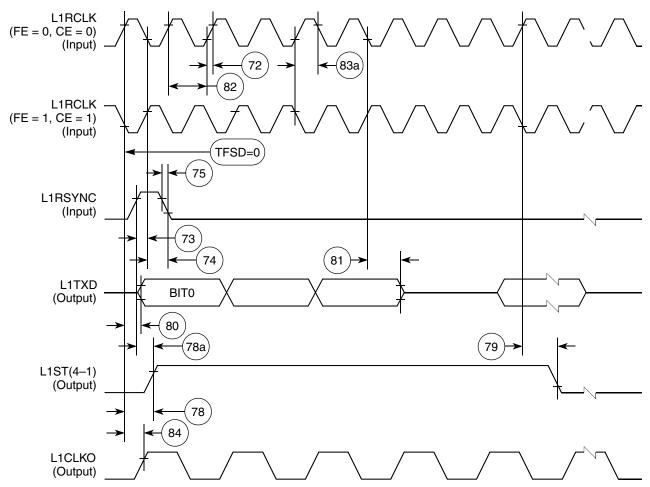


Figure 54. SI Transmit Timing with Double Speed Clocking (DSC = 1)

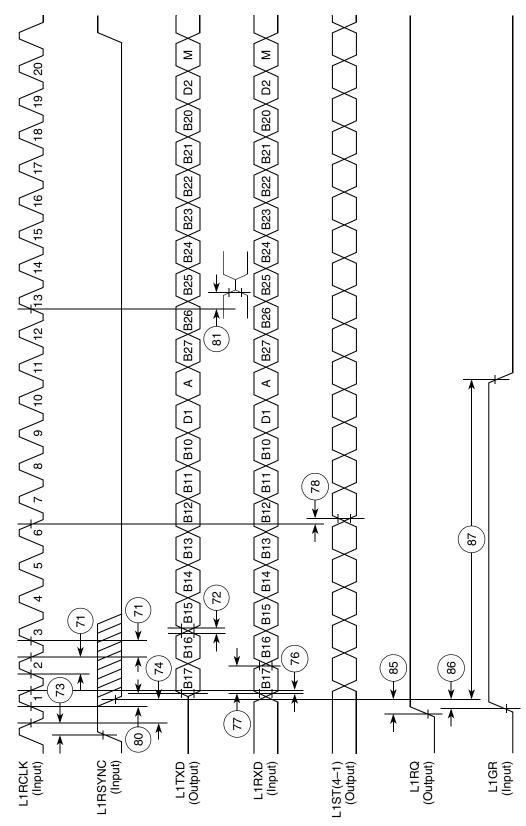


Figure 55. IDL Timing

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

SCC in NMSI Mode Electrical Specifications 11.7

Table 20 provides the NMSI external clock timing.

Table 20. NMSI External Clock Timing

Neves	Ohawaatawiatia	All Freq	uencies	I I m i t	
Num	Characteristic	Min	Max	Unit	
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	_	ns	
101	RCLK1 and TCLK1 width low	1/SYNCCLK + 5	_	ns	
102	RCLK1 and TCLK1 rise/fall time	_	15.00	ns	
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns	
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns	
105	CTS1 setup time to TCLK1 rising edge	5.00	_	ns	
106	RXD1 setup time to RCLK1 rising edge	5.00	_	ns	
107	RXD1 hold time from RCLK1 rising edge ²	5.00	_	ns	
108	CD1 setup Time to RCLK1 rising edge	5.00	_	ns	

Table 21 provides the NMSI internal clock timing.

Table 21. NMSI Internal Clock Timing

Num	Characteristic	All Freq	l lasia		
Num		Min	Max	Unit	
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz	
102	RCLK1 and TCLK1 rise/fall time	_	ns		
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns	
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns	
105	CTS1 setup time to TCLK1 rising edge	40.00	_	ns	
106	RXD1 setup time to RCLK1 rising edge	40.00	_	ns	
107	RXD1 hold time from RCLK1 rising edge ²	0.00	_	ns	
108	CD1 setup time to RCLK1 rising edge 40.00 —				

¹ The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 3/1.

