

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc860tzq50d4r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

1 Overview

The MPC860 power quad integrated communications controller (PowerQUICCTM) is a versatile one-chip integrated microprocessor and peripheral combination designed for a variety of controller applications. It particularly excels in communications and networking systems. The PowerQUICC unit is referred to as the MPC860 in this hardware specification.

The MPC860 implements Power ArchitectureTM technology and contains a superset of Freescale's MC68360 quad integrated communications controller (QUICC), referred to here as the QUICC, RISC communications proceessor module (CPM). The CPU on the MPC860 is a 32-bit core built on Power Architecture technology that incorporates memory management units (MMUs) and instruction and data caches.. The CPM from the MC68360 QUICC has been enhanced by the addition of the inter-integrated controller (I²C) channel. The memory controller has been enhanced, enabling the MPC860 to support any type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket controller supports up to two sockets. A real-time clock has also been integrated.

Table 1 shows the functionality supported by the MPC860 family.

Part	Cache (Cache (Kbytes)		ernet			
	Instruction Cache	Data Cache	10T	10/100	АТМ	SCC	Reference ¹
MPC860DE	4	4	Up to 2	_	_	2	1
MPC860DT	4	4	Up to 2	1	Yes	2	1
MPC860DP	16	8	Up to 2	1	Yes	2	1
MPC860EN	4	4	Up to 4	_	_	4	1
MPC860SR	4	4	Up to 4	—	Yes	4	1
MPC860T	4	4	Up to 4	1	Yes	4	1
MPC860P	16	8	Up to 4	1	Yes	4	1
MPC855T	4	4	1	1	Yes	1	2

Table 1. MPC860 Family Functionality

Supporting documentation for these devices refers to the following:

1. MPC860 PowerQUICC Family User's Manual (MPC860UM, Rev. 3)

2. MPC855T User's Manual (MPC855TUM, Rev. 1)

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC860. Table 2 provides the maximum ratings.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

(GND = 0 V)

Table 2. Maximum Tolerated Ratings

Rating	Symbol	Value	Unit
Supply voltage ¹	V _{DDH}	-0.3 to 4.0	V
	V _{DDL}	-0.3 to 4.0	V
	KAPWR	-0.3 to 4.0	V
	V _{DDSYN}	-0.3 to 4.0	V
Input voltage ²	V _{in}	GND – 0.3 to V _{DDH}	V
Temperature ³ (standard)	T _{A(min)}	0	°C
	T _{j(max)}	95	°C
Temperature ³ (extended)	T _{A(min)}	-40	°C
	T _{j(max)}	95	°C
Storage temperature range	T _{stg}	–55 to 150	°C

¹ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be applied to its inputs).

³ Minimum temperatures are guaranteed as ambient temperature, T_A. Maximum temperatures are guaranteed as junction temperature, T_i.

Layout Practices

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International	(415) 964-5111
805 East Middlefield Rd.	
Mountain View, CA 94043	
MIL-SPEC and EIA/JESD (JEDEC) Specifications	800-854-7179 or
(Available from Global Engineering Documents)	303-397-7956
JEDEC Specifications	http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

8 Layout Practices

Each V_{DD} pin on the MPC860 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the chip. The V_{DD} power supply should be bypassed to ground using at least four 0.1 µF-bypass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{DD} and GND should be kept to less than half an inch per capacitor lead. A four-layer board employing two inner layers as V_{CC} and GND planes is recommended.

All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

	Ohamata i ii	33 MHz 40 Mł		MHz 50 MHz			66 MHz		11-1-1-1	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B23	CLKOUT rising edge to $\overline{\text{CS}}$ negated GPCM read access, GPCM write access ACS = 00, TRLX = 0, and CSNT = 0	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0	5.58	—	4.25	_	3.00	—	1.79	_	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 0	13.15	—	10.50	_	8.00	_	5.58	—	ns
B25	CLKOUT rising edge to \overline{OE} , \overline{WE} (0:3) asserted	_	9.00	_	9.00	—	9.00	_	9.00	ns
B26	CLKOUT rising edge to OE negated	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1	35.88	_	29.25	_	23.00	_	16.94	_	ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1	43.45	—	35.50	—	28.00	—	20.73	—	ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)$ negated GPCM write access CSNT = 0	_	9.00	_	9.00	—	9.00	_	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, 1, CSNT = 1, EBDF = 0	7.58	14.33	6.25	13.00	5.00	11.75	3.80	10.54	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0	_	14.33	_	13.00	_	11.75	—	10.54	ns
B28c	CLKOUT falling edge to \overline{WE} (0:3) negated GPCM write access TRLX = 0, 1, CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1	10.86	17.99	8.88	16.00	7.00	14.13	5.18	12.31	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, 1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1	_	17.99	—	16.00	—	14.13	—	12.31	ns
B29	$\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access CSNT = 0, EBDF = 0	5.58	—	4.25	—	3.00	—	1.79	—	ns
B29a	$\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0	13.15	—	10.5	—	8.00	—	5.58		ns
B29b	\overline{CS} negated to D(0:31), DP(0:3), High-Z GPCM write access, ACS = 00, TRLX = 0, 1, and CSNT = 0	5.58		4.25		3.00		1.79		ns
B29c	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 0	13.15		10.5		8.00		5.58		ns

