

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	Νο
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc860tvr66d4

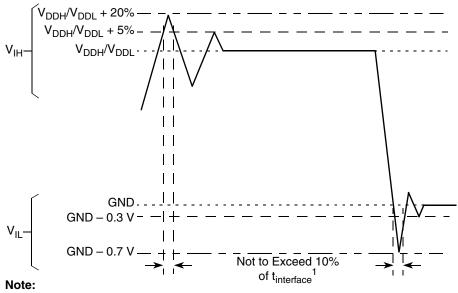
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Features

The following list summarizes the key MPC860 features:

- Embedded single-issue, 32-bit core (implementing the Power Architecture technology) with thirty-two 32-bit general-purpose registers (GPRs)
 - The core performs branch prediction with conditional prefetch without conditional execution.
 - 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)
 - 16-Kbyte instruction caches are four-way, set-associative with 256 sets; 4-Kbyte instruction caches are two-way, set-associative with 128 sets.
 - 8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data caches are two-way, set-associative with 128 sets.
 - Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks.
 - Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis.
 - MMUs with 32-entry TLB, fully-associative instruction, and data TLBs
 - MMUs support multiple page sizes of 4-, 16-, and 512-Kbytes, and 8-Mbytes; 16 virtual address spaces and 16 protection groups
 - Advanced on-chip-emulation debug mode
- Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
- 32 address lines
- Operates at up to 80 MHz
- Memory controller (eight banks)
 - Contains complete dynamic RAM (DRAM) controller
 - Each bank can be a chip select or \overline{RAS} to support a DRAM bank.
 - Up to 15 wait states programmable per memory bank
 - Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and other memory devices
 - DRAM controller programmable to support most size and speed memory interfaces
 - Four $\overline{\text{CAS}}$ lines, four $\overline{\text{WE}}$ lines, and one $\overline{\text{OE}}$ line
 - Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
 - Variable block sizes (32 Kbytes to 256 Mbytes)
 - Selectable write protection
 - On-chip bus arbitration logic
- General-purpose timers
 - Four 16-bit timers or two 32-bit timers
 - Gate mode can enable/disable counting
 - Interrupt can be masked on reference match and event capture.


Features

- System integration unit (SIU)
 - Bus monitor
 - Software watchdog
 - Periodic interrupt timer (PIT)
 - Low-power stop mode
 - Clock synthesizer
 - Decrementer, time base, and real-time clock (RTC)
 - Reset controller
 - IEEE 1149.1TM Std. test access port (JTAG)
- Interrupts
 - Seven external interrupt request (IRQ) lines
 - 12 port pins with interrupt capability
 - 23 internal interrupt sources
 - Programmable priority between SCCs
 - Programmable highest priority request
- 10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u® Standard (not available when using ATM over UTOPIA interface)
- ATM support compliant with ATM forum UNI 4.0 specification
 - Cell processing up to 50–70 Mbps at 50-MHz system clock
 - Cell multiplexing/demultiplexing
 - Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables OAM and software implementation of other protocols.
 - ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and unspecified bit rate (UBR) and providing control mechanisms enabling software support of available bit rate (ABR)
 - Physical interface support for UTOPIA (10/100-Mbps is not supported with this interface) and byte-aligned serial (for example, T1/E1/ADSL)
 - UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to four physical layer devices), connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system clock ratios of 1/2 or 1/3.
 - Serial-mode ATM connection supports transmission convergence (TC) function for T1/E1/ADSL lines, cell delineation, cell payload scrambling/descrambling, automatic idle/unassigned cell insertion/stripping, header error control (HEC) generation, checking, and statistics.
- Communications processor module (CPM)
 - RISC communications processor (CP)
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels

Thermal Characteristics

Figure 1 shows the undershoot and overshoot voltages at the interface of the MPC860.

1. t_{interface} refers to the clock period associated with the bus clock interface.

Figure 1. Undershoot/Overshoot Voltage for V_{DDH} and V_{DDL}

4 Thermal Characteristics

Table 3. Package Description

Package Designator	Package Code (Case No.)	Package Description		
ZP	5050 (1103-01)	PBGA 357 25*25*0.9P1.27		
ZQ/VR	5058 (1103D-02)	PBGA 357 25*25*1.2P1.27		

Table 4 shows the thermal characteristics for the MPC860.