The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.
 Also applies to CD and CTS hold time when they are used as external sync signals.

 $^{^2}$ Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as external sync signals.

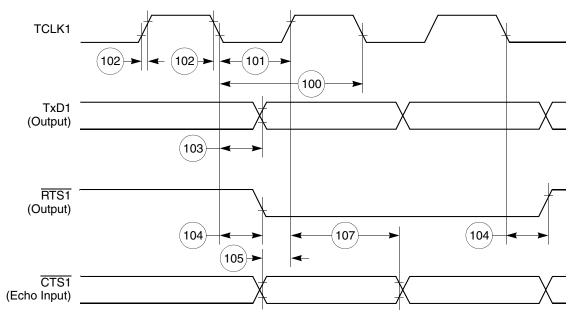


Figure 58. HDLC Bus Timing Diagram

11.8 Ethernet Electrical Specifications

Table 22 provides the Ethernet timings as shown in Figure 59 through Figure 63.

Table 22. Ethernet Timing

N	Obavastavistis	All Freq	uencies	11	
Num	Characteristic	Min	Max	Unit	
120	CLSN width high	40	_	ns	
121	RCLK1 rise/fall time	_	15	ns	
122	RCLK1 width low	40	_	ns	
123	RCLK1 clock period ¹	80	120	ns	
124	RXD1 setup time 20 —				
125	RXD1 hold time	5	_	ns	
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	_	ns	
127	RENA width low	100	_	ns	
128	TCLK1 rise/fall time	1	15	ns	
129	TCLK1 width low	40	_	ns	
130	TCLK1 clock period ¹	99	101	ns	
131	TXD1 active delay (from TCLK1 rising edge)	10	50	ns	
132	TXD1 inactive delay (from TCLK1 rising edge)	10	50	ns	
133	TENA active delay (from TCLK1 rising edge) 10 50				
134	TENA inactive delay (from TCLK1 rising edge) 10 50				

11.10 SPI Master AC Electrical Specifications

Table 24 provides the SPI master timings as shown in Figure 65 and Figure 66.

Table 24. SPI Master Timing

Num	Characteristic	All Freq	Unit		
Num	Characteristic	Min	Max	Unit	
160	MASTER cycle time	4	1024	t _{cyc}	
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}	
162	MASTER data setup time (inputs)	50	_	ns	
163	Master data hold time (inputs)	0	_	ns	
164	Master data valid (after SCK edge)	_	20	ns	
165	Master data hold time (outputs) 0 —		_	ns	
166	Rise time output	_	15	ns	
167	Fall time output — 15				