Table 7. Bus Operation Timings (continued)

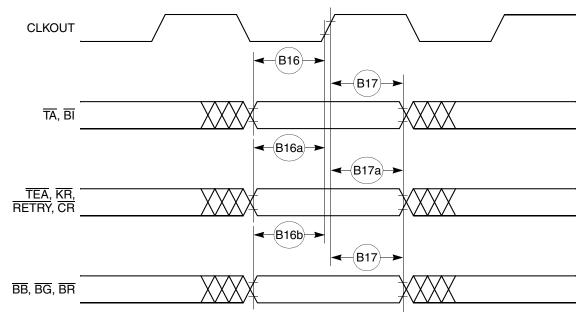


Figure 7 provides the timing for the synchronous input signals.

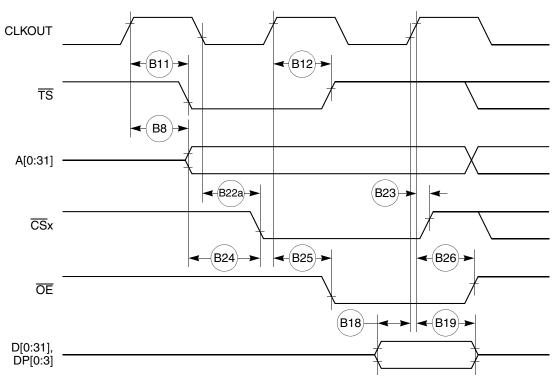


Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

Figure 8. Input Data Timing in Normal Case

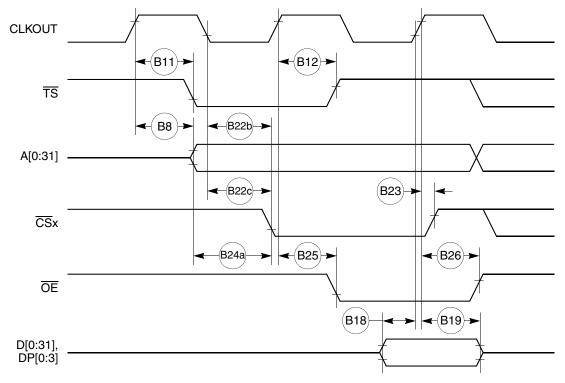


Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

Bus Signal Timing

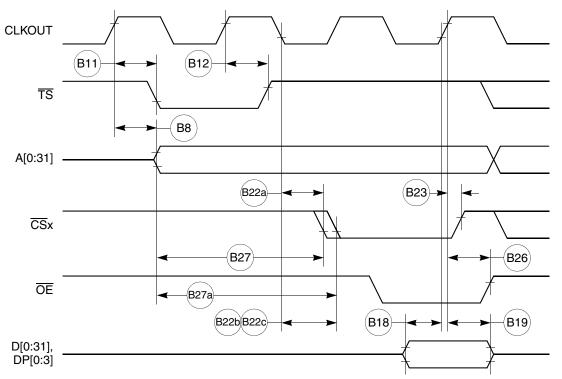


Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

Bus Signal Timing

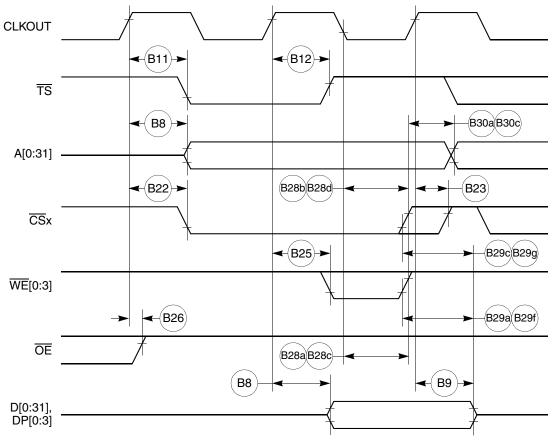


Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)