Table 4. MPC860 Thermal Resistance Data

Rating	Env	Symbol	ZP MPC860P	ZQ / VR MPC860P	Unit	
Mold Compound Thicknes	0.85	1.15	mm			
Junction-to-ambient ¹	Natural convection	Single-layer board (1s)	$R_{\theta JA}^2$	34	34	°C/W
		Four-layer board (2s2p)	$R_{\thetaJMA}{}^3$	22	22	
	Airflow (200 ft/min)	Single-layer board (1s)	$R_{\thetaJMA}{}^3$	27	27	
		Four-layer board (2s2p)	$R_{\thetaJMA}{}^3$	18	18	
Junction-to-board ⁴			$R_{\theta J B}$	14	13	
Junction-to-case ⁵			$R_{ ext{ heta}JC}$	6	8	
Junction-to-package top 6	Natural convection		Ψ_{JT}	2	2	

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.

² Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2.

Bus Signal Timing

NI	Characteristic	33 MHz 40 MH		MHz	IHz 50 MHz		66 MHz		المنا	
Num		Min	Max	Min	Max	Min	Max	Min	Max	Unit
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion	7.58	13.58	6.25	12.25	5.00	11.00	3.80	11.29	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface)	2.50	9.25	2.50	9.25	2.50	9.25	2.50	9.75	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation	7.58	14.33	6.25	13.00	5.00	11.75	3.80	8.54	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface)	2.50	11.00	2.50	11.00	2.50	11.00	2.50	9.00	ns
B13	CLKOUT to TS, BB High-Z	7.58	21.58	6.25	20.25	5.00	19.00	3.80	14.04	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B14	CLKOUT to TEA assertion	2.50	10.00	2.50	10.00	2.50	10.00	2.50	9.00	ns
B15	CLKOUT to TEA High-Z	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	TA, BI valid to CLKOUT (setup time)	9.75	_	9.75	—	9.75	_	6.00	—	ns
B16a	TEA, KR, RETRY, CR valid to CLKOUT (setup time)	10.00	—	10.00	—	10.00	—	4.50	—	ns
B16b	$\overline{\text{BB}}, \overline{\text{BG}}, \overline{\text{BR}}, \text{ valid to CLKOUT (setup time)}^5$	8.50		8.50	_	8.50		4.00	_	ns
B17	CLKOUT to TA, TEA, BI, BB, BG, BR valid (hold time)	1.00	—	1.00	_	1.00	_	2.00	_	ns
B17a	CLKOUT to KR, RETRY, CR valid (hold time)	2.00	—	2.00	_	2.00	_	2.00	_	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) ⁶	6.00	—	6.00	—	6.00	—	6.00	_	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) ⁶	1.00	—	1.00	_	1.00	_	2.00	_	ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) ⁷	4.00	—	4.00	_	4.00	—	4.00	_	ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold time) ⁷	2.00	—	2.00	—	2.00	—	2.00	—	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0	—	8.00		8.00		8.00		8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1	10.86	17.99	8.88	16.00	7.00	14.13	5.18	12.31	ns

Table 7. Bus Operation Timings (continued)

	Ob an and the	33 MHz 40 N		MHz 50 MHz		66 MHz				
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B31a	CLKOUT falling edge to CS valid—as requested by control bit CST1 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B31b	CLKOUT rising edge to \overline{CS} valid—as requested by control bit CST2 in the corresponding word in UPM	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid—as requested by control bit CST3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.04	ns
B31d	CLKOUT falling edge to \overline{CS} valid—as requested by control bit CST1 in the corresponding word in UPM, EBDF = 1	13.26	17.99	11.28	16.00	9.40	14.13	7.58	12.31	ns
B32	CLKOUT falling edge to BS valid—as requested by control bit BST4 in the corresponding word in UPM	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid—as requested by control bit BST1 in the corresponding word in UPM, EBDF = 0	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B32b	CLKOUT rising edge to BS valid—as requested by control bit BST2 in the corresponding word in UPM	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to $\overline{\text{BS}}$ valid—as requested by control bit BST3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B32d	CLKOUT falling edge to \overline{BS} valid—as requested by control bit BST1 in the corresponding word in UPM, EBDF = 1	13.26	17.99	11.28	16.00	9.40	14.13	7.58	12.31	ns
B33	CLKOUT falling edge to GPL valid—as requested by control bit GxT4 in the corresponding word in UPM	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to GPL valid—as requested by control bit GxT3 in the corresponding word in UPM	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid—as requested by control bit CST4 in the corresponding word in UPM	5.58		4.25		3.00		1.79	—	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid—as requested by control bit CST1 in the corresponding word in UPM	13.15		10.50		8.00		5.58	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid—as requested by control bit CST2 in the corresponding word in UPM	20.73	_	16.75		13.00		9.36	_	ns