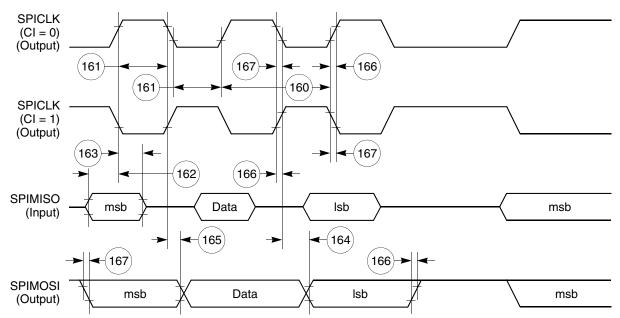


Figure 65. SPI Master (CP = 0) Timing Diagram

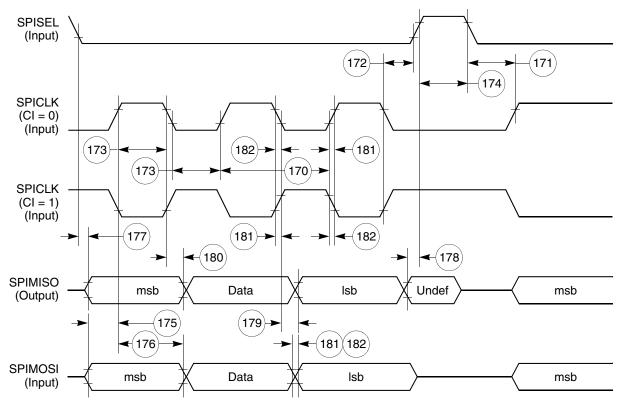


Figure 67. SPI Slave (CP = 0) Timing Diagram

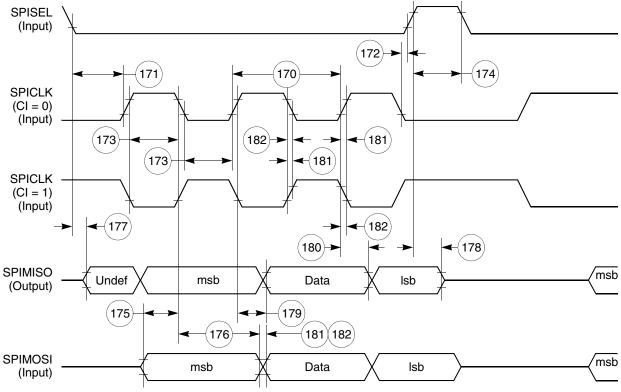


Figure 68. SPI Slave (CP = 1) Timing Diagram

FEC Electrical Characteristics 13

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, 13.1 MII RX CLK)

The receiver functions correctly up to a MII RX CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII RX CLK frequency – 1%.

Table 29 provides information on the MII receive signal timing.

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
МЗ	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 29. MII Receive Signal Timing

Figure 72 shows MII receive signal timing.

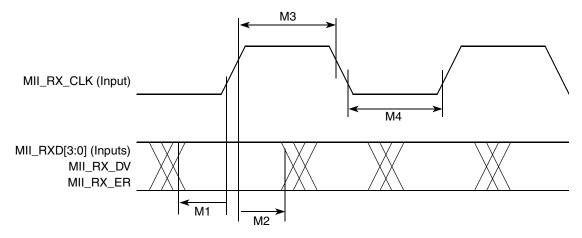


Figure 72. MII Receive Signal Timing Diagram

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10 Freescale Semiconductor 67

Document Revision History

15 Document Revision History

Table 35 lists significant changes between revisions of this hardware specification.

Table 35. Document Revision History

Revision	Date	Changes
10	09/2015	In Table 34, moved MPC855TCVR50D4 and MPC855TCVR66D4 under the extended temperature (–40° to 95°C) and removed MC860ENCVR50D4R2 from the normal temperature Tape and Reel.
9	10/2011	Updated orderable part numbers in Table 34, "MPC860 Family Package/Frequency Availability."
8	08/2007	 Updated template. On page 1, added a second paragraph. After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 1) and renumbered the rest of the figures. In Figure 3, changed all reference voltage measurement points from 0.2 and 0.8 V to 50% level. In Table 16, changed num 46 description to read, "TA assertion to rising edge" In Figure 46, changed TA to reflect the rising edge of the clock.
7.0	9/2004	 Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL Max of the I2C Standard Replaced the thermal characteristics in Table 4 by the ZQ package Add the new parts to the Ordering and Availablity Chart in Table 34 Added the mechanical spec of the ZQ package in Figure 78 Removed all of the old revisions from Table 5
6.3	9/2003	Added Section 11.2 on the Port C interrupt pins Nontechnical reformatting
6.2	8/2003	Changed B28a through B28d and B29d to show that TRLX can be 0 or 1 Changed reference documentation to reflect the Rev 2 MPC860 PowerQUICC Family Users Manual Nontechnical reformatting
6.1	11/2002	 Corrected UTOPIA RXenb* and TXenb* timing values Changed incorrect usage of Vcc to Vdd Corrected dual port RAM to 8 Kbytes
6	10/2002	Added the MPC855T. Corrected Figure 26 on page -36.
5.1	11/2001	Revised template format, removed references to MAC functionality, changed Table 7 B23 max value @ 66 MHz from 2ns to 8ns, added this revision history table

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2007-2015 Freescale Semiconductor, Inc.

Document Number: MPC860EC

Rev. 10 09/2015