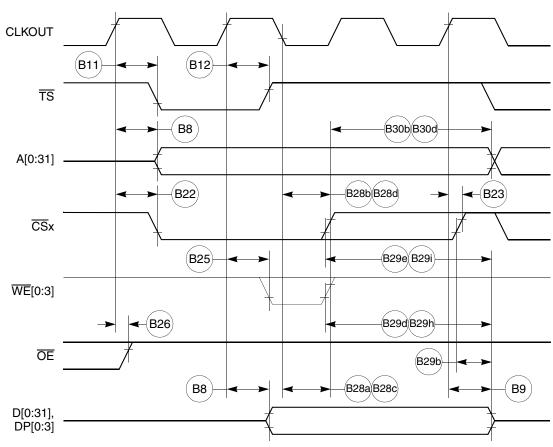


Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)

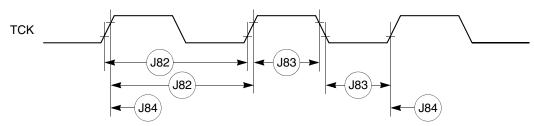

Table 12 shows the reset timing for the MPC860.

Table 12. Reset Timing

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
NUM	Unaracteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to HRESET high impedance	—	20.00	—	20.00	_	20.00	—	20.00	ns
R70	CLKOUT to SRESET high impedance	—	20.00	—	20.00	—	20.00	—	20.00	ns
R71	RSTCONF pulse width	515.15	_	425.00		340.00	_	257.58	—	ns
R72	_	—	_	—	_	—	_	—	—	
R73	Configuration data to HRESET rising edge setup time	504.55	—	425.00	—	350.00	_	277.27	—	ns
R74	Configuration data to RSTCONF rising edge setup time	350.00	—	350.00	—	350.00	_	350.00	—	ns
R75	Configuration data hold time after RSTCONF negation	0.00	—	0.00	—	0.00	_	0.00	—	ns
R76	Configuration data hold time after HRESET negation	0.00	—	0.00	—	0.00	_	0.00	—	ns
R77	HRESET and RSTCONF asserted to data out drive	—	25.00		25.00	—	25.00	—	25.00	ns
R78	RSTCONF negated to data out high impedance	—	25.00	—	25.00	—	25.00	—	25.00	ns
R79	CLKOUT of last rising edge before chip three-state HRESET to data out high impedance	—	25.00	—	25.00	—	25.00	—	25.00	ns
R80	DSDI, DSCK setup	90.91	—	75.00	_	60.00		45.45	—	ns
R81	DSDI, DSCK hold time	0.00	_	0.00		0.00		0.00	—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	242.42	—	200.00	—	160.00	_	121.21	—	ns

IEEE 1149.1 Electrical Specifications

Figure 35. JTAG Test Clock Input Timing

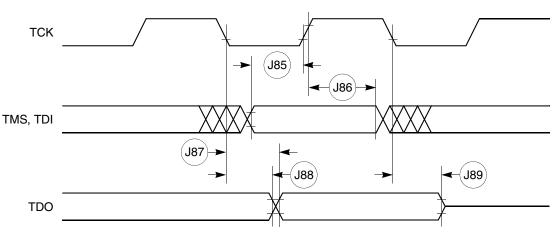


Figure 36. JTAG Test Access Port Timing Diagram

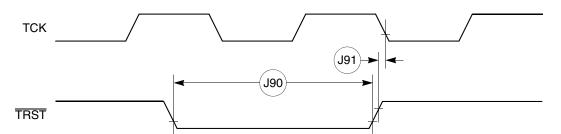
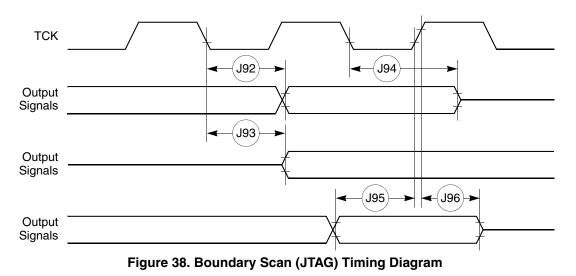
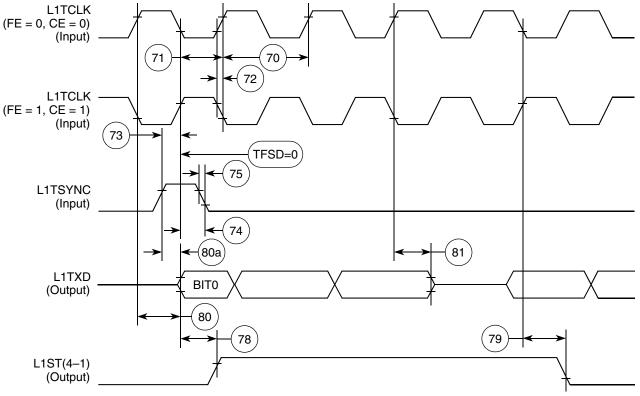