Table 7. Bus Operation Timings (continued)

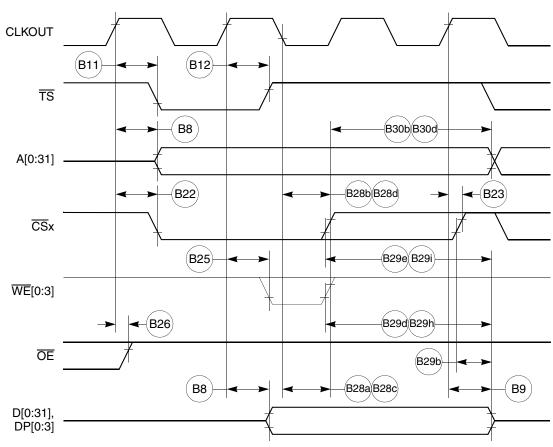


Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)

Figure 18 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

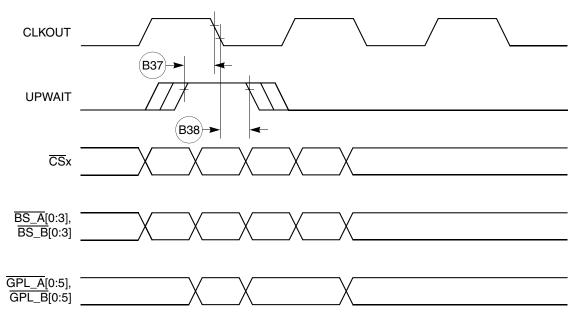


Figure 18. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing

Figure 19 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

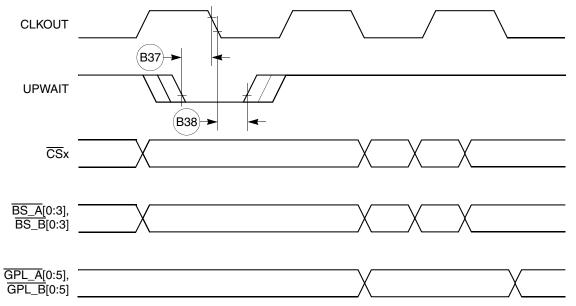


Figure 19. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing

1

Table 8 provides interrupt timing for the MPC860.

Table 8. Interrupt Timing

Nivers	Characteristic ¹	All Freq	11	
Num	Characteristic	Min	Мах	Unit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00	—	ns
140	IRQx hold time after CLKOUT	2.00	—	ns
141	IRQx pulse width low	3.00	—	ns
142	IRQx pulse width high	3.00	—	ns
143	IRQx edge-to-edge time	$4 \times T_{CLOCKOUT}$	—	—

The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level-sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry and have no direct relation with the total system interrupt latency that the MPC860 is able to support.

Figure 23 provides the interrupt detection timing for the external level-sensitive lines.

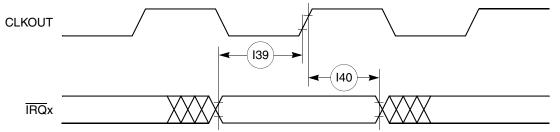


Figure 23. Interrupt Detection Timing for External Level Sensitive Lines

Figure 24 provides the interrupt detection timing for the external edge-sensitive lines.

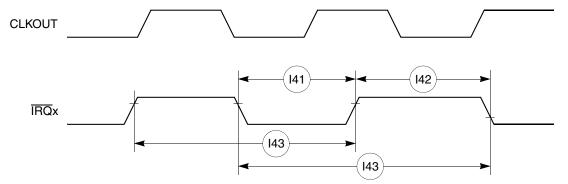


Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines

Bus Signal Timing

Table 11 shows the debug port timing for the MPC860.

Table 11. Debug Port Timing

Num	Characteristic	All Freq	11	
Num	Characteristic	Min	Мах	Unit
P61	DSCK cycle time	3 × T _{CLOCKOUT}	_	—
P62	DSCK clock pulse width	$1.25 \times T_{CLOCKOUT}$	_	—
P63	DSCK rise and fall times	0.00	3.00	ns
P64	DSDI input data setup time	8.00	_	ns
P65	DSDI data hold time	5.00	_	ns
P66	DSCK low to DSDO data valid	0.00	15.00	ns
P67	DSCK low to DSDO invalid	0.00	2.00	ns

Figure 30 provides the input timing for the debug port clock.

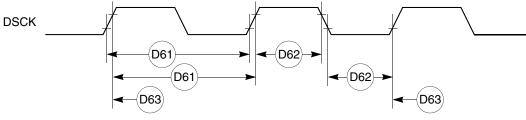


Figure 30. Debug Port Clock Input Timing

Figure 31 provides the timing for the debug port.

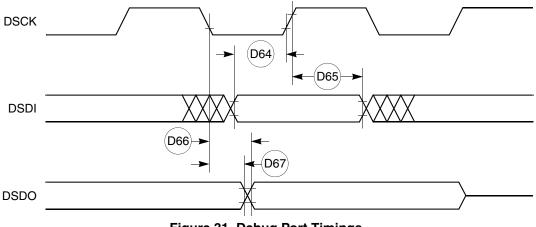
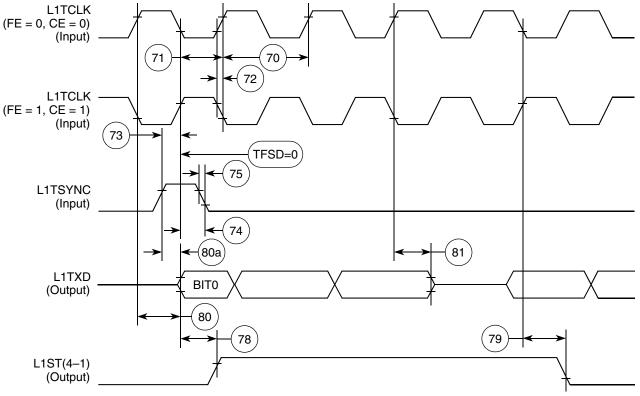
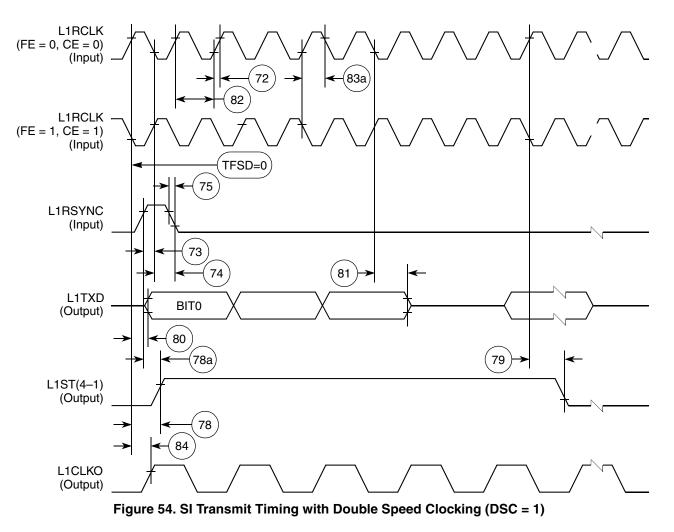
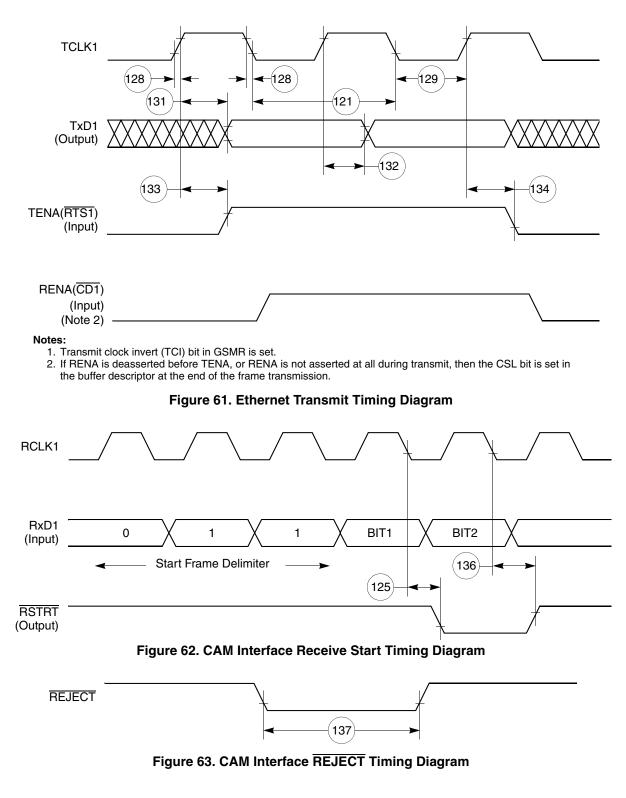