Figure 37. JTAG TRST Timing Diagram

CPM Electrical Characteristics

SCC in NMSI Mode Electrical Specifications 11.7

Table 20 provides the NMSI external clock timing.

News	Characteristic	All Freq	uencies	11
Num	Characteristic	Min	Мах	Unit
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	_	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK + 5	_	ns
102	RCLK1 and TCLK1 rise/fall time	—	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	5.00	_	ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	—	ns
108	CD1 setup Time to RCLK1 rising edge	5.00	_	ns

¹ The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.
 ² Also applies to CD and CTS hold time when they are used as external sync signals.

Table 21 provides the NMSI internal clock timing.

Table 21. NMSI Internal Clock Timing

Num	Characteristic	All Freq	Unit	
num	Characteristic	Min	Мах	Unit
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK1 and TCLK1 rise/fall time	_	—	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns
105	CTS1 setup time to TCLK1 rising edge	40.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	40.00	—	ns
107	RXD1 hold time from RCLK1 rising edge ²	0.00	—	ns
108	CD1 setup time to RCLK1 rising edge	40.00	_	ns

¹ The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 3/1.

² Also applies to \overline{CD} and \overline{CTS} hold time when they are used as external sync signals.

CPM Electrical Characteristics

Num	Characteristic	All Freq	Linit	
Num		Min	Мах	Unit
135	RSTRT active delay (from TCLK1 falling edge)	10	50	ns
136	RSTRT inactive delay (from TCLK1 falling edge)	10	50	ns
137	REJECT width low	1	—	CLK
138	CLKO1 low to SDACK asserted ²	_	20	ns
139	CLKO1 low to SDACK negated ²	_	20	ns

Table 22. Ethernet Timing (continued)

¹ The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

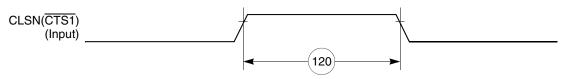


Figure 59. Ethernet Collision Timing Diagram

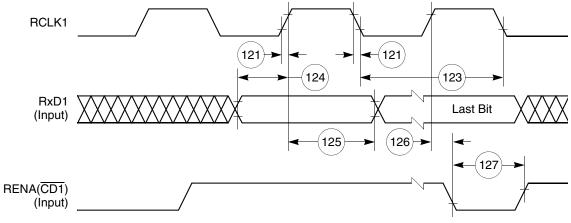
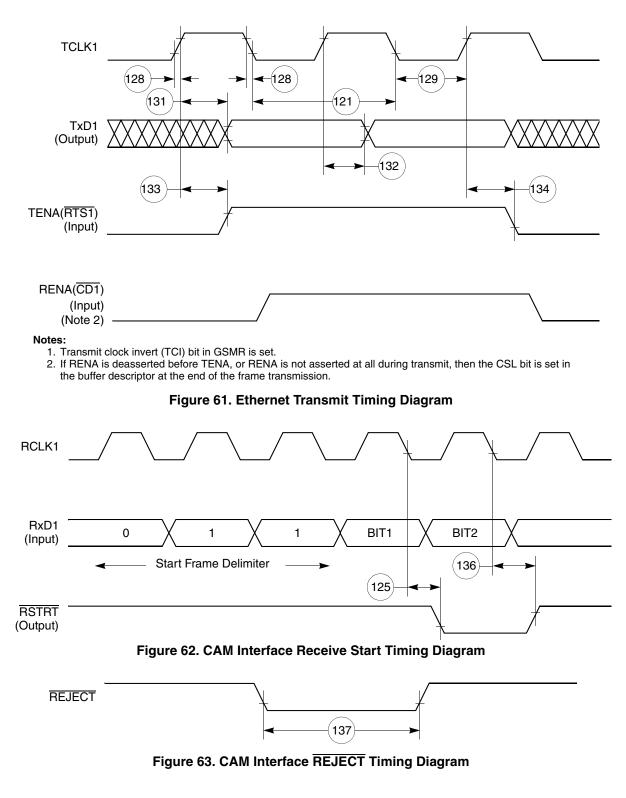



Figure 60. Ethernet Receive Timing Diagram

CPM Electrical Characteristics

UTOPIA AC Electrical Specifications

Figure 70 shows signal timings during UTOPIA receive operations.