Figure 31. Debug Port Timings


CPM Electrical Characteristics


CPM Electrical Characteristics

MPC860 PowerQUICC Family Hardware Specifications, Rev. 10

CPM Electrical Characteristics

CPM Electrical Characteristics

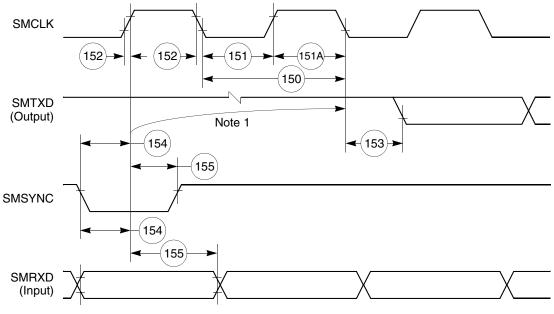

SMC Transparent AC Electrical Specifications 11.9

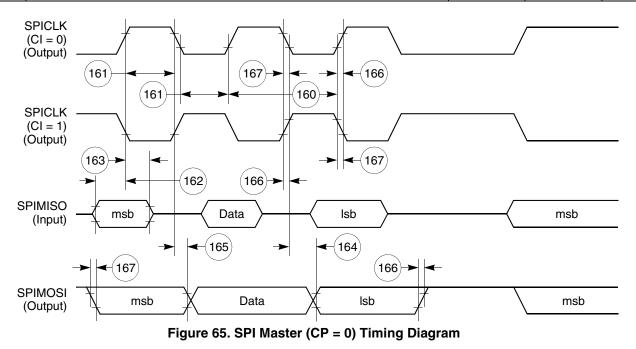
Table 23 provides the SMC transparent timings as shown in Figure 64.

Table 23. SMC Transparent Timing

Num	Characteristic		All Frequencies		
Num	Characteristic	Min	Мах	Unit	
150	SMCLK clock period ¹	100	—	ns	
151	SMCLK width low		—	ns	
151A	SMCLK width high		—	ns	
152	SMCLK rise/fall time	_	15	ns	
153	SMTXD active delay (from SMCLK falling edge)		50	ns	
154	SMRXD/SMSYNC setup time		—	ns	
155	RXD1/SMSYNC hold time	5	—	ns	

¹ SYNCCLK must be at least twice as fast as SMCLK.

Note: 1. This delay is equal to an integer number of character-length clocks.


CPM Electrical Characteristics

11.10 SPI Master AC Electrical Specifications

Table 24 provides the SPI master timings as shown in Figure 65 and Figure 66.

Table 24. SPI Master Timing

Num	Characteristic	All Freq	llait	
num	Characteristic	Min	Max	Unit
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	50	_	ns
163	Master data hold time (inputs)		_	ns
164	Master data valid (after SCK edge)	—	20	ns
165	Master data hold time (outputs)	0	_	ns
166	Rise time output	_	15	ns
167	Fall time output	—	15	ns

UTOPIA AC Electrical Specifications

Figure 70 shows signal timings during UTOPIA receive operations.

Figure 71 shows signal timings during UTOPIA transmit operations.

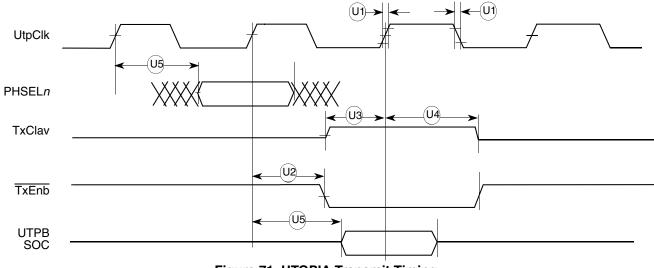


Figure 71. UTOPIA Transmit Timing

Mechanical Data and Ordering Information

Figure 75 shows the MII serial management channel timing diagram.

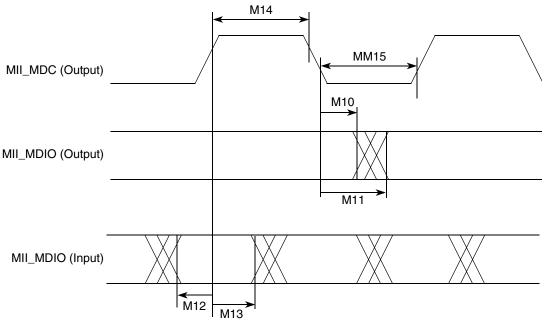


Figure 75. MII Serial Management Channel Timing Diagram

14 Mechanical Data and Ordering Information

14.1 Ordering Information

Table 33 provides information on the MPC860 Revision D.4 derivative devices.