Figure 71 shows signal timings during UTOPIA transmit operations.

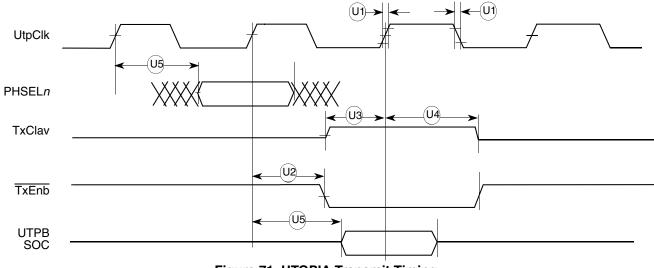


Figure 71. UTOPIA Transmit Timing

FEC Electrical Characteristics

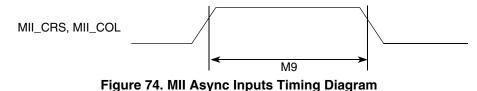

13.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 31 provides information on the MII async inputs signal timing.

Table 31. MII Async Inputs Signal Timing

Num	Characteristic	Min	Max	Unit
M9	MII_CRS, MII_COL minimum pulse width	1.5	_	MII_TX_CLK period

Figure 74 shows the MII asynchronous inputs signal timing diagram.

13.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 32 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

Num	Characteristic	Min	Max	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	_	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	_	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Table 32. MII Serial Management Channel Timing

Table 34 identifies the packages and operating frequencies available for the MPC860.

Package Type	Freq. (MHz) / Temp. (Tj)	Package	Order Number				
Ball grid array ZP suffix—leaded ZQ suffix—leaded VR suffix—lead-free	50 0° to 95°C	ZP/ZQ ¹	MPC855TZQ50D4 MPC860DEZQ50D4 MPC860DTZQ50D4 MPC860ENZQ50D4 MPC860SRZQ50D4 MPC860TZQ50D4 MPC860DPZQ50D4 MPC860PZQ50D4				
		Tape and Reel	MPC855TZQ50D4R2 MPC860DEZQ50D4R2 MPC860ENZQ50D4R2 MPC860SRZQ50D4R2 MPC860TZQ50D4R2 MPC860TZQ50D4R2 MPC860DPZQ50D4R2 MPC855TVR50D4R2 MPC860ENVR50D4R2 MPC860SRVR50D4R2 MPC860TVR50D4R2				
		VR	MPC855TVR50D4 MPC860DEVR50D4 MPC860DPVR50D4 MPC860DTVR50D4 MPC860ENVR50D4 MPC860PVR50D4 MPC860SRVR50D4 MPC860SRVR50D4 MPC860TVR50D4				
	66 0° to 95°C	ZP/ZQ ¹	MPC855TZQ66D4 MPC860DEZQ66D4 MPC860DTZQ66D4 MPC860ENZQ66D4 MPC860SRZQ66D4 MPC860TZQ66D4 MPC860DPZQ66D4 MPC860PZQ66D4				
		Tape and Reel	MPC860SRZQ66D4R2 MPC860PZQ66D4R2				
		VR	MPC855TVR66D4 MPC860DEVR66D4 MPC860DPVR66D4 MPC860DTVR66D4 MPC860ENVR66D4 MPC860PVR66D4 MPC860SRVR66D4 MPC860TVR66D4				

Table 34. MPC860 Family Package/Frequency Availability

Mechanical Data and Ordering Information

Package Type	Freq. (MHz) / Temp. (Tj)	Order Number			
Ball grid array <i>(continued)</i> ZP suffix—leaded ZQ suffix—leaded VR suffix—lead-free	80 0° to 95°C	ZP/ZQ ¹	MPC855TZQ80D4 MPC860DEZQ80D4 MPC860DTZQ80D4 MPC860ENZQ80D4 MPC860SRZQ80D4 MPC860TZQ80D4 MPC860DPZQ80D4 MPC860PZQ80D4		
		Tape and Reel	MPC860PZQ80D4R2 MPC860PVR80D4R2		
		VR	MPC855TVR80D4 MPC860DEVR80D4 MPC860DPVR80D4 MPC860ENVR80D4 MPC860PVR80D4 MPC860SRVR80D4 MPC860SRVR80D4 MPC860TVR80D4		
Ball grid array (CZP suffix) CZP suffix—leaded CZQ suffix—leaded CVR suffix—lead-free	50 –40° to 95°C	ZP/ZQ ¹	MPC855TCZQ50D4 MPC855TCVR50D4 MPC860DECZQ50D4 MPC860DTCZQ50D4 MPC860ENCZQ50D4 MPC860ENCZQ50D4 MPC860SRCZQ50D4 MPC860DPCZQ50D4 MPC860PCZQ50D4		
		Tape and Reel	MPC855TCZQ50D4R2 MC860ENCVR50D4R2		
		CVR	MPC860DECVR50D4 MPC860DTCVR50D4 MPC860ENCVR50D4 MPC860PCVR50D4 MPC860SRCVR50D4 MPC860SRCVR50D4 MPC860TCVR50D4		
	66 –40° to 95°C	ZP/ZQ ¹	MPC855TCZQ66D4 MPC855TCVR66D4 MPC860ENCZQ66D4 MPC860SRCZQ66D4 MPC860TCZQ66D4 MPC860DPCZQ66D4 MPC860PCZQ66D4		
		CVR	MPC860DTCVR66D4 MPC860ENCVR66D4 MPC860PCVR66D4 MPC860SRCVR66D4 MPC860TCVR66D4		

Table 34. MPC860 Family Package/Frequency Availability (continued)

¹ The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.

14.2 Pin Assignments

Figure 76 shows the top view pinout of the PBGA package. For additional information, see the MPC860 PowerQUICC User's Manual, or the MPC855T User's Manual.

(
	O PD10	O PD8	O PD3) D0	O D4	() D1	() D2) D3) D5) D6	() D7) D29	O DP2				w
O PD14	O PD13	O PD9	O PD6	⊖ M_Tx_I		O D13	() D27	〇 D10) D14) D18) D20	0 D24	() D28	O DP1	O DP3) N/C \		v 1
0 PA0	O PB14	O PD15	O PD4	O PD5		() D8	() D23	() D11	〇 D16	() D19	() D21	0 D26) D30	O IPA5) IPA4	O IPA2	○ N/C		U
O PA1	O PC5	O PC4	O PD11	O PD7		0 1 D12	0 D17	O D9) D15	0 D22	0 D25	O D31	O IPA6) IPA1	O IPA7	⊖ xfc		т
 ₽C6	0 PA2	O PB15	O PD12	$\left(\circ \right)$		0	0	\bigcirc	\bigcirc	0	0	\bigcirc	0						R VR
O PA4	О РВ17	O PA3		0	$\left(\circ \right)$		0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc		\circ				C ET XTAL	Р
O PB19	O PA5	O PB18	〇 PB16	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0					Ν
0 PA7	0 PC8	0 PA6	O PC7	0	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		BADDR28		O R29 VDD	M L
O PB22	O PC9	0 PA8	О РВ20	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0 0P0	\bigcirc AS	O OP1		L
O PC10	O PA9	O PB23	O PB21	0	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		0 130 IPB6			к
O PC11	O PB24	〇 PA10	O PB25	0	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O IPB5	O IPB1		O	J
			О тск	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	O M_COI				н
	O TMS	O TDO	O PA11	0	0) GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O GND	0			O IPB4	O IPB3	G
O PB26	O PC12	〇 PA12		0			0	0	0	0	0	0				⊖ ⊤s			F
O PB27	O PC13	〇 PA13	O PB29	\bigcirc	0	0	0	0	0	0	0	0	0	0	$\frac{\bigcirc}{CS3}$				Е
O PB28	O PC14	O PA14	O PC15	() A8	O N/C	O N/C	() A15	〇 A19	() A25	() A18			O N/C		$\frac{\bigcirc}{CS2}$				D
O PB30	O PA15	O PB31	() A3	() A9	() A12	〇 A16	() A20) A24	() A26										с
() A0	() A1	() A4	0 A6) A10	〇 A13	() A17	() A21	() A23) A22		\bigcirc				$\frac{\bigcirc}{CS5}$				в
	0 A2	0 A5	0 A7	0 A11	0 A14	0 A27	0 A29) () () () ()	0 A28	0.120 () A31	VDDL							•	А
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	١

NOTE: This is the top view of the device.

Figure 76. Pinout of the PBGA Package