Device	Number of SCCs ¹	Ethernet Support ² (Mbps)	Multichannel HDLC Support	ATM Support
MPC855T	1	10/100	Yes	Yes
MPC860DE	2	10	N/A	N/A
MPC860DT		10/100	Yes	Yes
MPC860DP		10/100	Yes	Yes
MPC860EN	4	10	N/A	N/A
MPC860SR		10	Yes	Yes
MPC860T		10/100	Yes	Yes
MPC860P		10/100	Yes	Yes

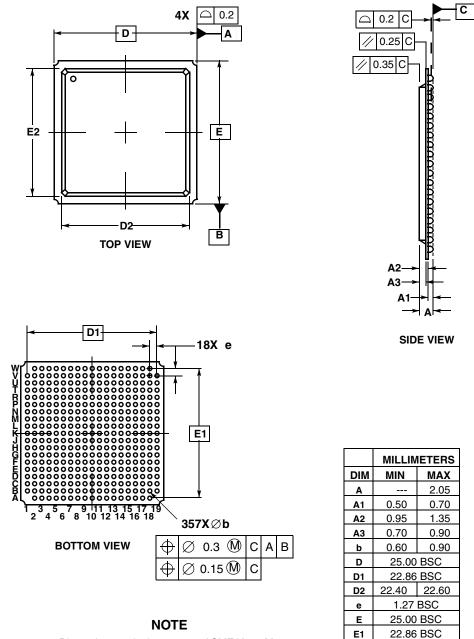
Table 33. MPC860 Family Revision D.4 Derivatives

¹ Serial communications controller (SCC)

² Up to 4 channels at 40 MHz or 2 channels at 25 MHz

Table 34 identifies the packages and operating frequencies available for the MPC860.

Package Type	Freq. (MHz) / Temp. (Tj)	Package	Order Number
Ball grid array ZP suffix—leaded ZQ suffix—lead-free	50 0° to 95°C	ZP/ZQ ¹	MPC855TZQ50D4 MPC860DEZQ50D4 MPC860DTZQ50D4 MPC860ENZQ50D4 MPC860SRZQ50D4 MPC860TZQ50D4 MPC860DPZQ50D4 MPC860PZQ50D4
		Tape and Reel	MPC855TZQ50D4R2 MPC860DEZQ50D4R2 MPC860ENZQ50D4R2 MPC860SRZQ50D4R2 MPC860TZQ50D4R2 MPC860DPZQ50D4R2 MPC860DPZQ50D4R2 MPC855TVR50D4R2 MPC860ENVR50D4R2 MPC860SRVR50D4R2 MPC860TVR50D4R2
		VR	MPC855TVR50D4 MPC860DEVR50D4 MPC860DPVR50D4 MPC860DTVR50D4 MPC860ENVR50D4 MPC860ENVR50D4 MPC860SRVR50D4 MPC860SRVR50D4 MPC860TVR50D4
	66 0° to 95°C	ZP/ZQ ¹	MPC855TZQ66D4 MPC860DEZQ66D4 MPC860DTZQ66D4 MPC860ENZQ66D4 MPC860SRZQ66D4 MPC860TZQ66D4 MPC860DPZQ66D4 MPC860PZQ66D4
		Tape and Reel	MPC860SRZQ66D4R2 MPC860PZQ66D4R2
		VR	MPC855TVR66D4 MPC860DEVR66D4 MPC860DPVR66D4 MPC860DTVR66D4 MPC860ENVR66D4 MPC860PVR66D4 MPC860SRVR66D4 MPC860TVR66D4


Table 34. MPC860 Family Package/Frequency Availability

Mechanical Data and Ordering Information

14.3 Mechanical Dimensions of the PBGA Package

Figure 77 shows the mechanical dimensions of the ZP PBGA package.

- 1. Dimensions and tolerance per ASME Y14.5M, 1994.
- 2. Dimensions in millimeters.
- 3. Dimension b is the maximum solder ball diameter measured parallel to data C.

22.40

E2

22.60

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2007-2015 Freescale Semiconductor, Inc.

Power

Document Number: MPC860EC Rev. 10 09/2015

